voltage jump switching shunts - miem energinet... · hvdc rampingwithoutcentral power plants 400...

23
Voltage jump switching shunts 0,0% 1,0% 2,0% 3,0% 4,0% 5,0% ED_150 DR_150 R_150C ER_150 GD_150 AE_150 AS_150 IN_150 VV_150 TR_150 JE_150 E_150C SP_150 RI_220 SR_400 ER_400 GD_400 DU_400 AG_400 JE_400 RI_400 HA_400 1 2 3 4 5 6 Scenario n-0 Dato - Dok.nr. 46 Titel 0,0% 1,0% 2,0% 3,0% 4,0% 5,0% BED_150 EDR_150 EDR_150C FER_150 FGD_150 KAE_150 KAS_150 KIN_150 NVV_150 STR_150 TJE_150 TJE_150C ÅSP_150 TRI_220 ASR_400 FER_400 FGD_400 IDU_400 LAG_400 TJE_400 TRI_400 VHA_400 150 kV 220 kV 400 kV 1 2 3 4 5 6 Scenario BE ED EDR FE FG KA KA KI NV ST TJ TJE ÅS TR AS FE FG ID LA TJ TR VH n-1

Upload: phamhanh

Post on 15-Oct-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Voltage jump switching shunts

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

BE

D_

15

0

ED

R_

15

0

ED

R_

15

0C

FER

_1

50

FGD

_1

50

KA

E_

15

0

KA

S_

15

0

KIN

_1

50

NV

V_

15

0

STR

_1

50

TJE

_1

50

TJE

_1

50

C

ÅS

P_1

50

TR

I_2

20

AS

R_

40

0

FER

_4

00

FGD

_4

00

IDU

_4

00

LAG

_4

00

TJE

_4

00

TR

I_4

00

VH

A_

40

0

1

2

3

4

5

6

Scenario

n-0

Dato - Dok.nr. 46Titel

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

BE

D_

15

0

ED

R_

15

0

ED

R_

15

0C

FER

_1

50

FGD

_1

50

KA

E_

15

0

KA

S_

15

0

KIN

_1

50

NV

V_

15

0

STR

_1

50

TJE

_1

50

TJE

_1

50

C

ÅS

P_1

50

TR

I_2

20

AS

R_

40

0

FER

_4

00

FGD

_4

00

IDU

_4

00

LAG

_4

00

TJE

_4

00

TR

I_4

00

VH

A_

40

0

150 kV 220kV

400 kV

1

2

3

4

5

6

Scenario

BE

D_

15

0

ED

R_

15

0

ED

R_

15

0C

FER

_1

50

FGD

_1

50

KA

E_

15

0

KA

S_

15

0

KIN

_1

50

NV

V_

15

0

STR

_1

50

TJE

_1

50

TJE

_1

50

C

ÅS

P_1

50

TR

I_2

20

AS

R_

40

0

FER

_4

00

FGD

_4

00

IDU

_4

00

LAG

_4

00

TJE

_4

00

TR

I_4

00

VH

A_

40

0

n-1

HVDC ramping without central power plants

400

410

420

430

440

450

460

470

VHA_400NVV_400FE

R_400ID

U_400TJE

_400ASR_400REV_400EDR_400

TRI_400

LAG_400

KIN_400

FGD_400

KAS_400

Før rampingEfter rampingRamping og justering

853 MW

291 MW

1.347 MW

01_SSVS (300 MW/forb.)

W:0 MWH:0 MWQ: 300 MWL:1.484 MWC:0 MW

429 MW

1.647 MW

01_SSVS (u/central)

W:0 MW

729 MW

Sufficient voltage regulation∆900 MW

47Dok.nr. 23175-11

Spændingsændring ved 1800 MW ændring på SK, SB og KS

400

410

420

430

440

450

460

470

VHA_400NVV_400FE

R_400ID

U_400TJE

_400ASR_400REV_400EDR_400TRI_

400LA

G_400KIN

_400FG

D_400KAS_400

Før rampingEfter rampingRamping og justering

41 MW

9 MW

1.047 MW

01_SSVS (600 MW/forb.)

W:0 MWH:0 MWQ: 300 MWL:1.484 MWC:0 MW

129 MW1.737 MW

591 MW

W:0 MWH:0 MWQ: 300 MWL:1.484 MWC:0 MW

∆1800 MW

Sufficient reactive power,Need for automaticregulation

Dynamic studies - Stability

Voltage range after fault clearing

1

1,2

1,4

Vo

lta

ge

[p

u]

1,3/100ms

1,2/5s1,07/5s 1,05

0,75/10s

Dato - Dok.nr. 48Titel

0

0,2

0,4

0,6

0,8

0 1 2 3 4 5 6 7 8 9 10 11

Time [s]

Vo

lta

ge

[p

u]

Overvoltage

Undervoltage

0,25+0,5*t

0,75/10s0,9

Example with a new synchronous condenser

Dato - Dok.nr. 49Titel

Reference case SVC STV132 SVC SPA132Syn. Comp. BJS400 SVC KYV132

Risk of voltage collapse in DK2

• Busbar fault disconnecting a 400 kV line to Sweden

• Import on system 2 increases

• The voltage drop leads to a disconnection of CHPs

• The import to DK increases

• 400 kV voltage in DK drops further

• Wind turbines disconnect

415 kV390 kV350 kV

• Risk of voltage collapse

20,0016,0012,008,0004,0000,000 [s]

1,00

0,96

0,92

0,88

0,84

0,80

Voltage Lower Boundary 400: Voltage, Magnitude in p.u.

without SC

with SC

Voltage [p.u.]

Tripping of land wind and CHP

-200

0

01_SSVS 02_NNØN 03_SNØS 04_SSØS 05_NNØN 06_OOOS

Scen 01 02 03 03 05 06

Vind 0 2.142 2.142 0 2.410 2.410

DKV 0 0 0 1.474 1.376 1.474

1.800 MW

600 MW

740 MW

1.700 MW

01_SSVS

W:0 MWH:0 MWQ: 0 MWL:1.484 MWC:300 MW

1.800 MW

600 MW

740 MW

1.700 MW

01_SSVS

W:0 MWH:0 MWQ: 0 MWL:1.484 MWC:300 MW

1.671 MW

600 MW

1.700 MW

02_NNØN

W:2.142 MWH:615 MWQ: 0 MWL:1.484 MWC:300 MW

740 MW

1.671 MW

600 MW

1.700 MW

02_NNØN

W:2.142 MWH:615 MWQ: 0 MWL:1.484 MWC:300 MW

740 MW

776 MW

600 MW

1.700 MW

03_SNØS

W:2.142 MWH:769 MWQ: 0 MWL:2.968 MWC:300 MW

370 MW

776 MW

600 MW

1.700 MW

03_SNØS

W:2.142 MWH:769 MWQ: 0 MWL:2.968 MWC:300 MW

370 MW

224 MW

600 MW

1.700 MW

04_SSØS

W:0 MWH:0 MWQ: 1.474 MWL:3.340 MWC:300 MW

740 MW

224 MW

600 MW

1.700 MW

04_SSØS

W:0 MWH:0 MWQ: 1.474 MWL:3.340 MWC:300 MW

740 MW

1.467 MW

600 MW

1.700 MW

05_NNØN

W:2.410 MWH:692 MWQ: 1.376 MWL:3.154 MWC:300 MW

740 MW

1.467 MW

600 MW

1.700 MW

05_NNØN

W:2.410 MWH:692 MWQ: 1.376 MWL:3.154 MWC:300 MW

740 MW 0 MW

1.921 MW

0 MW

0 MW

06_OOOS

W:2.410 MWH:769 MWQ: 1.474 MWL:2.969 MWC:300 MW

0 MW

1.921 MW

0 MW

0 MW

06_OOOS

W:2.410 MWH:769 MWQ: 1.474 MWL:2.969 MWC:300 MW

Trip in each scenarioOne power plant

Year 2014

Worst fault

Worst power plant

51Dok.nr. 23175-11

-1.000

-800

-600

-400

-200

Construction specific studies

• Induced voltages [PSCAD]

• Reduce the risk of personal injury

• Damage to infrastructure

• Noise

• Zero miss [PSCAD]

• Zero miss studies are only relevant when planning reactive compensation • Zero miss studies are only relevant when planning reactive compensation of cables.

Dato - Dok.nr. 52

Isolation coordination studies [PSCAD (PowerFactory)]

• Dielectric strength of equipment

• Temporary over voltages (lasting up to minutes) (earth fault, resonance, etc.)

• Switching over voltages (lasting up to several ms)

• Lightning surge voltages (lasting • Lightning surge voltages (lasting up to several us)

• Very Fast transient (in a GIS system, lasting up to 1 us)

Dato - Dok.nr. 53

Source: [IEC60071-1]

Connecting wind parks

• We will take a lot of the risk, which will allow more contractors and a lower price for the wind power

Dato - Dok.nr. 54

The Anholt project – 400 MW wind park

• Energinet.dk is responsible for:

• Connection finished

• First turbine spinning this year

• Price: approx. 200 Mio USD

Dato - Dok.nr. 55

The Anholt project – 400 MW wind park

Dato - Dok.nr. 56

The Anholt project – 400 MW wind park

• Wind turbine type

Dato - Dok.nr. 57

Source: Dong Energy

Wind turbine technologies in Denmark (as of 2006)

Dato - Dok.nr. 58

Wind turbine model types

• A normal “old” type wind mill, No/full load compensated, is modeled as a asynchronous machines with 10 % reactive power consumption of the active power production (PQ)

• Windmill parks are modeled as asynchronous machines with neutral reactive power (PQ)

• For dynamic studies we use asynchronous machines and converter based modelsmodels

Dato - Dok.nr. 59Titel

Capacity assessment [Delfin]

• With the introduction of much fluctuating, unreliable wind power it is very important to analyze if there is sufficient reliable capacity to cover the peak demands when the wind does not blow.

Dato - Dok.nr. 60

Static capacity assessment [CA_02]

• Historical availability

• The geographical spread of wind is small

• A period with high consumption is often a period with high pressure and low temperature. This is often a period with no wind

• Low reliability

Dato - Dok.nr. 61

Dynamic capacity assessment [CA_01]

• 100x8760 of 2010 data scaled to 2020

• Randomizer

• Difference between wind and no wind

• Political down time

• Also use Assess (probabilistic model with the grid)

Dato - Dok.nr. 62

System structure and reliability

• There are two main reasons for system reinforcement:

• Better utilization of energy by reduction of bottlenecks

• Better reliability or reduced requirement for reserves at the same reliability

• In both cases, the chain is not stronger than its weakest link

• It is important to identify the weak links regarding both bottlenecks and reliability to avoid wrong investments.reliability to avoid wrong investments.

ENTSO-E: Power system reliability

The power system reliability is defined as the ability to:

• ensure normal system operation;

• limit the number of incidents and avoid major incidents;

• limit the consequences of major incidents whenever they do occur.

UCTE Operation Handbook, Appendix 3: Operational Security www.entso-e.eu

ENTSO-E: Power system reliability

• cascade tripping;

In order to ensure the safety of the system, protection must be provided against four main phenomena that may deeply disturb the system or initiate a large scale incident, naming:

• voltage collapse;

• frequency collapse;

• loss of synchronism

UCTE Operation Handbook, Appendix 3: Operational Security www.entso-e.eu

Reliability, but not at any price

The cost curve can be affected by e.g. environmental constraints

The penalty curve depends

Co

st Penalties + Investment costs

Figure: UCTE Operation Handbook, Appendix 3: Operational Security www.entso-e.eu

The penalty curve depends of the socio economic value of the energy

The optimum is different for different countries

Security of supply

Investment costs Penalties

67CNRED December 12, 2011

68CNRED December 12, 2011