venus express radio science experiment vera · 2016. 4. 6. · venus conference 2016, oxford, uk....

34
Venus Conference 2016, Oxford, UK Venus Express Radio Science VeRa 1 Venus Express Radio Science Experiment VeRa Bernd Häusler (1) , Martin Pätzold (2) and the VeRa Team “Venus Express Legacy Session” (1) Universität der Bundeswehr München, (2) Institute for Planetary Research, RIU University Cologne Oxford, UK, April 6, 2016

Upload: others

Post on 02-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    1

    Venus Express Radio Science Experiment VeRa

    Bernd Häusler (1), Martin Pätzold (2)

    and the VeRa Team

    “Venus Express Legacy Session”

    (1) Universität der Bundeswehr München,(2) Institute for Planetary Research, RIU

    University Cologne

    Oxford, UK, April 6, 2016

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    2

    List of Contents

    • VeRa Team and Partners• VeRa – Science Topics - Mission• Instrument – Experimental Techniques• Achievements in Science

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    3

    The VeRa Team and Partners

    • Universität der Bundeswehr, Germany (B. Häusler, T. Andert)• University Cologne, Germany (M. Pätzold, S. Tellmann)• University Bonn, Germany (M. Bird)• Stanford University (G. L. Tyler, R.A. Simpson, D. Hinson) • Royal Observatory Belgium, Brussels ( V. Dehant, P. Rosenblatt)• JAXA, Japan (T. Imamura)• NASA-JPL/DSN (S. Asmar, T. Thompson)• ESA – ESTEC/ ESOC/ ESAC (H. Svedhem, D. Titov, F. Jansen, S. Remus)

    Funding

    Financial support granted to teams of US, Belgium, Japan by their national space agencies. DLR funded partially travel costs for the German group.

    Thanks to all who have supported VeRa !

  • VEX

    SW

    T, G

    raz,

    Nov

    embe

    r 16

    & 17

    , 201

    1Venus Express Radio Science VeRa

    4

    VeRa – Science Topics

    • Atmosphere• Ionosphere• Surface• Gravity Anomalies• Solar Corona

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    5

    VeRa-VEX Status Early in the Mission

    • First occultation season 2006

    • Begin of S-band anomaly (considerable drop in radiated power) ~ August 4, 2006 DOY216

    VeRa experiments affected: SCO, OCC, BSR

    • VEX thermal problems resulted in a revision of thermal rules, affecting also VeRa

    • Consequence:

    • No more BSR experiments (confirmation of the existence of a thinconductive layer at Maxwell Montes missing for the next decades)

    • No more SCO experiments• Limitations in further OCC experiments (sun illumination, S/C body rates)

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    6Note: Active Sun during Aug.- Nov. 2011 and during Febr.- March 2012

    Solar Activity in the Venus Express Mission

    Aerobraking

    VEX mission

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    7

    Mission Operations SummaryData Analysis

    CL receiver mode:

    VeRa retrieved so far more than 800 profiles of

    • Temperature• Neutral number density• Pressure• Electron Density

    Occultation season # 16 (last radio science pass DOY 082, 23 March, 2014)

    OL receiver mode:• Data analysis still in progress both at RIU/Cologne and JAXA .• Detection of very thin structures (< 1 km) in Venus mesosphere now possible.

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    8

    Mission Operations SummaryArchiving

    • Level 2 data archived until 2014. • Selected temperature profiles available on request. • Complete level 4 data set available on Saturn Server @ RIU

    by end of September 2016 (EURO Venus project)

  • VEX

    SW

    T, G

    raz,

    Nov

    embe

    r 16

    & 17

    , 201

    1Venus Express Radio Science VeRa

    9

    Instrument – Experimental Techniques

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    10

    VeRa Experiment Ultrastable Oscillator ( USO )

    1.5 kg 5 WManufact. TIMETECH

    133 10 −≈ ⋅Allan Deviation

    Quartz USO connected toX/S-band transponder Serves as ultrastable reference frequency source

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    11Note: X5.4 Flare occurred on orbit #2147 March 7, 2012

    Oct. 9 2014 in orbit # ~ 3100

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    12

    Radio Science Measurement Techniques

    Two frequencies are needed to separate dispersive effects (plasma ) from non-dispersive effects (orbit, neutral atmosphere )

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    13

    Receiving Techniques Used

    Closed Loop Recording (CL): Groundstation receives a dynamically limited the carrier signal with a PLL and requires S/N: ~ 12dB

    Open Loop Recording (OL): Groundstation samples incoming signal with 150 ksamples per second.Special digital processing techniques allow to recover a highly dynamic carrier signal out of noise. S/N: ~ 0 dBAmount of data for a typical occultation: ~ 4 GByte

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    14next iteration step

    Radio Science Occultation Technique:Principle: Ray Bending in Neutral Atmosphere

    α(a)Abeltransformcalculation

    • ΔF• geometry

    Iterative calculation Refraction index “n(r)”

    It is the bending angle which carries the information about the refraction indexα

    Sensitivity: Δα ~10 -8 rad

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    15

    The Radio Occultation TechniqueConducting an Experiment

    At Venus - in order to maximize receiving power - one has to dynamically steerthe radio beam in 3 axes through the atmosphere to compensate for the raybending effect (Bending angle < 7°, 3dB opening angle of antenna beam 1.7°)

    Dedicated software (Matlab/Simulink based simulator) including amodel atmosphere was developed for this purpose by the Radio Science team.This allowed to calculate the HGA pointing angles expressed by quaternionsfor the 3-axis pointing maneuvers to guide the microwave ray throughthe atmosphere.

    Pointing had also to obey the „thermal rules“.

    First done by an experiment in an ESA mission. Flawless operations.

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    16

    Carrier Power in a Typical „Deep“ Occultation PassCL-Receiver

    Both Channels Normalized in Power

    0 500 1000 1500 2000 2500 3000 3500 4000 4500-180

    -170

    -160

    -150

    -140

    -130

    -120DoY228-2006 -DFT Power Spectral Density iter. step 1- s-band (cal. and dec.)

    Pow

    er d

    ensi

    ty [

    dBm

    /Hz]

    time since [2006 8 16 1 22 5] [s] (UTC - ERT)

    S-BandX-Band

    Loss of carrier power in the atmosphere

    due to defocusing and absorption

    ~ - 50 dB (X-band)!

  • VEX

    SW

    T, G

    raz,

    Nov

    embe

    r 16

    & 17

    , 201

    1Venus Express Radio Science VeRa

    17

    Atmospheric Frequency Shift of the VeRa X-Band - Carrier Signal During a Complete Occultation. CL vs. OL Technique.

    VeRa was the first planetary Radio Science mission detecting the carrier signal throughout a complete occultation.

    The carrier could be detected during times with the planetary disk occulting completely the satellite.

    0 500 1000 1500 2000 2500 3000 3500 4000

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    x 104 Residual frequency - x-band - CL vs. OL - DoY204 - 2006

    time since [2006 7 23 1 22 9] (samples - time resolution ~ 0.01s)

    freq

    uenc

    y re

    sidu

    al [

    Hz]

    CL

    OL

    Loss of carrierl power in the atmosphere

    due to defocusing and absorption

    ~ - 50 dB (X-band)!

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    18

    Achievements in Science

    Characterized by an excellent cooperation within in the VEX Teamincluding the Akatsuki Team

    Very competent support in the fields of mission/experiment planning and ground station operations

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    19

    Achievements in Science

    VeRa turned out to be an extremely versatile instrument:Precise time and frequency measurements with microwaves allowed tocharacterize, determine, detect, discover:

    •The ionospheric structure of Venus•Particles of meteoric origin in ionospheric plasma •Structure of Venus middle atmosphere•Zonal wind distribution of Venus middle atmosphere (VeRa, VIRTIS)•Cloud top structure (VeRa, VIRTIS)•Polar vortex•Planetary waves•Ubiquitous distribution of gravity waves in the atmosphere•Saturation of gravity wave power spectra (gravity wave breaking) •Thin-layered near neutral structure of Venus mesosphere•Thin inversion layer at tropopause (~ 1 km, ~ 10K)•H2SO4 g distribution in atmosphere•Dielectric properties of surface aereas and gravity properties•Solar corona effects

  • VEX

    SW

    T, G

    raz,

    Nov

    embe

    r 16

    & 17

    , 201

    1Venus Express Radio Science VeRa

    20

    Structure of the Venus IonosphereDiscovery of Meteor Layer

    103 104 105 106

    electron density (106 m-3)

    100

    125

    150

    175

    200

    225

    250

    275

    300

    altit

    ude

    (km

    )

    DOY204, 2006ingress

    V2

    V1

    meteor layer

    Pätzold et al., GRL, 2009

    Ionopause

    DiffusionRegion

    Bulge

  • VEX

    SW

    T, G

    raz,

    Nov

    embe

    r 16

    & 17

    , 201

    1Venus Express Radio Science VeRa

    21

    Global Thermal Structure of Venus Middle AtmosphereLatitude vs. Pressure, Zonally Averaged

    Tellmann et al., 2015

    Anomalous thermal structure at high latitudesabove 70 km

    „Cold Collar“~70 km

    ~ 60 km

    ~ 80 km

  • VEX

    SW

    T, G

    raz,

    Nov

    embe

    r 16

    & 17

    , 201

    1Venus Express Radio Science VeRa

    22

    Averaged Zonal Wind Velocity Based on Cyclostrophic Approximation. Derived from VeRa and VIRTIS Data

    A. Piccialli et al., Icarus, 217, 2012

  • VEX

    SW

    T, G

    raz,

    Nov

    embe

    r 16

    & 17

    , 201

    1Venus Express Radio Science VeRa

    23

    Static Stability of Venus Middle Atmosphere as Observed by VeRa

    Tellmann et al., JGR 2009

    Convective regionwith

    strong vertical gradients of velocity

    Thin inversion layer~ 1 km

    Gravity wave propagation

    Wave breaking

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    24

    Discovery of Globally Distributed Gravity Waves in the Venus Atmosphere

    Global distribution of the Potential Energy Ep of gravity waves (altitude range 65-80 km) detected by VeRa. Background: Topography measured by Magellan.

    Tellmann et al., Icarus, 2012

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    25

    OL Processing of Multipath Effects Based on Wigner-Ville Transformation (see also Herrmann et al. Thursday presentation)

    100 120 140 160 180

    Refractivity

    6107.5

    6108.0

    6108.5

    6109.0

    6109.5

    6110.0

    6110.5

    6111.0

    Rad

    ius

    [km

    ]

    Open LoopClosed Loop

    230 240 250 260 270 280

    Temperature [K]

    6105.0

    6105.5

    6106.0

    6106.5

    6107.0

    6107.5

    6108.0

    6108.5

    6109.0

    6109.5

    6110.0

    6110.5

    Rad

    ius

    Open LoopClosed Loop (with averaging)

    1 km“ thick“ Inversion layer not detected every pass – but almost.

    Mattei, Remus, 2010

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    26

    Discovery of Saturated Gravity Wave Spectraand Turbulence in the Upper Mesosphere

    Power Spectral Density of vertical wave number spectra divided by N4 in the altitude interval 65-80 km and 75-90 km in selected latitude intervals . Shown also semi-empirical saturation curve (dotted).

    Vertical diffusion coefficient :2.7-31 (m2s-1)

    Ando et al., JAS, 72, 2015

  • VEX

    SW

    T, G

    raz,

    Nov

    embe

    r 16

    & 17

    , 201

    1Venus Express Radio Science VeRa

    27

    Convective layer

    Vertical Resolution 70 m

    Thin, near-neutral layers are frequently found above ∼60 km altitude in the high-resolution static stability profiles obtained by FSI in the middle and high latitude.

    Indication for turbulence.Miyamoto et al., 2015

    Static Stability Profiles Analyzed with the OL – FSI TechniqueSmall Scale Fluctuations – Thin Near Neutral Layers

    FSI GO

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    2206 2208 2210 2212 2214 2216 2218 2220 2222

    00

    00

    200.0210.0220.0230.0240.0250.0260.0270.0280.0290.0

    00

    [K]Temperature at lat: -35°, local time: 3-4 h

    ~ 4 Day Variations at Constant Latitude and Local TimePresence of Planetary Wave

    (possibly vert. propag. Rossby/Kelvin Wave)- see Presentation by Tellmann et al. (Thursday) -

    Origin of large scale structure still not clear:Baroclinic instability? And/or possibly turbulent processes acting transfering small scale structures into large scale structures?

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    29

    Solar Induced Effects above Tropopause at 75° - 85° Lat.Presence of Wave # 2 Structure

    Coldest temperatures located at the subsolar and antisolar points.

    Tellmann et al., JGR, 2009

    NoonEvening

    Midnight

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    30

    H2SO4 g Absorption Effects Observed by VeRa- Presentation by J. Oshlisniok this Tuesday -

    350 Profiles between 2006 and 2014J. Oschlisniok et al., 2016

    Model is being developed supporting the picture of a meridional transport of H2SO4 g condensing into droplets in the upward branch and evaporating again in the downward branch of the Hadley cell assuming a significant polar depression.

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    31

    Latitude Dependence of the Cloud Top Altitude- Presentation by D. Titov this Tuesday -

    Lee et al., Icarus, 2012

    Background: VeRa temperature fieldCrosses: VIRTIS (near IR)Filled and open circles: Venera 15 (mid-IR)

    Data suggest an increase of particle size in the upper cloud from equator to pole

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    32

    Simulation of Barotropic Instability in the Venus Atmosphere -Polar Vortex

    - Presentation by H. Ando this Thursday -

    Ando et al., 2016

    Instability criteria metChange of sign of dq/dφ

    Circumpolar temperaturedistribution

    as simulated by AFES

    Verical temperature structures from VeRa used qualitatively

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    33

    Baroclinic Structure of Venus Atmosphere in the Cloud Layer

    ----- potential temperaturepressure

    Häusler, Andert, 2010

    Piccialli, 2010

    Instability criteria must be met.Unstable modes can develop in regions of low static stabillity with large gradients of zonal velocity creating planetary scale waves..

  • Venu

    s C

    onfe

    renc

    e 20

    16, O

    xfor

    d, U

    KVenus Express Radio Science VeRa

    34

    Thank You For Your Attention

    Venus Express Radio Science Experiment VeRa�List of ContentsThe VeRa Team and PartnersVeRa – Science Topics VeRa-VEX Status Early in the Mission� Mission Operations Summary�Data Analysis Mission Operations Summary�ArchivingInstrument – Experimental TechniquesVeRa Experiment �Ultrastable Oscillator ( USO )�Radio Science Measurement Techniques�Slide Number 13 Radio Science Occultation Technique:�Principle: Ray Bending in Neutral Atmosphere The Radio Occultation Technique�Conducting an Experiment �Carrier Power in a Typical „Deep“ Occultation Pass�CL-Receiver�Both Channels Normalized in PowerSlide Number 17Achievements in Science�Achievements in Science�Structure of the Venus Ionosphere�Discovery of Meteor LayerSlide Number 21Averaged Zonal Wind Velocity Based on Cyclostrophic Approximation. Derived from VeRa and VIRTIS DataSlide Number 23Slide Number 24OL Processing of Multipath Effects Based on Wigner-Ville Transformation (see also Herrmann et al. Thursday presentation) Discovery of Saturated Gravity Wave Spectra�and Turbulence in the Upper MesosphereSlide Number 27Slide Number 28Slide Number 29Slide Number 30Latitude Dependence of the Cloud Top Altitude�- Presentation by D. Titov this Tuesday -Simulation of Barotropic Instability in the Venus Atmosphere - Polar Vortex �- Presentation by H. Ando this Thursday -Slide Number 33 Thank You �For Your Attention