vibrational autodetachment in nitroalkane anions chris l. adams, j. mathias weber jila, university...

27
Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams , J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International Symposium on Molecular Spectroscopy June 24, 2010

Upload: lily-doyle

Post on 13-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Vibrational Autodetachment in Nitroalkane Anions

Chris L. Adams, J. Mathias Weber

JILA, University of Colorado, Boulder, CO 80309-0440

OSU International Symposium on Molecular

SpectroscopyJune 24, 2010

Page 2: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitroalkane Anions

Novel Approach to studying intramolecular vibrational relaxation (IVR).

Page 3: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Motivation: What happens when a photon of hn = Evib > EeBE ?

Conventional PES (off-resonance)

+ e-

Direct photoemission governed by Franck-Condon factors

Vibrational Autodetachment (VAD) PES (on-resonance)

+ e-

VAD governed by Intramolecular Vibrational Relaxation (IVR) prior to photoemission

Nitroalkane Anions

Page 4: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Model System

• The excess electron is largely localized on the nitro group.

• The fundamental CH vibrational transitions (>2750 cm-1) have energies in excess of the adiabatic electronic affinity (AEA) <200 meV (1600 cm-1).

Nitroalkane Anions

Page 5: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Ion Optics

Tunable IR (2000-4000 cm-1), 1064nm, or 532 nm light

Experimental Set-Up

e-

beam

Page 6: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Deflection and Focusing Optics

Microchannel plate assembly

Phosphor Screen

CCD Camera

Imaging Optics and photoelectron flight tube

Laser Beam

Neutral

Experimental Set-Up

Page 7: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Raw Image Transformed ImageBASEXTransformed Image Integration over emission angles

Photoelectron Spectrum

Experimental Set-Up

0 100 200 300 400

0

Inte

nsi

ty [a

rb. u

nits

]

Pixel

Page 8: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

2700 2800 2900 3000 3100 3200

0

Ph

oto

ne

utr

al Y

ield

[a

rb. u

nits]

Photon Energy [cm-1]

Nitromethane Anion

Autodetachment spectrum CH3NO2

- + hn CH3NO2 + e-

Page 9: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Ө ≈ 30°Ө ≈ 0°

Anion Neutral

Comparing geometry of neutral and anion

Nitroalkane Anions

•Expect wagging vibration of the neutral should give the most prominent vibrational progression in the PES.

NO2 Wag ~ 603 cm-1 (74 meV )

•Upon emission of excess electron hindered to free rotor

Page 10: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

0 100 200 300

0

In

ten

sity

[arb

. un

its]

Binding Energy [meV]

Nitromethane Anion

Off-Resonance - 2740 cm-1

AEA = 172± 6 meV

74 meV

Adams et al., J. Chem. Phys. 130, 074307 (2009)

Page 11: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

ZOBS

Dark States

Intramolecular Vibrational Relaxation (IVR)

e-

Nitroalkane Anions

J. M. Weber et al., JCP 115 (2001) 10718

Page 12: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

2700 2800 2900 3000 3100 3200

0

Ph

oto

ne

utr

al Y

ield

[a

rb. u

nits]

Photon Energy [cm-1]

Nitromethane Anion

Autodetachment spectrum CH3NO2

- + hn CH3NO2 + e-

Page 13: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

Off-Resonance - 2740 cm-1

On-Resonance - 2775 cm-1

Page 14: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

2725 2750 2775 2800 28250

Photon Energy [cm-1]

150 200 250 300 350

Inte

nsity

[arb

. uni

ts]

Binding Energy [meV]

150 200 250 300 350

Inte

nsity

[arb

. uni

ts]

Binding Energy [meV]

Nitromethane Anion

To extract the VAD photoelectron yield we subtract the off-resonance photoelectron spectrum from the VAD photoelectron spectrum. The baseline is then shifted by the AEA leaving us with the amount of energy remaining in the neutral molecule.

2725 2750 2775 2800 28250

Photon Energy [cm-1]

2700 2800 2900 3000 3100 32000

Photon Energy [cm-1]

0 50 100 150

VA

D y

ield

[arb

. uni

ts]

energy left in neutral [meV]150 200 250 300 350

Inte

nsity

[arb

. uni

ts]

Binding Energy [meV]

Page 15: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

Where do we go from here?

Start with vibrational state (0,0,1,0,0,0,...,0,0,0)

System evolves to

(0,0,0,n4,n5,...,n13,n14,n15)When enough energies is pooled in NO2 wag we expect electron emission to occur. Based on this simple idea, we expect the population of vibrational states in the neutral will provide a rough map of how energy was distributed in the anion just prior to electron loss.

Model the VAD spectrum with final states of the neutral

Page 16: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

Fourteen of the fifteen vibrational modes of the neutral have been experimentally determined.

The last degree of freedom corresponds to the free internal rotor. These internal rotor states were described using a particle-on-a-ring model where

Counting States

,...3,2,1,0;2

22

2 JCJI

JE TPOR

where J is the quantum number of the free internal rotor and I is the reduced moment of inertia for the torsional motion

23

23

NOCH

NOCH

II

III

390 vibrational and torsional states of neutral CH3NO2 within the first 200 meV of the ground state

Page 17: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

First Model: CH stretching modes couple to other vibrations, but not to torsional motion, because of large energy mismatch

→ all a v,J are zero for |J| > 0, adjust the av,0 for best fit

Nitromethane Anion

Modeling

Intensity distribution, IVAD(E)

written as Jv

JvJvthrVAD EEIaEfEI,

,0, )()()(

• v and J are the vibrational and free internal rotor quantum states

• fthr(E) is an energy dependent emission probability

• a v,J gives the intensities of the states at energies E v,J

•I0(E - E v,J) is the experimental response functions,

represented by a gauss function corresponding to the experimental resolution

Page 18: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

0 50 100 150

VA

D y

ield

[arb

. un

its]

energy left in neutral [meV]

0 50 100 150

VA

D y

ield

[arb

. un

its]

energy left in neutral [meV]

First Model:

•The high-energy states are well represented.

•The low-energy region is not recovered at all

•Peak at 100 meV is completely missing

•The width of the peaks is too narrow

Page 19: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

Intensity distribution, IVAD(E)

written as Jv

JvJvthrVAD EEIaEfEI,

,0, )()()(

Second Model (DOS): Energy is completely randomized before VAD occurs, so the density of states describes the population of final states

→ all coefficients av,J are given equal weight.

• v and J are the vibrational and free internal rotor quantum states

• fthr(E) is an energy dependent emission probability

• a v,J gives the intensities of the states at energies E v,J

•I0(E - E v,J) is the experimental response functions,

represented by a gauss function corresponding to the experimental resolution

Modeling

Page 20: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

Second Model:

•The DOS closely resembles the spectrum at low energies

•At high energies, the two curves deviate quickly

•Peak at 100 meV is missing

0 50 100 150

VA

D y

ield

[arb

. un

its]

energy left in neutral [meV]

Page 21: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

Second Model:

•The feature at low energy is due to free internal rotor excitations without contributions from vibrational modes

•The contribution of ΙJΙ = 7 and ΙJΙ = 8 overestimate the experimental curve.

®Ignore all states with ΙJΙ > 8 and keep the weight of ΙJΙ < 8 constant 0 50 100 150

VA

D y

ield

[arb

. un

its]

energy left in neutral [meV]

-10 0 10 20 30 40 50

VA

D y

ield

[arb

. un

its]

energy left in neutral [meV]

J = 0-3 4 5 6 7 8

Page 22: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

Intensity distribution, IVAD(E)

written as Jv

JvJvthrVAD EEIaEfEI,

,0, )()()(

Third Model (Partial Randomization Model): Energy is only partially randomized among the vibrations before VAD occurs. Model Two indicates randomization holds for the low-energy internal rotor states.

→ keep internal rotor contour for vibrations constant, adjust vibrational intensities

• v and J are the vibrational and free internal rotor quantum states

• fthr(E) is an energy dependent emission probability

• a v,J gives the intensities of the states at energies E v,J

•I0(E - E v,J) is the experimental response functions,

represented by a gauss function corresponding to the experimental resolution

Modeling

Page 23: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Nitromethane Anion

Third Model:

•Agreement is excellent with the exception of the peak at 100 meV

•There are two potential candidates:

• w(NO2) + |J|=6

• d(NO2) + |J|=5

0 50 100 150

VA

D y

ield

[arb

. un

its]

energy left in neutral [meV]

Page 24: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

2700 2800 2900 3000 3100 3200

0

Ph

oto

ne

utr

al Y

ield

[a

rb. u

nits]

Photon Energy [cm-1]

Nitromethane Anion

Higher Energy CH Stretches

Page 25: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

0 50 100 150

a(CH3)

VA

D y

ield

[arb

. un

its]

energy left in neutral [meV]

0 50 100 150

VA

D y

ield

[arb

. un

its]

energy left in neutral [meV]

s'(CH3)

Higher Energy Stretches

Nitromethane Anion

Page 26: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Conclusions and Future Directions

• Methyl torsion plays important role in IVR

•Modeling recovers PES remarkably well, with the exception of the feature at 100 meV.

•Determine AEA of nitroethane and larger nitroalkanes and extend analysis to larger molecular systems.

Page 27: Vibrational Autodetachment in Nitroalkane Anions Chris L. Adams, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International

Acknowledgements

Mathias Weber

Holger Schneider

Jesse Marcum

and the rest of the cast

Carl Lineberger

and the Lineberger Lab