introductionsalsahpc.indiana.edu/b534projects/sites/default/files... · web viewa fundamental idea...

9
Scalability of DryadLINQ Haomin Xiang Student 2001 E.lingelbach bane Apt.# 440 Bloomington, IN 8123609957 47408 [email protected] Abstract DryadLINQ is a system, which enables a brand new programming model for large scale distributed computing by providing a set of language extensions. This paper describes the scalability of implementation of the DryadLINQ and it evaluates DryadLINQ on several programs implemented by DryadLINQ, that is, CAP3 DNA sequence assembly program [1], High Energy Physics data analysis, CloudBurst [2] - a parallel seed- and- extend read-mapping application and compare their scalability with the same applications implemented by Hadoop. Categories and Subject Descriptors Describe the system architecture of DryadLINQ, and show the scalability of DryadLINQ by comparing program implemented by DryadLINQ with those implemented by Hadoop and CGL- MapReduce. General Terms Performance, Language Keywords Scalability DryadLINQ Hadoop CGL- MapReduce 1. INTRODUCTION A fundamental idea of DryadLINQ is to provide a way to write applications that run on a large amount of homogenous computers to process with high scalability with much ease to a wide arrange of developers. DryadLINQ can compile imperative programs transparently and automatically in a widely used language into distributed computations, which can efficiently scale to large computing clusters. As what the old-fashioned parallel databases and, what’s more, those recent cloud-computing-enabled systems such as CGL-MapReduce [3] Hadoop [4] and Dryad [5] have been shown, even with limited financial budget, it is also possible to implement high-performance execution engines with high-scalability. Section 2 presents the DryadLINQ’s architecture on HPC environment, and a brief introduction to Hadoop. Section 3 evaluates the scalability of DryadLINQ implementation by comparing the performance with Hadoop and CGL-MapReduce. Section 4 presents the related work to this research, and section 5 presents the conclusions. 2. DryadLINQ and Hadoop The DryadLINQ system is designed to materialize the idea that a wide array of developers could compute on large amounts of data effectively and suffer little performance loss in scaling up with modest effort. 2.1 DryadLINQ System Architecture LINQ programs are complied into distributed computations by DrtadLINQ, and it would then running on the Dryad cluster-computing infrastructure. A Dryad job is a directed acyclic graph where each edge represent a

Upload: vuongcong

Post on 25-May-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Scalability of DryadLINQHaomin Xiang

Student2001 E.lingelbach bane

Apt.# 440 Bloomington, IN8123609957 47408

[email protected] is a system, which enables a brand new programming model for large scale distributed computing by providing a set of language extensions.This paper describes the scalability of implementation of the DryadLINQ and it evaluates DryadLINQ on several programs implemented by DryadLINQ, that is, CAP3 DNA sequence assembly program [1], High Energy Physics data analysis, CloudBurst [2] - a parallel seed-and- extend read-mapping application and compare their scalability with the same applications implemented by Hadoop.

Categories and Subject DescriptorsDescribe the system architecture of DryadLINQ, and show the scalability of DryadLINQ by comparing program implemented by DryadLINQ with those implemented by Hadoop and CGL-MapReduce.General TermsPerformance, Language

KeywordsScalability DryadLINQ Hadoop CGL-MapReduce

1. INTRODUCTIONA fundamental idea of DryadLINQ is to provide a way to write applications that run on a large amount of homogenous computers to process with high scalability with much ease to a wide arrange of developers. DryadLINQ can compile imperative programs transparently and automatically in a widely used language into distributed computations, which can efficiently scale to large computing clusters.As what the old-fashioned parallel databases and, what’s more, those recent cloud-computing-enabled systems such as CGL-MapReduce [3] Hadoop [4] and Dryad [5] have been shown, even with limited financial budget, it is also possible to implement high-performance execution engines with high-scalability.

Section 2 presents the DryadLINQ’s architecture on HPC environment, and a brief introduction to Hadoop. Section 3 evaluates the scalability of DryadLINQ implementation by comparing the performance with Hadoop and CGL-MapReduce. Section 4 presents the related work to this research, and section 5 presents the conclusions.

2. DryadLINQ and Hadoop The DryadLINQ system is designed to materialize the idea that a wide array of developers could compute on large amounts of data effectively and suffer little performance loss in scaling up with modest effort.

2.1 DryadLINQ System ArchitectureLINQ programs are complied into distributed computations by DrtadLINQ, and it would then running on the Dryad cluster-computing infrastructure.A Dryad job is a directed acyclic graph where each edge represent a data channel and vertexes are programs.The execution of a Dryad job is maneuvered by a centralized “job manager.” The job manager is responsible for: First, Materializing a job’s dataflow graph; Second, Scheduling processes on cluster computers; Third, Enabling fault-tolerance by re-executing slow or failed processes; Forth, Monitoring the job and collecting dates; and Sixth, Dynamically transforming the job graph according to the rules defined by users.Figure 1 shows how Dryad system architecture is constructed. The duty of the job manager is creating vertices (V) on proper computers with the assistance of a remote-execution and monitoring daemon (PD).

NS means name server, which contains the cluster membership. Vertices exchange data through shared-memory channels, TCP pipes, or files. The vertices in the job that are currently running and the correspondence with the job execution graph as what the grey shape has shown.

2.2 DryadLINQ Execution OverviewThe DryadLINQ system includes of two main components: a runtime and a parallel compiler, the former one provides an implementation of the

Figure 1. illustrates the Dryad system architecture.

DryadLINQ operators and the latter one compiles DryadLINQ programs to distributed execution plans In Steps 1–2, executing a .NET user application. As LINQ deferred execution, expressions are accumulated in a DryadLINQ expression object, the application invoking a method that materializes the output dataset triggering their actual execution. After the triggering, DryadLINQ

takes over and compiles the LINQ expression into a distributed execution plan which can be understood by Dryad (Step 3). This step performs the majority of the compiling work, containing:(a) Decomposing the expression into sub expressions, each to be run in a separate Dryad vertex; (b) Generating code and static data for the remote Dryad vertices; and(c) Generating serialization code for the required data types. At Step 4, a custom, DryadLINQ-specific, Dryad job manager is invoked.Dryad takes control at Step 5. By using the plan created in Step 3, it creates the job graph, and schedules and creates the vertices when cluster resources are available. Each Dryad vertex runs a program, which specific for it created in Step 3 by DryadLINQ. After the Dryad job completes successfully, it returns the control back to DryadLINQ at Step 8 and writes the data to the output table(s).

2.3 Hadoop and HDFSWhen comparing to Google’s MapReduce runtime,Apache Hadoop has a similar architecture to it, where Apache Hadoop accesses data via HDFS, which maps all the local disks of the compute nodes

to a single file system hierarchy, and the file system allows the data to be dispersed to all the nodes. In order to improve the overall I/O bandwidth, Hadoop takes the data locality into major concern when schedules the MapReduce computation tasks. The outputs of the map tasks would be accessed by the reduce tasks via HTTP connections, before this, they would be stored in local disks.

Although this approach enables the fault-tolerance mechanism in Hadoop, however, it imposes considerable communication burden to the intermediate data transformation, especially for the cases that executing the applications, which produce small intermediate results frequently.

3. Experimental Evaluations3.1 Hardware Configuration

Table 1. Hardware Configuration

Feature Linux Cluster

Window Cluster

Figure 2. shows the flow of execution when a program is executed by DryadLINQ.

Figure 3. Comparison of features supported by Dryad and Hadoop of heterogeneous compute nodes.

CPU Intel(R ) Xeon (R )

CPU L54202.50GHz

Intel(R ) Xeon (R )

CPU L54202.50GHz

#CPU#Cores

28

28

Memory 32GB 16GB#disk 1 2

Network Giga bit Ethernet

Giga bit Ethernet

OperatingSystem

Red HatEnterprise

LinuxServer -64

bit

Windows Server

Enterprise -64bit

#Nodes 32 32

3.2 CAP3CAP3 is a DNA sequence assembly program that performs several major assembly steps to a given set of gene sequences.Cap3.exe (Input) output + Other output filesAs what have been shown above, the program reads gene sequences, each of which needs to be processed by the CAP3 program separately, from an input file and writes its output to several output files and to the standard output. DryadLINQ application only needs to know the input file names and their locations for it executes the CAP3 executable as an external program.(1) Each node of the cluster stores roughly the same number of input data files by dividing the input data files among them;(2) Each node creates a data partition which containing the names of the original data files available in that node;(3) Individual data-partitions stored in each node are pointed to the late-created Dryad partitioned-file.After what has been shown above, a DryadLINQ program would be created to read the data file names from the provided partitioned-file, and execute the CAP3 program.However, a suboptimal CPU core utilization, which is highly unlikely for CAP3, is noticed.A trace of job scheduling in the HPC cluster revealed that the utilization of CPU cores of the scheduling of individual CAP3 executable in a given node is not optimal.The reason why the utilization of CPU cores is not optimal is that when an application is scheduled, DryadLINQ uses the number of data partitions as a

guideline to schedules the number of vertices to to the nodes rather than individual CPU cores under the assumption that the underlying PLINQ runtime would handle the further parallelism available at each vertex and utilize all the CPU cores by chunking the input data.However, our input for DraydLINQ is only the names of the original data files, it has no way to determine how much time the Cap3.exe take to process a file, and hence the chunking of records at PLINQ would not lead to optimizing of the schedule of tasks. Figure 4 and 5 show comparisons of performance and the scalability of all three runtimes for the CAP3 application.

DryadLINQ does not schedule multiple concurrent vertices to a given node, but one vertex at a time. Therefore, a vertex, which uses PLINQ to schedule some non- homogeneous parallel tasks, would have a running time equal to the task, which takes the longest time to complete.In contrast, we can set the maximum and minimum number of map and reduce tasks to execute concurrently on a given node in Hadoop, so that it will utilize all the CPU cores.The performance and the scalability graphs indicate that the DryadLINQ application, the Hadoop and CGL-MapReduce versions of the CAP3 application work almost equally well for the CAP3 program.

Figure 4. Performance of different implementations of CAP3 application.

3.3 HEPHEP is short for High-energy physics.In HEP application, the input is available as a collection of large number of binary files, which will not be directly accessed by the DryadLINQ program, so we have to

(1) Give each compute node of the cluster a division of input data manually, and

(2) Put a data-partitions, which stores only the file names, in a given node.

The first step of the analysis requires applying a function coded in ROOT script to all the input files:[Homomorphic]ApplyROOT(string filename){..}IQueryable<HistoFile>histograms =DataFileName. Apply(s => ApplyROOT(s));the Apply operation allows a function to be applied to an entire data set, and produce multiple output values ,so in each vertex the program can access a data partition available in that node.Inside the ApplyROOT() method, the program iterates over the data set and groups the input data files, and execute the ROOT script passing these files names along with other necessary parameters, what’s more, it also saves the output, that is, a binary file containing a histogram of identified features of the input data, in a predefined shared directory and produces its location as the return value.In the next step of the program, we perform a combining operation to these partial histograms by using a homomorphic Apply operation and to those collections of histograms in a given data partition by using another ROOT script, finally to the output partial histograms produced by the previous step by the main program. The last combination would produce the final histogram of identified features.The results of this analysis among the performance of three runtime implantations are shown in Figure 6.

The results in Figure 6 implicates that compared to DraydLINQ and CGL-MapReduce implementations, Hadoop implementation has a remarkable overhead which is mainly due to differences in the storage mechanisms used in these frameworks. HDFS can only be accessed using C++ or Java clients, and the ROOT data analysis framework is not capable of accessing the input from HDFS.In contrast, both Dryad and CGL-MapReduce implementations’ performance are improved significantly by the ability of reading input from the local disks.What’s more, in the DryadLINQ implementation, the intermediate partial histograms are stored in a shared directory and are combined during the second phase as a separate analysis. In CGL-MapReduce implementation, the partial histograms are directly transferred to the reducers where they are saved in local file systems and combined.This difference can explain the performance difference between the CGL-MapReduce implementation and the DryadLINQ implementation.

3.4 CloudBurstCloudBurst is a Hadoop application that performs a parallel seed-and-extend read-mapping algorithm to the human genome and other reference genomes.CloudBurst parallelizes execution by seed, that is the reference and query sequences would be grouped together and sent to a reducer for further analysis if they sharing the same seed.CloudBurst is composed of a two-stage MapReduce workflow: (1) Compute the alignments for each read with at most k differences where k is user specified. (2) Report only the best unambiguous alignment for each read rather than the full catalog of all alignments.An important characteristic of the application is that the variable amount of time it spent in the reduction phase. This characteristic can be a limiting factor to

Figure 5. Scalability of different implementations of CAP3

Figure 6. Performance of different implementations of HEP data analysis applications

scale, depending on the scheduling policies of the framework running the algorithm.In DryadLINQ, the same workflow is expressed as follows:MapGroupByReduceGroupByReduceDryadLINQ runs the whole computation as a whole rather than two separate steps followed by one another.The reduce function would produces one or more alignments after receives a set of reference and query seeds sharing the same key as input. For each input record, query seeds are grouped in batches, and in order to reduce the memory limitations each batch is sent to an alignment function sequentially. We developed another DryadLINQ implementation that can process each batch in parallel assigning them as separate threads running at the same time using .NET Parallel Extensions. The results in Figure 7s show that all three implementations follow a similar pattern although DryadLINQ is not fast enough especially when nodes number is small.The major difference between DryadLINQ and Hadoop implementations is that in DraydLINQ, even though PLINQ assign records to separate threads running concurrently, the cores were not utilized completely; conversely, in Hadoop each node starts reduce tasks which has number equal to one’s cores and each task ran independently by doing a fairly equal amount of work.

Another difference between DryadLINQ and Hadoop implementations is the number of partitions created before the reduce step. Since Hadoop creates more partitions, it balances the workload among reducers more equally. If the PLINQ scheduler worked as expected, it would keep the cores busy and thus yield a similar load balance to Hadoop.In order to achieve this, one can try starting the computation with more partitions aiming to schedule multiple vertices per node. However, DryadLINQ runs the tasks in order, so it would wait for one vertex to finish before scheduling the second vertex, but the first vertex may be busy with only one record, and thus holding the rest of the cores idle. So the final effort to reduce this gap would be the using of the .NET parallel extensions to fully utilizing the idle cores, although it is not identical to Hadoop’s level of parallelism.Figure 6 shows the performance comparison of three runtimes implementation with increasing data size. Both implementations of DryadLINQ and Hadoop scale linearly, and the time gap is mainly related to what has been explained above: the current limitations with PLINQ and DryadLINQ’s job scheduling polices. Figure 6. Performance comparison of DryadLINQ and Hadoop for CloudBurst.

Relate work2000s sees a large amount of activity in architectures for processing large-scale datasets. One of the earliest commercial generic platforms for distributed computation was the Teoma Neptune platform [6], which introduced a map-reduce computation paradigm inspired by MPI’s Reduce operator. The Hadoop open-source port of MapReduce slightly extended the computation model, separated the execution layer from storage, and virtualized the execution. The Google MapReduce [7] uses the same architecture. NetSolve [8] provides a grid-based architecture for a generic execution layer. DryadLINQ has a richer set of operators and better language support than any of those above.At the storage layer a variety of very large-scale simple databases have appeared, including Amazon’s Simple DB, Google’s BigTable [9], and Microsoft SQL Server Data Services. Architecturally, DryadLINQ is just an application running on top of Dryad and generating distributed Dryad jobs. People can envisage making it interoperate with any of these storage layers.5. Conclusions This paper shows the scalability of DryadLINQ by applying DryadLINQ to a series of scalable applications with unique requirements. The applications range from simple map-only operations such as CAP3 to multiple stages of MapReduce jobs in CloudBurst. This paper showed that all these applications can be implemented using the DAG based programming model of DryadLINQ, and their performances are comparable to the same applications developed by using Hadoop. References[1] X. Huang and A. Madan, “CAP3: A DNA Sequence Assembly Program,” Genome Research, vol. 9, no. 9, pp. 868-877, 1999[2] M. Schatz, “CloudBurst: highly sensitive read mapping with MapReduce”, Bioinformatics. 2009 June 1; 25(11): 1363-1369. [3] J. Ekanayake and S. Pallickara, “ MapReduce for Data Intensive Scientific Analysis,” Fourth IEEE International Conference on eScience, 2008, pp.277-284.[4] Apache Hadoop, http://hadoop.apache.org/core/

[5] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-TERLY, D. Dryad: Distributed data-parallel programs from sequential building blocks. In Proceedings of European Conference on Computer Systems (EuroSys), 2007.

Figure 7. Scalability of CloudBurst with different implementations

[6] CHU, L., TANG, H., YANG, T., AND SHEN, K. Optimizing data aggregation for cluster-based Internet services. In Symposium on Principles and practice of parallel programming (PPoPP), 2003.[7] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th Symposium on Operating Systems Design and Implementation (OSDI), 2004.[8] BECK, M., DONGARRA, J., AND PLANK, J. S. NetSolve/D: A massively parallel grid execution system for scalable data intensive collaboration. In International Parallel and Distributed Processing Symposium (IPDPS), 2005.

[9] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL- LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND GRUBER, R. E. BigTable: A distributed storage system for structured data. In Symposium on Operating System Design and Implementation (OSDI), 2006.