verde small satellite project uni stuttgart azores presentation v5_c

Upload: aerospaceresearch

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    1/63

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    2/63

    Vegetation Research and Detection

    Small Satellite Project 2011/2012

    Elisabete Dias, Victor Hocke, Andreas Hornig, Nicolay Kbler, Mark Ltzner

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    3/63

    Agenda

    1. Mission

    2. Payload

    3. Orbit

    4. Subsystems

    Structure / Thermal

    Power System

    Attitude Control System

    Onboard Data Handling

    Communications

    5. System Budgets

    University of

    the Azores

    University of

    Stuttgart

    10.02.12 Small Satellite Project 3

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    4/63

    Mission

    Mission Definition

    10.02.12 Small Satellite Project 4

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    5/63

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    6/63

    Payload

    Subcontractor

    Berlin Space Technologies 6 spectral bands

    near infrared, blue, yellow, green, red, red edge

    GSD < 10 m (nadir)

    Swath width100 km @ 600 km

    MTF > 0.12

    Favorable SNR

    Mass < 20 kg

    Power < 60 W(Target: 30 W)

    Dimensions450 x 285 x 120 mm

    Development time

    18 - 24 month

    Facts

    10.02.12 Small Satellite Project 6

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    7/63

    Payload

    Continuous strip

    SNR: 70 75

    Permanent nadir orientation

    Single scenes

    Forward Motion Compensation (4:1)

    Increased dwell time

    SNR > 100

    Requires detailed target planning

    2 backup observation possibilities

    Scan Mode Scene Mode

    Operation Modes

    10.02.12 Small Satellite Project 7

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    8/63

    Orbit

    Orbit Requirements

    Full coverage of the Archipelago ofthe Azores

    Constant lighting conditions

    Max. 25 years

    (space debris mitigationMin. 2 years (design lifetime)

    Short revisit time

    Low altitude

    (for higher resolution)

    1200 AZOT

    Possible Orbits

    Sun synchronous

    Altitude / LTAN tbd

    Lifetime and resolution limitaltitude to 500 600 km

    Orbit Decay

    10 40 km (solar activities)

    Project

    Mass AreaInitialaltitude

    decay (2 years)

    BIRD 94 kg 1,1 m2 565 km 27 km

    SNOE 115 kg 0,9 m2 556 km 15 km

    Orbit Design

    10.02.12 Small Satellite Project 8

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    9/63

    Orbit

    Chosen swath width:95 km @ 575 km

    Ground track distance:

    93 km @ 575 km 2 km overlap

    11:34 LTAN

    7 consecutive observations,waiting time: 16 days

    Orbit Design

    10.02.12 Small Satellite Project 9

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    10/63

    Structure / Thermal

    Secondary Requirements

    Low cost

    Minimal + Simple Harness

    Simple Integration

    Simple servicing

    Low mass

    Stability of line of Sight (Camera stability)

    Mandatory Requirements

    Accesibillity of all Electronics

    Eigenfrequency

    Thermal Control

    Quasistatic Loads must be withstood Dimensions must not exceed 600 mm x

    700 mm x 850 mm (PSLV requirement)

    Structure

    Options

    OptionsFEM check

    Options

    Trade off

    Complete

    FEM check

    Detailed

    construction

    Structure

    10.02.12 Small Satellite Project 10

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    11/63

    Structure / Thermal

    Barrel

    Cube

    Hexagon

    Aluminium barrel Structure

    Mass: ca. 110 kg

    Hybrid Aluminum/Composite

    Mass: ca. 110 kg

    Hybrid Aluminum/Composite

    Mass: ca. 100 kg

    Options Trade-off

    10.02.12 Small Satellite Project 11

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    12/63

    Structure / Thermal

    Weight Hexagon Cube Barrel

    Mass 2 4 2 2

    Cost 1 2 3 2

    Stability ofline of sight

    2 3 5 5

    Thermalcontrol 1 2 5 5

    Harness 1 5 2 2

    Integration 1 5 2 2

    28 26 25

    Hexagon Cube Barrel

    1. Lateral EF[Hz]

    77 136 59.9

    2. Vertical EF[Hz]

    231 304 266

    1. Lateral Mode

    FEM Check

    Options Trade-off

    10.02.12 Small Satellite Project 12

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    13/63

    Structure / Thermal

    765mm

    I-DEAS ModellCAD Modell

    Complete FEMcheck

    Structure

    Lock System

    10.02.12 Small Satellite Project 13

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    14/63

    Structure / Thermal

    Detailed FEM check

    Lateral1. eigenfreq. [Hz] 77

    2. eigenfreq. [Hz] 120

    3. eigenfreq. [Hz] 138

    4. eigenfreq. [Hz] 156

    Vertical

    1. eigenfreq. [Hz] 231

    Min eigenfreq. lateral: 45 Hz

    Min eigenfreq. vertical: 90 Hz

    1. Lateral Mode1. Longitudinal Mode

    10.02.12 Small Satellite Project 14

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    15/63

    Structure / Thermal

    Max. Stress[N/mm] Max. Strain

    X Direction 133 0,49*10-4

    Y Direction 120 0,52*10-4

    Z Direction 29.5 0,94*10-4

    Aluminum Stress Composite Strain

    Krit.

    Krit.

    Krit.

    Max. Strain: 10-4

    Max. Stress: 150 N/mm

    10.02.12 Small Satellite Project 15

    Detailed FEM check

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    16/63

    2

    1

    3

    4

    5

    6

    7

    8

    9

    3

    1

    22

    21

    1

    Component Placement

    10.02.12 Small Satellite Project 16

    Structure / Thermal

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    17/63

    Structure / Thermal

    Cable support

    Large Volume

    for Harness

    Detailed Construction

    10.02.12 Small Satellite Project 17

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    18/63

    Integration Procedure

    Structure / Thermal

    Step 1- AluminumStructure

    Step 2- IntegrationPlatform

    Step 4 - Solar PanelsStep 3- CompositeStructure

    Simple Testing ofcomponents

    Simple Integration

    of Harness

    Flight mode Integration of

    Solar panels

    Transport mode Integration of

    Composite structure

    10.02.12 Small Satellite Project 18

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    19/63

    Structure / Thermal

    Deployment Mechanism 6 x GFK brackets

    Launch

    Position

    Deployed

    Position

    Detailed Construction

    10.02.12 Small Satellite Project 19

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    20/63

    Structure / Thermal

    Orange: Primary heat conducting structure

    Red: Radiators

    Multilayer Insulation

    Aluminum heat conducting plates are

    fixed to the Composite by floating inserts

    Line of Sight is highly incensitive to

    thermal strain

    High Power Electrical Components are

    placed on the service plate(Battery/PCDU/OBC/COM Equip.)

    Heater (critical components, e.g. Battery)

    Thermal control:

    10.02.12 Small Satellite Project 20

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    21/63

    Structure / Thermal

    Thermal Simulation

    164 Thermal Knots

    ComponentDissipated Energy

    [W] (Hot Case)Dissipated Energy[W] (Cold Case)

    OBC 10 10

    MMU 15 5

    RIU 5 5Batteries 5 5

    PLC 10 -

    PCDU 10 10TMTC 2 2

    RW 7 7

    Hot Case Radiator Area: 0.25 m2

    Cold Case Heater Power: 15 W

    Temperature Limits

    10.02.12 Small Satellite Project 21

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    22/63

    Structure / Thermal

    Thermal Simulation: Maximum thermal loads (hot case)

    Solar

    Arrays

    Battery

    averaged Temp.

    Payload

    10.02.12 Small Satellite Project 22

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    23/63

    Structure / Thermal

    Thermal Simulation: Minimum thermal loads (cold case)

    Solar

    Arrays

    Battery

    averaged Temp.

    Payload

    10.02.12 Small Satellite Project 23

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    24/63

    Electrical Power System

    PCDU

    Battery Cells

    Load BalancerHeater

    SolarPanels

    B1 B2 B3 P2P1

    System

    SolarPanel

    BatteryP

    ack

    EPS Overview

    10.02.12 Small Satellite Project 24

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    25/63

    Electrical Power System

    0 10 20 30 40 50 60 70 80 90 100

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Solar Power 5

    P average 5

    B1 B2 B3 P2P1Solar

    Panel

    Solar Panels

    Solar power Failure Scenario

    10.02.12 Small Satellite Project 25

    Orbitrun [%]Power[W]

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    26/63

    Electrical Power System

    0 10 20 30 40 50 60 70 80 90 100

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Solar Power 5

    P average 5

    0 10 20 30 40 50 60 70 80 90 100

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Solar Power 5

    Solar Power 4

    P average 5

    P average 4

    Solar Input

    System Power

    Decrease in:

    Design Power 120W

    B1 B2 B3 P2P1Solar

    Panel

    Solar Panels

    Solar power Failure Scenario

    10.02.12 Small Satellite Project 26

    Orbitrun [%]Power[W]

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    27/63

    Electrical Power System

    0 10 20 30 40 50 60 70 80 90 100

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Solar Power 5

    P average 5

    0 10 20 30 40 50 60 70 80 90 100

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Solar Power 5

    Solar Power 4

    P average 5

    P average 4

    0 10 20 30 40 50 60 70 80 90 100

    0

    50

    100

    150

    200

    250

    300

    350

    400

    Solar Power 5

    All Systems

    Solar Power 4

    P average 5P average 4

    B1 B2 B3 P2P1Solar

    Panel

    Solar Panels

    Above System Power

    new system

    power level

    Solar power Failure Scenario

    10.02.12 Small Satellite Project 27

    Orbitrun [%]Power[W]

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    28/63

    0 10 20 30 40 50 60 70 80 90 100

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Power Consumption during Worst Case Orbit

    Power vs. Orbitrun

    All Systems

    All Systems avg

    payload

    com

    acstherm

    obdh

    pow

    orbitrun [%]

    power[w

    ]

    Electrical Power System

    High DatarateCommunication

    COM1

    Observation

    Heater

    Standard DatarateCommunication

    COM2 & COM3

    High DatarateCommunication

    COM1

    Power Consumptionduring Worst Case Orbit

    10.02.12 Small Satellite Project 28

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    29/63

    Electrical Power System

    + Injection Mode

    Standard Modes

    10.02.12 Small Satellite Project 29

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    30/63

    Electrical Power System

    Solar Panel Trade off

    10.02.12 Small Satellite Project 30

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    31/63

    1st Layer

    Optimized pattern with 80mm x 40mm (93%)

    13 x 7 Cells per panel

    Electrical Power System

    300mm

    8

    00mm

    Vs.

    Solar panel (layer) design

    10.02.12 Small Satellite Project 31

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    32/63

    1st Layer

    Optimized pattern with 80mm x 40mm (93%)

    13 x 7 Cells per panel

    13 cells in series for nominal Voltage 28 V

    Electrical Power System

    Vs.

    Solar panel (layer) design

    10.02.12 Small Satellite Project 32

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    33/63

    1st Layer

    Optimized pattern with 80mm x 40mm (93%)

    13 x 7 Cells per panel

    13 cells in series for nominal Voltage 28 V

    2nd LayerSeries connection on panel

    Electrical Power System

    Vs.

    Solar panel (layer) design

    10.02.12 Small Satellite Project 33

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    34/63

    1st Layer

    Optimized pattern with 80mm x 40mm (93%)

    13 x 7 Cells per panel

    13 cells in series for nominal Voltage 28 V

    2nd LayerSeries connection on panel

    3rd Layer

    Parallel connection in panel sandwichFor capacity leverage to

    Multiple interfaces to EPS system

    Shunt System included

    Electrical Power System

    34

    Vs.

    Solar panel (layer) design

    10.02.12 Small Satellite Project 34

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    35/63

    Electrical Power System

    Battery trade-off

    10.02.12 Small Satellite Project 35

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    36/63

    Electrical Power System

    Solar PanelArea usage = 0,93Efficiency = 0,3Degradation = 0,03 1/a

    Battery

    C/d cycles = 60000

    DoD = 20 %Degradation = 0,05 1/a

    ACS

    Solar angle accuracy = 2,5CommandsCOM-turns (2x) = 45 a 15minForwardMC = 45 a 1min

    Solar Environment

    Solar Constant= 1370 W/m^2

    System

    e_daylight = 0,8e_eclipses = 0,85PowerConsumption = 95WTotal Power(20% margin) = 375W

    Mission

    Time = 2 aOrbit Period = 99 minDaylight = 64 %Eclipse = 36 %

    Battery Specification

    Energy:488 Wh

    Capacity:23,2 Ah @ 21V

    17,4 Ah @ 28V15,7 Ah @ 31V

    System Power:160 WBoosting Level

    Battery Design Criteria

    10.02.12 Small Satellite Project 36

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    37/63

    Electrical Power System

    0 10 20 30 40 50 60 70 80 90 100

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Orbit injection until full deployment

    Power Consumtion vs. Full injection

    All Systems

    payload

    com

    acs

    therm

    obdh

    pow

    Solar System Power

    orbit injection run [%]

    power[w]

    OrbitInjection

    StepwiseActivation

    Solar PanelDeployment

    SystemCheck

    InjectionFinished

    StartingMission

    CriticalPhase

    Power ConsumptionDuring Injection Period

    10.02.12 Small Satellite Project 37

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    38/63

    Attitude Control System

    Control

    Navigation

    S/C dynamics

    Software (algorithms)

    implemented on OBC

    Actuator system

    Reaction

    Wheels

    Magnetic

    Torquer

    Sensor system

    Magneto-

    meter

    Star-

    trackerIMU

    Sun

    Sensor

    disturbances

    control

    commands torques

    physicalstatesensor

    measurem.

    ground

    commands

    data

    handling

    Overview

    10.02.12 Small Satellite Project 38

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    39/63

    Attitude Control System

    Definition:functional &

    perfomance

    requirements

    Quantification:

    disturbance

    environment

    System Design:architecture

    componentselection &

    sizing

    Algorithm

    Definition

    Attitude estimation

    (e.g. QUEST)

    Controller design

    (e.g. PID, H_infinity)

    ACS Design Workflow

    10.02.12 Small Satellite Project 39

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    40/63

    Attitude Control System

    The satellite has different ACS Modes:

    1. Detumbling-Mode

    2. Safe-Mode

    3. Idle-Mode

    4. Science-Modes:

    4.1 Nadir-Pointing

    4.2 Forward Motion Compensation

    De-

    tumbling

    Safe-

    Mode

    Idle-

    Mode

    Science-

    Modes

    TC

    TC

    TC

    FDIR

    FDIRFDIR

    AUTOTC

    TC

    AUTOTC TC

    TC triggered by Telecommand

    (Ground Station or Mission Time Line)

    AUTO triggered by nom. condition

    FDIR triggered by failure condition

    Detumbling Safe Idle

    Science

    MGM x x x (x)

    MGT x x x (x)STR x x

    IMU x x

    RW x x

    SuS x x x x

    ACS Modes

    10.02.12 Small Satellite Project 40

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    41/63

    Attitude Control System

    Counter-rotation enlarges integration time

    Rotation for FMC = 4

    4x observation time constant pitch rate approx. 0.5/s

    total rotation angle approx. 30

    observation time approx. 1 Minute

    Forward Motion Compensation

    10.02.12 Small Satellite Project 41

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    42/63

    Attitude Control System

    2 Star Trackers

    ST-100 (Berlin Space Technologies)

    Accuracy: 200/30Star map included

    2 Magnetometer (ZARM)

    2 Inertial Measurement Units

    Sensonor STIM210

    MEMS-based 3-axis gyro module0.5/h bias instability, 0.10/h ARW

    8 Sun Sensors (IRS)

    Criteria Weight

    SensonorSTIM210

    LitefmuFORS-2

    Cost 20% 3 2

    ARW 25% 2 3

    Bias 25% 3 2

    Power 10% 3 2

    Volume 10% 3 2

    Mass 10% 3 2

    Total 2,75 2,25

    Sensor Concept

    10.02.12 Small Satellite Project 42

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    43/63

    Attitude Control System

    3 Magnetic Torquers (ZARM)

    two coils per unitLinear Dipole Moment 6 Am2

    4 Reaction Wheels

    (Astro- und Feinwerktechnik)

    angular momentum: 0.1 Nms @ 5000 rpm

    nominal torque: 0.005 Nm

    tetrahedral configuration (redundancy)

    Actuator Concept

    10.02.12 Small Satellite Project 43

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    44/63

    Attitude Control System

    constrains:

    shadowing effects (SuS, STR)

    sun/earth blinding (STR)electromagnetic compatibility (MGM, MGT)

    alignment

    1. Reaction Wheels (RW)2. Sun Sensor (SuS)

    3. Inertial Measurement Unit (IMU)

    4. Star Tracker (STR)

    5. Magnetometer (MGM)

    6. Magnetic Torquer (MGT)

    1

    2

    4 5

    6

    3

    ACS Component Placement

    10.02.12 Small Satellite Project 44

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    45/63

    Onboard Data Handling

    Onboard Data Handling

    Tasks

    Collect and process housekeeping data

    Command attitude and thermal Control System

    Store and process telecommands (CCSDS)

    Send Data and Telemetry

    ACS Attitude Control System

    MMFU Mass Memory and Formatting Unit

    OBC Onboard Computer

    PCDU Power Control and Distribution Unit

    PLC Payload ComputerRIU Remote I/O Unit

    TCS Thermal Control System

    TM/TC Telemetry/Telecommand

    OBDH Configuration

    10.02.12 Small Satellite Project 45

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    46/63

    Supplier: Aeroflex Gaisler

    RTEMS

    Flight Heritage

    MIL-Std 1553

    Spacewire

    89 DMIPS

    Base Clock frequency 66 MHz

    Supplier: SSTL

    RTEMS

    Flight Heritage

    MIL-Std 1553

    Spacewire

    1800 DMIPS

    Base Clock frequency 250 MHz

    LEON3 UT699 IBM Power PC750 FL

    Onboard Data Handling

    Onboard Computer Trade-off

    Not Rad hardenedCheaper Purchase and Testing

    Rad hardenedexpensive purchase and testing

    10.02.12 Small Satellite Project 46

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    47/63

    Onboard Data Handling

    Operating

    System:RTEMS or others

    Internal Memory:

    265 MiBytes

    2 MiBytes MRAM

    16 MiBytes Flash

    IBM PPC750FL

    OBC Performance

    COTS Flash Memory

    Management Unit High Quality Product

    Mass Memory and Formatting Unit

    (+ Housekeeping

    Data)

    10.02.12 Small Satellite Project 47

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    48/63

    Communication

    COM3

    COM2COM1

    COM1 S-BAND TX High Data Mode, Payload Data

    COM2 S-BAND TXRX of Telemetryand TX of Payload Data

    COM3 L-BAND TXRX of Basic Telemetry

    Tracking

    Wakeup for Injection Phase

    Power Mode Change

    Communication System

    10.02.12 Small Satellite Project 48

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    49/63

    Communication

    Horn

    AntennaS-Band

    COM1

    OMT

    CircularPolarization

    D/AConverter

    Modulator FrequencyMixer

    Antenna13cm BandC

    OM2

    D/AConverter

    Modulator FrequencyMixer

    A/DConverter

    De-Modulator

    FrequencyMixer

    Antenna23cm BandC

    OM3

    D/A

    ConverterModulator

    Frequency

    Mixer

    A/DConverter

    De-Modulator

    FrequencyMixer

    Components

    10.02.12 Small Satellite Project 49

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    50/63

    Communication

    IRS in-house manufactured

    testing, validation and calibration campaigns (ex/internal)

    hybrid COTS and space hardend components

    Antenna Trade-off

    10.02.12 Small Satellite Project 50

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    51/63

    Communication

    path link 0 and 90 elevation (2767 km / 575 km) output power drop from 1 W to 0,75 W

    small changes atmospheric losses

    Main Worst Case properties:

    Link Budget (1)

    10.02.12 Small Satellite Project 51

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    52/63

    Communication

    (ctd. 2nd Payload Constellation)

    Link Budget (2)

    10.02.12 Small Satellite Project 52

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    53/63

    Communication

    230mm60mm

    Corrugated Horn

    Circularly Polarization

    Output Frequency2,4497 GHz

    Antenna analysis (with TICRA Champ)

    10.02.12 Small Satellite Project 53

    C i i

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    54/63

    Communication

    IRS Groundstation

    2,5 m parabolic antenna

    S-Band (2,45GHz)

    Gain 33 dB

    Antenna analysis (with TICRA Grasp)

    10.02.12 Small Satellite Project 54

    C i ti

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    55/63

    Communication

    SolarBank Angle = local time

    SystemPower max = 40 WMMU = 200 GB

    ACSPointing Accuracy = 2Attitude = 2

    FrequenciesAmateur Radio Bands23cm, 13cm

    PayloadMission Data = 30000 MBCompression(lossless) = 10%

    MissionGroundstations = 2Visibility = 15minRevisit Time = 21 dMission Time = 7 d

    COM SpecificationCOM1

    2,44 GHz1200 kbit/s8FSK

    EnvironmentPathlength best = 575 kmPathlength worst = 2770km

    COM22,41 GHz2,43 GHz100 kbit/sQPSK8FSK

    COM3

    1,263 Ghz1,264 GHz10 kbit/sQPSK8FSK

    Constellation1,2646 kbit/sQPSK

    Design Criteria

    10.02.12 Small Satellite Project 55

    C i ti

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    56/63

    Communication

    Global Volunteer Sensor Grid

    Connected via the Internet

    Amateur Radio Bands

    Amateur Radio Operators and ordinary people

    Global Sensor Grid

    Tracking Data-Dump-Mode

    Citizen Science & Crowd Communication

    10.02.12 Small Satellite Project 56

    Constellation Distributed Ground Stations

    Communication

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    57/63

    Communication

    CONTRA PRO

    Global distribution of stations

    Overall more contact time results to5% of COM1 datarate (1Mbit/s)

    Cost efficient usage of frequency

    No licencing of frequency band

    No licences for operator

    keeping amateur radio community happy

    External tracking for orbit determination

    Simple beacon and protocol design

    Reduced communication

    contact times per station

    Only 6 kbit/s

    Using amateur frequency

    bands with smaller

    bandwidth

    10.02.12 Small Satellite Project 57

    Constellation Distributed Ground Stations

    System Budgets

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    58/63

    System Budgets

    Mass Budget

    10.02.12 Small Satellite Project 58

    System Budgets

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    59/63

    System Budgets

    VERDE Budget

    Budget Relations in Respect to Hardware, Logistics & Working Hours

    Satellite

    Logistcs

    Working Hours

    VERDE Budget

    Budget Relations in Respect to Components

    Payload

    COM

    EPS

    OBDH

    ACS

    STRUCTUR

    THERMAL

    Testing

    Rest

    Transport

    Business Costs

    Working Hours

    Financial Budget

    10.02.12 Small Satellite Project 59

    Thank you!

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    60/63

    Thank you!

    Thanks to all tutors at the Azores and in Stuttgart!

    Questions?

    10.02.12 Small Satellite Project 60

    Contact

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    61/63

    Contact

    VERDE Team

    PayLoad: Elisabete DIAS

    ACS & Orbit: Victor HOCKE COM & EPS & Constellation: Andreas HORNIG

    OBDH & Thermal: Nicolay KBLER

    Structure & Analysis: Mark LTZNER

    Universities

    University of Stuttgart www.uni-stuttgart.de Institute for Space Systems (IRS) www.irs.uni-stuttgart.de

    Small Satellite Project www.kleinsatelliten.de

    University of the Azores www.uac.pt

    10.02.12 Small Satellite Project 61

    Email:[email protected]

    Facebook:http://on.fb.me/smallsatellitesazores

    Sources

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    62/63

    Sources

    Companies

    Berlin Space Technology www.berlin-space-tech.com

    Azurspace www.azurspace.com

    Emcore www.emcore.com

    Saft Batteries www.saftbatteries.com

    Point of Contact David REULIER

    A123 Systems www.a123systems.com ZARM Technik www.zarm-technik.de

    Sensonor www.sensonor.com

    Astra- und Feinwerktechnik www.astrofein.com

    Aeroflex Gaisler www.gaisler.com

    Surrey Satellite Technology Limited www.sstl.co.uk

    10.02.12 Small Satellite Project 62

    (in order of appearance)

    Sources

  • 8/2/2019 VERDE Small Satellite Project Uni Stuttgart Azores Presentation v5_c

    63/63

    Sources

    Projects

    Constellation www.aerospaceresearch.net/constellation

    Distributed Ground Station Network www.hgg.aero Point of Contact Andreas HORNIG [email protected]

    Software

    AGI Satellite Tool Kit (STK) www.agi.com

    I-DEAS www.plm.automation.siemens.com/de_de

    ESATAN-TMS www.esatan-tms.com

    TICRA Grasp & Champ www.ticra.com

    10.02.12 Small Satellite Project 63