viktor urumov - time-delay feedback control of nonlinear oscillators

66
Plan PMF - Skopje Primeri nelinearnih oscilatora Fazni prelaz kod modela Kuramoto Nestabilne fiksne ta~ke i wihova stabilizacija Nau~na produkcija na Balkanu

Upload: seenet-mtp

Post on 09-Jun-2015

1.847 views

Category:

Education


3 download

DESCRIPTION

Lecture by prof. dr Viktor Urumov (Faculty of Science and Mathematics, Saint Cyril and Methodius University, Skopje, Macedonia) on June 30, 2010 at the Faculty of Science and Mathematics, Nis, Serbia.

TRANSCRIPT

Page 1: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Plan

PMF - Skopje Primeri nelinearnih oscilatora Fazni prelaz kod modela Kuramoto Nestabilne fiksne ta~ke i wihova

stabilizacija Nau~na produkcija na Balkanu

Page 2: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

PMF, Skopje

Page 3: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Prose~na golemina na evropski oddel za fizika (2009)

Studenti - 467 (univerzitet - 23260)

Nastaven personal - 79 (univ - 1990)

Doktoranti - 75 Na PMF, soodvetno st. 20-30, n. 23 i d.

7-8 . . .

Page 4: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Current programme – part 1(semesters 1-4)

(lectures + tutorials + laboratory = credit points)

I IIMechanics 4+2+2=8 Molecular physics

4+2+2=8Mathematical Analysis 1 4+4+0=8 Mathematical analysis 2 3+3+0=7 Computer usage in physics 2+0+2=4 Chemistry 3+0+3=6Introduction to metrology 2+0+2=4 Elective course 3 3+0+0=3Elective course 1 3+0+0=3 Elective course 4

3+0+0=3Elective course 2 3+0+0=3 Elective course 5

3+0+0=3

III IVElectromagnetism 4+2+2=7 Optics 4+2+2=8Mathematical physics 1 3+3+0=7 Mathematical physics 2 3+3+0=7Theoretical mechanics 3+2+0=6 Electronics 3+1+3=7Oscillations and waves 2+2+0=4 Theoretical electrodynamics andElective course 6 3+0+0=3 special theory of relativity 3+2+0=5Elective course 7 3+0+0=3 Elective course 8 3+0+0=3

Page 5: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Current programme - part 2(semesters 5-8, physics teachers branch)

V VIAtomic physics 4+2+2=8 Nuclear physics

4+2+2=8Measurements in physics 3+0+3=6 Introduction to quantum theory 3+2+0=6General astronomy 2+1+0=4 Introduction to materials 2+0+2=5Elective course 9 3+0+0=3 Basics of solid state physics 3+1+2=6Elective course 10 3+0+0=3 Pedagogy 3+2+0=5Elective course 11 3+0+0=3Elective course 12 3+0+0=3

VII VIIIUse of computers in teaching 2+0+2=5 Methodology of physics teaching 2Methodology of physics teaching 1 2+2+3=8 (school practice) 2+2+3=8School experiments 1 2+0+3=6 School experiments 2 2+0+3=5Psychology 3+2+0=5 Design of electronic equipment 2+0+3=4Macedonian language 0+2+0=2 History and philosophy of physics 3+1+0=4Introduction to biophysics 2+0+2=4 Diploma thesis 0+0+9=9

Page 6: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Nonlinear oscillator

sin sin

sin sin

x b x x A t

x y

y x by A t

Page 7: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

The Lorenz system

Chaotic attractor of theunperturbed system (F(t)=0)

E. N. Lorenz, “Deterministic nonperiodic flow,”J. Atmos. Sci. 20 (1963) 130.

Fixed points: C0 (0,0,0)C± (±8.485, ±8.485,27)

Eigenvalues:(C0) = {-22.83, 11.83, -2.67}(C±) = {-13.85, 0.09+10.19i, 0.09-10.19i}

Page 8: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

van der Pol oscillator

2

2

( 1) 0

(1 )

x x x x

x y

y x y x

Page 9: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Limit cycle

- 2 - 1 0 1 2displacement xHtL- 2

- 1

0

1

2yticolev

xvHtL

b=0.5

Page 10: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Rössler oscillator with harmonic forcing

sin( )

( )

extx y z E t

y x ay

z f z x c

Page 11: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Historical example from Biology

The glowworms ... Represent another shew, which settle on some Trees, like a fiery cloud, with this surprising circumstance, that a whole swarm of these insects, having taken possession of one Tree, and spread themselves over its branches, sometimes hide their Light all at once, and a moment after make it appear again with the utmost regularity and exactness …

Engelbert Kaempfer description from his trip in Siam (1680)

Page 12: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators
Page 13: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators
Page 14: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Further examples

• The Moon facing the Earth; Gallilean satelites; Kirkwood gaps

• Cyclotron and other accelerators

• Stroboscope; Fax-machine

• Biological clocks; Jet lag

• Pacemakers

• Farmacological actions of steroids

Page 15: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Further examples 2

• Cardiorespiratory system

• Entrainment of cardial and locomotor rhythms

• Cardiovascular coupling during anesthesia

• Synchronization between parts of the brain

• Magnetoencephalographic fields and muscle activity of Parkinsonian patients

Page 16: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Modelot na Kuramoto

                                                

Page 17: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Parametar na poredok i sinhronizacija

1r 0r

Page 18: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Re{enie na modelot na Kuramoto (1975)

2/

2/

2 )sin(cos

dKrgKrr

re{enija

0r i 0r

)0(/2 gK c

KKrg c /1/

)(22

Page 19: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators
Page 20: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators
Page 21: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

INTRODUCTION - THE PYRAGAS CONTROL METHOD

- Time-delayed feedback control (TDFC)- Time-delayed autosynchronization (TDAS)

K. Pyragas, Phys. Lett. A 170 (1992) 421

Page 22: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Applications

Delays are natural in many systems

• Coupled oscillators

• Electronic circuits

• Lasers, electrochemistry

• Networks of oscillators

• Brain and cardiac dynamics

Page 23: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Pyragas control force:

VARIABLE DELAY FEEDBACK CONTROL OF USS

VDFC force:

- saw tooth wave:

- sine wave:

- random wave:

- noninvasive for USS and periodic orbits

- piezoelements, noise

A. Gjurchinovski and V. Urumov – Europhys. Lett. 84, 40013 (2008)

Page 24: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

VARIABLE DELAY FEEDBACK CONTROL OF USS

Page 25: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

Page 26: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

DELAY MODULATIONS

Page 27: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

Page 28: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

2D UNSTABLE FOCUS WITH A DIAGONAL COUPLING

original system : comparison system :

– sufficiently large

Characteristic equation of the comparison system (2D focus):

Page 29: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

TDAS VDFC VDFC VDFC

Page 30: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

The effect of including variable delay into TDAS for small

• condition for the roots lying on the imaginary axis for =0 to move to the left half-plane as increases from zero

CONCLUSION: the stability domain will expand in all directions within the half-space K>K0, as soon as is increased from zero, independent of the precise way in which the delay is varied

Page 31: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

2D unstable focus withand

Pyragas

Increase of the stability domain for small

(brown)

(green)

(yellow)

Page 32: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

diagrams for a saw tooth wave modulation (T0=1)

Page 33: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

Page 34: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

Stability analysis for the Lorenz system (saw tooth wave)

C+ (8.485, 8.485,27)

C0 (0,0,0)

C- (-8.485, -8.485,27)

10, r 28, b 8/3

Page 35: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

Page 36: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

THE MECHANISM OF VDFC

The Rössler system (sawtooth wave)

O.E. Rössler, Phys. Lett. A 57, 397 (1976).

Fixed points: C1 (0.007,-0.035,0.035)C2 (5.693, -28.465,28.465)

Eigenvalues:(C1) = {-5.687,0.097+0.995i,0.097-0.995i}(C2) = {0.192,-0.00000459+5.428i, -0.00000459-5.428i}

0 0.5

1 2

Page 37: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILIZATION OF UPO BY VDFC

SQUARE WAVE MODULATION

• periodic change of the delay, e. g. between T0 and 2T0, K fixed (VDFC)

• periodic change of the delay, K varied (VDFC + SCHUSTER, STEMMLER)

T(t)

T0

2T0

t

- half-period of the wave (optimal choice: T0)

T(t)

T0

2T0

t

K(t)

K/2

K

t

+

Page 38: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILIZATION OF UPO BY VDFC

•PYRAGASRössler T0=5.88

•VDFC (square wave)

•SCHUSTER, STEMMLER

•VDFC (square wave) + SCH-ST

F(t)=K [y(t-T0)-y(t)]

F(t)=K [y(t-T(t))-y(t)]

F(t)=K(t) [y(t-T0)-y(t)]

F(t)=K(t) [y(t-T(t))-y(t)]

Page 39: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILIZATION OF UPO BY VDFC

Rössler T0=11.75 Rössler T0=17.5

Page 40: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILIZATION OF UPO BY VDFC

•VDFC + SCHUSTER

K periodically varied between K and K/4 (Rössler, T0=17.5)

•Restricted VDFC + SCHUSTER F(t)=K(t) Sin [y(t-T(t))-y(t)]

Page 41: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILIZATION OF UPO BY VDFC

Rössler T0=5.88VDFC (square wave)

= T0

= 2T0

= T0/2

Page 42: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILITY ANALYSIS - RDDE

Retarded delay-differential equations

• GOAL: stabilization of unstable steady states by a variable-delay feedback control in a nonlinear dynamical systems described by a scalar autonomous retarded delay-differential equation (RDDE)

• MOTIVATION: extension of the delay method to infinite dimensional systems

• INTEREST: frequent occurrence of scalar RDDE in numerous physical, biological and engineering models, where the time-delays are natural manifestation of the system’s dynamics

T. Erneux, Applied Delay Differential Equations (Springer, New York, 2009)

Page 43: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Retarded delay-differential equationsGeneral scalar RDDE

system:

T1 ≥ 0 – constant delay time

F – arbitrary nonlinear function of the state variable x

Linearized system around the fixed point x*:

DELAY-DIFFERENTIAL EQUATIONS

Characteristic equation for the stability of steady state x* of the free-running system:

A. Gjurchinovski and V. Urumov – Phys. Rev. E 81, 016209 (2010)

Page 44: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILITY ANALYSIS - RDDE

Retarded delay-differential equations

Controlled RDDE system:

u(t) – Pyragas-type feedback force with a variable time delay

K – feedback gain (strength of the feedback) T2 – nominal delay value f – periodic function with zero mean – amplitude of the modulation – frequency of the modulation

Page 45: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILITY ANALYSIS - RDDE

Stability of the unperturbed system

Page 46: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILITY ANALYSIS - RDDE

Stability under variable-delay feedback control

Limitation of the VDFC for RDDE systems:

• A kind of analogue to the odd-number limitation in the case of delayed feedback control of systems described by ordinary differential equations:

W. Just et al., Phys. Rev. Lett. 78, 203(1997)H. Nakajima, Phys. Lett. A 232, 207 (1997)

• … refuted recently:

B. Fiedler et al., Phys. Rev. Lett. 98, 114101 (2007).B. Fiedler et al., Phys. Rev. E 77, 066207 (2008).

Page 47: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

STABILITY ANALYSIS - RDDE

Representation of the control boundaries parametrized by = Im()

(K,T2) plane:

Page 48: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Mackey-Glass system

• A model for regeneration of blood cells in patients with leukemia

M. C. Mackey and L. Glass, Science 197, 28 (1977).

• M-G system under variable-delay feedback control:

• For the typical values a = 0.2, b = 0.1 and c = 10, the fixed points of the free-running system are:

• x1 = 0 – unstable for any T1, cannot be stabilized by VDFC• x2 = +1 – stable for T1 [0,4.7082)• x3 = -1 – stable for T1 [0,4.7082)

Page 49: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Mackey-Glass system (without control)

(a) T1 = 4

(b) T1 = 8

(c) T1 = 15

(d) T1 = 23

Page 50: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Mackey-Glass system (VDFC)

(a) = 0 (TDFC)

(b) = 0.5 (saw)

(c) = 1 (saw)

(d) = 2 (saw)

T1 = 23

Page 51: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Mackey-Glass system (VDFC)

(a) = 1 (sin)

(b) = 2 (sin)

(c) = 1 (sqr)

(d) = 2 (sqr)

T1 = 23

Page 52: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Mackey-Glass system (VDFC)

(a) = 0 (TDFC)

(b) = 2 (saw)

(c) = 2 (sin)

(d) = 2 (sqr)

K = 0.5

Page 53: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Mackey-Glass system (VDFC)

T1 = 23, T2 = 18, K = 2, = 2, = 5

saw

sin

sqr

Page 54: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Mackey-Glass system (VDFC)

Page 55: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Mackey-Glass system (VDFC)

Page 56: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Ikeda system

• Introduced to describe the dynamics of an optical bistable resonator, incorporating the round-trip time of light in an optical cavity via the time delay T1

K. Ikeda, Opt. Commun. 39, 257 (1979)K. Ikeda and K. Matsumoto, Physica D 29, 223 (1987).

• Ikeda system under variable-delay feedback control:

• For = 4 and x0 = /4, the fixed points of the free-running system are:

• x1 = 3.05708 – stable for T1 [0, 0.82801)• x2 = 1.05136 – unstable for any T1, cannot be stabilized by

VDFC• x3 = -1.86979 – stable for T1 [0, 0.54767)

Page 57: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

EXAMPLES AND SIMULATIONS

Sprott system

• The simplest one-parameter RDDE system with a sinusoidal nonlinearity

J. C. Sprott, Phys. Lett. A 366, 397 (2007)

• Sprott system under variable-delay feedback control:

• The fixed points of the free-running system are:

• x2n = 2n – unstable for any T1, cannot be stabilized by VDFC

• x2n+1 = (2n+1) – stable for T1 [0, /2)

Page 58: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

FRACTIONAL DIFFERENTIAL EQUATIONS

Fractional Rössler system

Caputo fractional-order derivative:

Page 59: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

FRACTIONAL DIFFERENTIAL EQUATIONS

Fractional Rössler system

Page 60: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

FRACTIONAL DIFFERENTIAL EQUATIONS

Fractional Rössler system - stability diagrams

Time-delayed feedback control

Variable delay feedback control

(sine-wave, =1, =10)

Time-delayed feedback control

Variable delay feedback control

(sine-wave, =1, =10)

Time-delayed feedback control

Variable delay feedback control

(sine-wave, =1, =10)

Time-delayed feedback control

Page 61: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Desynchronisation in systems of coupled oscillators

Hindmarsh - Rose oscillators

Mean field

Global coupling

Delayed feedback control

M. Rosenblum and A. Pikovsky, Phys. Rev. Lett. 92, 114102; Phys. Rev. E 70, 041904 (2004)

Page 62: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Desynchronisation in systems of coupled oscillators

Feedback switched on at t=5000

System of 1000 H-R oscillators

=const=72.5

K=0.0036

Kmf=0.08

Page 63: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

Desynchronisation in systems of coupled oscillators

Time-delayed feedback control

Variable delay feedback control

(sine-wave, =40, =10)

Suppression coefficient

X – Mean field in the absence of feedback

Xf – Mean field in the presence of feedback

T=145 – average period of the mean field in the absence of feedback

Page 64: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

CONCLUSIONS AND FUTURE PROSPECTS

• Enlarged domain for stabilization of unstable steady states in systems of ordinary/delay/fractional differential equations in comparison with Pyragas method and its generalizations

• Agreement between theory and simulations for large frequencies in the delay variability

• The enlargement of the control domain may undergo a complex rearrangement depending on the type of the delay modulation

• Extended area of stabilization of periodic orbits by noninvasive variable-delay feedback control

• Variable delay feedback control provides increased robustness in achieving desynchronization in wider domain of parameter space in system of coupled Hindmarsh-Rose oscillators interacting through their mean field

• The influence of variable-delay feedback in other systems (neutral DDE, PDE, networks, …)

• Experimental verification

Page 65: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

SCI publikacii od balkanski gradovi 2006-2010

vkupno

statii apstrakti zbornici revijalni

pisma glavna sorabotka

Atina 26880 16700 4996 1751 1592 1032 US, UK, DE, FR, IT

Belgrad 10348 7287 1669 860 242 112 DE, US, IT, UK, FR

Bukure{t 11413 8184 1312 1523 205 32 FR, DE, US, IT, UK

Zagreb 9576 6590 1252 936 373 194 US, DE, IT, FR, SLO

Istanbul 20627 15135 2772 1031 443 703 US, DE, UK, IT, FR

Ki{inev 1044 768 123 120 23 6 US, DE, RU, PL

Qubqana 10482 7957 733 1129 358 87 US, DE, IT, UK, FR

Nikozija 1858 1354 162 175 71 25 GR, US, UK, DE

Podgorica 363 287 54 13 5 SRB, DE, IT, FR, RU

Saraevo 824 565 192 48 9 3 DE, CRO, US, SRB, SLO

Skopje 1257 628 520 58 22 15 DE, BG, US, SRB, IT

Sofija 8964 6826 760 953 241 72 DE, US, FR, IT

Tirana 348 162 147 22 7 7 IT, GR, DE, FR, US

Page 66: Viktor Urumov -  Time-delay feedback control of nonlinear oscillators

SCI publikacii od Skopje 1993-2009(Sv. Kiril i Metodij)

0

50

100

150

200

250

300

350

400

1990 1995 2000 2005 2010

Вкупен опфат

Статии