very fast chip-level thermal analysis keiji nakabayashi†, tamiyo nakabayashi‡, and kazuo...

18
Very Fast Chip-level Thermal Analysis Keiji Nakabayashi†, Tamiyo Nakabayashi‡, and Kazuo Nakajima* †Graduate School of Information Science, Nara Institute of Science and Technology Keihanna Science City, Nara, Japan, [email protected] ‡Graduate School of Humanities and Sciences, Nara Women’s University Kitauoyahigashi-machi, Nara, Japan, [email protected] wu.ac.jp *Dept. of Electrical and Computer Engineering, University Budapest, Hungary, 17-19 September 2007

Upload: liliana-tate

Post on 13-Dec-2015

226 views

Category:

Documents


2 download

TRANSCRIPT

Very Fast Chip-level Thermal Analysis

Keiji Nakabayashi†,   Tamiyo Nakabayashi‡, and Kazuo Nakajima*

†Graduate School of Information Science, Nara Institute of Science and TechnologyKeihanna Science City, Nara, Japan, [email protected]

‡Graduate School of Humanities and Sciences, Nara Women’s UniversityKitauoyahigashi-machi, Nara, Japan, [email protected]

*Dept. of Electrical and Computer Engineering, University of MarylandCollege Park, MD 20742, USA, [email protected]

Budapest, Hungary, 17-19 September 2007

2

Abstarct

We present a new technique of VLSI chip-level thermal analysis. We extend a newly developed method of solving two dimensional Laplace equations to thermal analysis of four adjacent materials on a mother board. We implement our technique in C and compare its performance to that of a commercial CAD tool. Our experimental results show that our program runs 5.8 and 8.9 times faster while keeping smaller residuals by 5 and 1 order of magnitude, respectively.

3

1. Introduction

• Thermal phenomena is very important factor in VLSI and board design in the post-90 nm era.

• Thermal analysis is modeling of thermal conduction by a Laplace equation and its solution by finite difference method (FDM).

• We developed a new, very fast chip-level thermal analysis technique.

4

2. Problem• Consider a multi-layer structure, where four

layers of materials p, q, r, and s of thermal conductivities kp, kq, kr, and ks, respectively, are stacked together.

• Heat travels through a heat transfer pass consisting of the chip die, the adhesive, the heat spreader, and the heat sink, and goes out to the ambient air.

• Our problem is to find temperature distribution through two dimensional steady-state thermal conduction analysis.

5

3. Method • Recently, a new efficient direct method, called

Symbolic Partial Solution Method (S-PSM) was developed in the area of computational fluid dynamics.

• S-PSM-based solution process goes through many levels of repeated operations of decomposition and merging.

• We extend this S-PSM-based Laplace equation solver to a multi-layer structure.

6

h

h : number of Y-axis grid pointsg : number of X-axis grid points where g = (np+2)+(nq+2)+(nr+2)+(ns+2)Cell size : = = 2048(um) / h

Tleft=20( )℃(Reference)

X

Tright=20( )℃(Reference)

128um

256um

64um

Y

Chip die ks= 100 [W/(m ・K)]

Heak sink kp= 260 [W/(m ・K)]

Tamb=55( ) (Ambient temperature)℃

Tj=120( ) ℃( Heat source: Si bulk temperature)

np+2

Adhesive kr= 16 [W/(m ・K)]

nq+2

nr+2

ns+2

(0,0)

2048um

g

Heak spreader kq= 230 [W/(m ・K)]

128um

Cellxy

x y

Boundary Value Problem (BVP)

7m

msnmsnsnsnsnsn

mm

mm

mm

mrnrnrnrn

wwww

ssssss

ssssss

ssssss

ssssss

rrrr

,03,02,01,0

1,1,13,12,11,10,1

1,2,23,22,21,20,2

1,1,13,12,11,10,1

1,0,03,02,01,00,0

,13,12,11,1

m

mnmnnnnn

mm

mm

mm

m

qqqq

pppppp

pppppp

pppppp

pppppp

vvvv

pppppp

,03,02,01,0

1,1,13,12,11,10,1

1,2,23,22,21,20,2

1,1,13,12,11,10,1

1,0,03,02,01,00,0

,03,02,01,0

m

mrnmrnrnrnrnrn

mm

mm

mm

mqnqnqnqn

ssss

rrrrrr

rrrrrr

rrrrrr

rrrrrr

qqqq

,03,02,01,0

1,1,13,12,11,10,1

1,2,23,22,21,20,2

1,1,13,12,11,10,1

1,0,03,02,01,00,0

,13,12,11,1

m

mqnmqnqnqnqnqn

mm

mm

mm

mpnpnpnpn

rrrr

qqqqqq

qqqqqq

qqqqqq

qqqqqq

pppp

,03,02,01,0

1,1,13,12,11,10,1

1,2,23,22,21,20,2

1,1,13,12,11,10,1

1,0,03,02,01,00,0

,13,12,11,1

The arrangement of interior grid and boundary points for the four material domains.

kp

kq

kr

ks

8

0)(2

2

2

2

y

u

x

uku

022

2

1,,1,

2

,1,,1

y

uuu

x

uuuk jijijijijijiu

yx

Laplace Equation and Finite Difference Method for each material u (=p, q, r, s) :

Finite Difference Method

Final Solution for each material :

)0(1n

)(5

)0(n

)(4

)(5

)1(1

)(0

)1(2

)1(2,

)(4

)(5

)1(2

)(0

)1(1

)1(1,

)(1

, where

u

e

u

e

eeeeeu

e

eeeeeu

e

AA

AA

uuuu

uufu

uufu

9

rq

rqrq kk

kkk

2,

thermal conductivity of the boundary between adjacent materials

0,0,1,01,0

,01,0,0,1,

jjqjjq

jjqjjnqp

qqkqqk

qqkqpkp

0,1,,,11,1

,11,1,1,

jnjorqjnjnq

jnjnqjnjnq

qqg

qgqg

qrkqqk

qqkqqk

Similarly, at its boundary with material r,

From the viewpoint of material q, the following difference equation holds at its boundary with material p (first order approximation) :

10

)0(0

)0(0

)0(1,

)1(2,

)1(1,

)0(0,

)0(1,

)1(2,

)1(1,

)0(0,

)0(1,

)1(2,

)1(1,

)0(0,

)0(1,

)1(2,

)1(1,

)0(0,

)(5

)(4

)(1

)(0

)(5

)(4

)(1

)(0

)(5

)(4

)(1

)(0

)(5

)(4

)(1

)(0

)0(2

)1(1

)1(2

)1(2

)1(1

)0(1,

,)0(

2

)1(1

)1(2

)1(2

)1(1

)0(1,

,)0(

2

)1(1

)1(2

)1(2

)1(1

)0(1,

,)0(

2

)1(1

)1(2

)1(2

)1(1

)0(1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

4

3

3

2

2

1

1

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

44

44

33

33

22

22

11

11

w

v

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

s

s

s

s

r

r

r

r

q

q

q

q

p

p

p

p

s

r

q

p

ns

es

es

ss

nrr

er

er

rr

nqq

eq

eq

qq

npp

ep

ep

p

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

s

ee

eesssr

srrr

ee

eerrrq

rqqq

ee

eeqqqp

qppp

ee

eep

k

k

k

k

k

k

AIOO

AIOA

AOIA

OOIkAIk

IkAIkOO

AIOA

AOIA

OOIkAIk

IkAIkOO

AIOA

AOIA

OIkAIk

IkAIkOO

AIOA

AOIA

OOIA

matrix-vectors form of equations for four materials (three boundaries)

11

For material s with ks

: Merging operation for adjacent partial solutions.

{ } : Variables with known values.

Solutions: Eq. (3-24)↑

Equations: Eq. (3-20)

Final solutions: Eq. (3-35)↑

Final equations: Eq. (3-33)

Solutions: Eq. (3-31)↑

Equations: Eq. (3-28)

Solutions: Eq. (3-32)↑

Equations: Eq. (3-29)

Solutions: Eq. (3-25)↑

Equations: Eq. (3-21)

Solutions: Eq. (3-26)↑

Equations: Eq. (3-22)

Solutions: Eq. (3-27)↑

Equations: Eq. (3-23)

For material p with kp For material q with kq For material r with kr

For materials p, q, r, s with kqr

For materials p, q with kpq For materials r, s with krs

Decompose Equations Eq. (3-19) into 4 subsystems

{p0, p5, q0} {r5, s0, s5}

{q5, r0}

{p1, p4} {q1, q4} {r1, r4} {s1, s4}

Back substitution

12

)0(1,

)1(2,

)1(1,

)0(0,

)(0,

)0(0

)(5

)(4

)(1

)(0

)0(2

)1(1

)1(2

)1(2

)1(1

)0(1

1

1

21

1

1

1

11

11

pnpp

ep

ep

p

eqp

e

e

e

e

pp

ee

eep

kkAIkOO

AIOA

AOIA

OOIA

f

f

f

f

q

0

0

v

p

p

p

p

)0(0,

)12(1,

)12(2,

)0(1,

)1(5,

)3(0,

)2(0

)2(1

)2(4

)2(5

)0(1

)12(1

)12(2

)12(2

)12(1

)0(2

qq

eq

eq

qnqq

eqp

erq

e

e

e

e

qq

ee

eeqq

k

k

k

k

AIkOO

AIOA

AOIA

OOIkA

f

f

f

f

p

0

0

r

q

q

q

q

)0(1,

)1(2,

)1(1,

)0(0,

)(0,

)(5,

)(5

)(4

)(1

)(0

)0(2

)1(1

)1(2

)1(2

)1(1

)0(1

3

3

4

2

3

3

3

3

33

33

rnrr

er

er

rr

esr

erq

e

e

e

e

rr

ee

eerr

k

k

k

k

AIkOO

AIOA

AOIA

OOIkA

f

f

f

f

s

0

0

q

r

r

r

r

)0(0,

)1(1,

)1(2,

)0(1,

)(5,

)0(0

)(0

)(1

)(4

)(5

)0(1

)1(1

)1(2

)1(2

)1(1

)0(2

4

4

34

4

4

4

44

44

ss

es

es

ns

esr

e

e

e

e

ss

ee

ees

kkAIkOO

AIOA

AOIA

OOIAs

f

f

f

f

r

0

0

w

s

s

s

s

System Decomposition and Partial Solutions for Each Subsystem/Material

Decomposition

(3-20)

(3-21)

(3-22)

(3-23)

13

)0(1,

)1(2,

)1(1,

)0(0,

)(0,

)0(0

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

)(5

)(4

)(1

)(0

1

1

21

1

1

1

pnpp

ep

ep

p

eqp

pppp

pppp

pppp

pppp

e

e

e

e

kkBBBB

BBBB

BBBB

BBBB

f

f

f

f

q

0

0

v

p

p

p

p

)0(0,

)1(1,

)1(2,

)0(1,

)(5,

)(0,

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

)(0

)(1

)(4

)(5

2

2

1

3

2

2

2

2

qq

eq

eq

nqq

eqp

erq

qqqq

qqqq

qqqq

qqqq

e

e

e

e

k

k

k

k

BBBB

BBBB

BBBB

BBBBq

f

f

f

f

p

0

0

r

q

q

q

q

)0(1,

)1(2,

)1(1,

)0(0,

)(0,

)(5,

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

)(5

)(4

)(1

)(0

3

3

4

2

3

3

3

3

rnrr

er

er

rr

esr

erq

rrrr

rrrr

rrrr

rrrr

e

e

e

e

k

k

k

k

BBBB

BBBB

BBBB

BBBB

f

f

f

f

s

0

0

q

r

r

r

r

)0(0,

)1(1,

)1(2,

)0(1,

)(5,

)0(0

4,43,42,41,4

4,33,32,31,3

4,23,22,21,2

4,13,12,11,1

)(0

)(1

)(4

)(5

4

4

34

4

4

4

ss

es

es

ns

esr

ssss

ssss

ssss

ssss

e

e

e

e

kkBBBB

BBBB

BBBB

BBBBs

f

f

f

f

r

0

0

w

s

s

s

s

Partial solution

(3-24)

(3-25)

(3-26)

(3-27)

14

5

0

5

0

)(01,1,

)(01,4,

)0(01,4

)0(01,1

)(5

)(0

)(5

)(0

4,1,

4,4,

4,4,

4,1,

3

3

2

2

1

1

q

q

p

p

eqrq

eqrq

p

p

e

e

e

e

qqp

qqp

pqp

pqp

Bk

Bk

B

B

IOBkO

OIBkO

OBkIO

OBkOI

ff

ff

ff

ff

r

r

v

v

q

q

p

p

5

0

5

0

)0(01,1

)0(01,4

)(51,4,

)(51,1,

)(5

)(0

)(5

)(0

4,1,

4,4,

4,4,

4,1,

2

2

4

4

3

3

s

s

r

r

s

s

errq

errq

e

e

e

e

ssr

ssr

rsr

rsr

B

B

Bk

Bk

IOBkO

OIBkO

OBkIO

OBkOI

ff

ff

ff

ff

w

w

q

q

s

s

r

r

)0(0,4,1

)14(1,3,1

)14(2,2,1

)0(1,1,15

)0(0,4,4

)14(1,3,4

)14(2,2,4

)0(1,1,40

)0(1,4,4

)13(2,3,4

)13(1,2,4

)0(0,1,45

)0(1,4,1

)13(2,3,1

)13(1,2,1

)0(0,1,10

)0(0,4,1

)12(1,3,1

)12(2,2,1

)0(1,1,15

)0(0,4,4

)12(1,3,4

)12(2,2,4

)0(1,1,40

)0(1,4,4

)11(2,3,4

)11(1,2,4

)0(0,1,45

)0(1,4,1

)11(2,3,1

)11(1,2,1

)0(0,1,10

ss

ses

ses

s

snss

s

ss

ses

ses

s

snss

s

rnrr

rer

rer

rr

rrr

rnrr

rer

rer

rr

rrr

qq

qeq

qeq

q

qnqq

qq

qq

qeq

qeq

q

qnqq

qq

pnpp

pep

pep

pp

pp

pnpp

pep

pep

pp

pp

BkBBB

BkBBB

BkBBBk

BkBBBk

BkBBBk

BkBBBk

BkBBB

BkBBB

ffffff

ffffff

ffffff

ffffff

ffffff

ffffff

ffffff

ffffffwhere

(3-28)

(3-29)

Merge

15

5

0

5

0

)(01,1,

)(01,4,

)0(01,4

)0(01,1

4,24,1

3,23,1

2,22,1

1,21,1

)(5

)(0

)(5

)(0

3

3

2

2

1

1

q

q

p

p

eqrq

eqrq

p

p

pqpq

pqpq

pqpq

pqpq

e

e

e

e

Bk

Bk

B

B

IBBO

OBBO

OBBO

OBBI

ff

ff

ff

ff

r

r

v

v

q

q

p

p

5

0

5

0

)0(01,1

)0(01,4

)(51,4,

)(51,1,

4,24,1

3,23,1

2,22,1

1,21,1

)(5

)(0

)(5

)(0

2

2

4

4

3

3

s

s

r

r

s

s

errq

errq

rsrs

rsrs

rsrs

rsrs

e

e

e

e

B

B

Bk

Bk

IBBO

OBBO

OBBO

OBBI

ff

ff

ff

ff

w

w

q

q

s

s

r

r

rs

pq

srs

ppq

e

e

rrrsrq

qqpqrq

BB

BB

IBBBk

BBBkI

ff

ff

w

v

r

q)0(

01,41,2

)0(01,44,1

)3(0

)2(5

1,11,41,1,

1,11,44,2,

rspqsrsppqe

rspqsrsppqe

DDBBDBBD

DDBBDBBD

ffffwvr

ffffwvq

43)0(

01,41,24)0(

01,44,13)(

0

21)0(

01,41,22)0(

01,44,11)(

5

))(())((

))(())((3

2

Partial solution

Merge

Final solution

(3-31)

(3-32)

(3-33)

(3-35)

16

Temperature distributions of steady-state heat conduction for four layers of materials :

our program vs. commercial tool Raphael

1: Silicon bulk (heat source) 2: Chip die 3: Adhesive 4: Heat spreader 5: Heat sink

0 5 10 15 20 25 30 35 40 45 50

0 20 40 60 80 100 120 140

20

40

60

80

100

120

T"mat_all_data.txt" u 1:2:3

120 110 100 90 80 70 60 50 40 30

XY

T

Y

T(℃

)

X1

2 3 4 51: Silicon bulk (heat source) 2: Chip die 3: Adhesive 4: Heat spreader 5: Heat sink

0 5 10 15 20 25 30 35 40 45 50

0 20 40 60 80 100 120 140

20

40

60

80

100

120

T"mat_all_data.txt" u 1:2:3

120 110 100 90 80 70 60 50 40 30

XY

T

Y

T(℃

)

X1

2 3 4 5

X1

2 3 4 5

0 5 10 15 20 25 30 35 40 45 50

0 20 40 60 80 100 120 140

20

40

60

80

100

120

T"mat_all_data.txt" u 1:2:3

120 110 100 90 80 70 60 50 40 30

XY

T

1: Silicon bulk (heat source) 2: Chip die 3: Adhesive 4: Heat spreader 5: Heat sink

X1

2 3 4 5

Y

T(℃

)

0 5 10 15 20 25 30 35 40 45 50

0 20 40 60 80 100 120 140

20

40

60

80

100

120

T"mat_all_data.txt" u 1:2:3

120 110 100 90 80 70 60 50 40 30

XY

T

1: Silicon bulk (heat source) 2: Chip die 3: Adhesive 4: Heat spreader 5: Heat sink

X1

2 3 4 5

X1

2 3 4 5

Y

T(℃

)

Our ProgramSolver: S-PSM

Raphael [7]Solver : Iteration method

17

4. Results and Discussion• Table I shows the CPU times required and the

residuals produced by our program and Raphael. • The results demonstrate that for the largest grid, our

program ran 5.8 and 8.9 times faster while keeping smaller residuals by 5 and 1 order of magnitudes, than Raphael [7]

h g n p n q n r n s CPU(sec) Residual CPU(sec) Residual CPU(sec) Residual

128 44 8 8 4 16 0.05 1.3E-13 0.26 9.5E-07 0.32 9.3E-11

256 80 16 16 8 32 0.18 5.1E-13 1.98 9.9E-07 2.78 9.4E-11

512 152 32 32 16 64 1.7 2.1E-12 13.2 9.9E-07 19.5 9.9E-11

1,024 296 64 64 32 128 15.4 8.9E-12 89.9 9.7E-07 136.6 9.9E-11

Number of grid points S-PSMRaphael

(EPS=1.0E-6)Raphael

(EPS=1.0E-10)

18

5. Conclusions • We have proposed a new technique of solving

two dimensional Laplace equations to thermal analysis for multi-layer VLSI chips.

• Our program is superior to a commercial CAD tool, Raphael (iteration method) [7].

• Further Work : extension to Poisson equation (heat generation), three dimensional, transient heat conduction analysis, and the case of complex shapes and boundary conditions of materials.