velocity inversion using the quadratic wasserstein metric...oct 03, 2020  · -8 -6 -4 -2 0 2 4 6...

35
Velocity Inversion Using the Quadratic Wasserstein Metric Srinath Mahankali Mentor: Prof. Yunan Yang (NYU) Stuyvesant High School October 17, 2020 MIT PRIMES Conference Srinath Mahankali Velocity Inversion October 17, 2020 1 / 17

Upload: others

Post on 01-Apr-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Velocity Inversion Using the Quadratic WassersteinMetric

Srinath MahankaliMentor: Prof. Yunan Yang (NYU)

Stuyvesant High School

October 17, 2020MIT PRIMES Conference

Srinath Mahankali Velocity Inversion October 17, 2020 1 / 17

Page 2: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Motivation

Goal: find materials lying underground and their positions

Srinath Mahankali Velocity Inversion October 17, 2020 2 / 17

Page 3: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Motivation

Goal: find materials lying underground and their positions

Srinath Mahankali Velocity Inversion October 17, 2020 2 / 17

Page 4: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Approach

1C(x)2

∂2ψ∂t2 −

(∂2ψ∂x1

2 + ∂2ψ∂x2

2 + · · ·+ ∂2ψ∂xn2

)= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin J(g(C), h) where J is the objective function

Convexity with respect to the velocity is beneficial

Srinath Mahankali Velocity Inversion October 17, 2020 3 / 17

Page 5: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Approach

1C(x)2

∂2ψ∂t2 −

(∂2ψ∂x1

2 + ∂2ψ∂x2

2 + · · ·+ ∂2ψ∂xn2

)= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin J(g(C), h) where J is the objective function

Convexity with respect to the velocity is beneficial

Srinath Mahankali Velocity Inversion October 17, 2020 3 / 17

Page 6: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Approach

1C(x)2

∂2ψ∂t2 −

(∂2ψ∂x1

2 + ∂2ψ∂x2

2 + · · ·+ ∂2ψ∂xn2

)= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin J(g(C), h) where J is the objective function

Convexity with respect to the velocity is beneficial

Srinath Mahankali Velocity Inversion October 17, 2020 3 / 17

Page 7: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Problems With the Squared L2 Norm

Beydoun-Tarantola, 1988

Nonconvexity of squared L2 norm and local minima

Brossier et al, 2010

Sensitivity of L2 norm to noise

-8 -6 -4 -2 0 2 4 6 8

-2: < x < 2:

0

0.05

0.1

0.15

0.2

0.25Graph of f(x)

-10 -5 0 5 10

-4: < s < 4:

0

0.05

0.1

0.15

0.2

0.25

L2 D

ista

nce

Squared L2 Norm of f(x) - f(x-s)

Srinath Mahankali Velocity Inversion October 17, 2020 4 / 17

Page 8: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

An Alternative Objective Function

Engquist-Froese, 2013 introduced the Wasserstein metric for FWI

Yang, 2019

Convexity in translations and dilations of the dataInsensitivity to noise

Engquist et al, 2020

Low-frequency bias

-8 -6 -4 -2 0 2 4 6 8

-2: < x < 2:

0

0.05

0.1

0.15

0.2

0.25Graph of f(x)

-10 -5 0 5 10

-4: < s < 4:

0

50

100

150

W2

Dis

tanc

e

Squared W2 Distance of f(x) and f(x-s)

Srinath Mahankali Velocity Inversion October 17, 2020 5 / 17

Page 9: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

What is the Wasserstein Metric?

Optimal transport introduced by Monge

Definition

The pth Wasserstein metric is defined as

Wp(f , g) =

(inf

T∈M(µ,ν)

∫Ω|x − T (x)|pdµ

) 1p

.

Srinath Mahankali Velocity Inversion October 17, 2020 6 / 17

Page 10: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

What is the Wasserstein Metric?

Explicit formula when data is in one dimension

Theorem

Let g and h be two probability distributions defined on R, and letG (t) =

∫ t−∞ g(s) ds and H(t) =

∫ t−∞ h(s) ds. Then

W 22 (g , h) =

∫ 1

0(G−1(s)− H−1(s))2 ds.

Srinath Mahankali Velocity Inversion October 17, 2020 7 / 17

Page 11: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

The Constrained Optimization Problem

1C(x)2

∂2ψ∂t2 −

(∂2ψ∂x1

2 + ∂2ψ∂x2

2 + · · ·+ ∂2ψ∂xn2

)= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin W 22 (g(C), h)

Previous results involve convexity in changes of the data

Srinath Mahankali Velocity Inversion October 17, 2020 8 / 17

Page 12: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

The Constrained Optimization Problem

1C(x)2

∂2ψ∂t2 −

(∂2ψ∂x1

2 + ∂2ψ∂x2

2 + · · ·+ ∂2ψ∂xn2

)= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin W 22 (g(C), h)

Previous results involve convexity in changes of the data

Srinath Mahankali Velocity Inversion October 17, 2020 8 / 17

Page 13: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

The Constrained Optimization Problem

1C(x)2

∂2ψ∂t2 −

(∂2ψ∂x1

2 + ∂2ψ∂x2

2 + · · ·+ ∂2ψ∂xn2

)= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin W 22 (g(C), h)

Previous results involve convexity in changes of the data

Srinath Mahankali Velocity Inversion October 17, 2020 8 / 17

Page 14: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Challenges and Solutions

Wave data is generally not a probability distribution

Normalize wave data k(t) by k(t) = k(t)+γ∫ T0

k(t)+γ dt

Computing the W2 distance is difficult for higher dimensions

Data is only a function of time → apply one dimensional formula

No explicit solution for wave equation in general

Srinath Mahankali Velocity Inversion October 17, 2020 9 / 17

Page 15: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Challenges and Solutions

Wave data is generally not a probability distribution

Normalize wave data k(t) by k(t) = k(t)+γ∫ T0

k(t)+γ dt

Computing the W2 distance is difficult for higher dimensions

Data is only a function of time → apply one dimensional formula

No explicit solution for wave equation in general

Srinath Mahankali Velocity Inversion October 17, 2020 9 / 17

Page 16: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Challenges and Solutions

Wave data is generally not a probability distribution

Normalize wave data k(t) by k(t) = k(t)+γ∫ T0

k(t)+γ dt

Computing the W2 distance is difficult for higher dimensions

Data is only a function of time → apply one dimensional formula

No explicit solution for wave equation in general

Srinath Mahankali Velocity Inversion October 17, 2020 9 / 17

Page 17: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Challenges and Solutions

Wave data is generally not a probability distribution

Normalize wave data k(t) by k(t) = k(t)+γ∫ T0

k(t)+γ dt

Computing the W2 distance is difficult for higher dimensions

Data is only a function of time → apply one dimensional formula

No explicit solution for wave equation in general

Srinath Mahankali Velocity Inversion October 17, 2020 9 / 17

Page 18: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Challenges and Solutions

Wave data is generally not a probability distribution

Normalize wave data k(t) by k(t) = k(t)+γ∫ T0

k(t)+γ dt

Computing the W2 distance is difficult for higher dimensions

Data is only a function of time → apply one dimensional formula

No explicit solution for wave equation in general

Srinath Mahankali Velocity Inversion October 17, 2020 9 / 17

Page 19: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Velocity Models in One Dimension

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Position

1.5

2

2.5

3

3.5

Vel

ocity

Velocity Model 1

0 0.5 1 1.5 2 2.5 3 3.5 4

Position

1.5

2

2.5

3

3.5

Vel

ocity

Velocity Model 2

0 0.5 1 1.5 2 2.5 3 3.5 4

Position

1.5

2

2.5

3

3.5

Vel

ocity

Velocity Model 3

Theorem

Suppose f (t) is nonnegative and compactly supported, and let k be thevelocity parameter in these three cases. Then W 2

2 (g(k), h) is convex in kover the interval (0, k∗].

Srinath Mahankali Velocity Inversion October 17, 2020 10 / 17

Page 20: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Ray Tracing

Velocity function of the form C(X , z) = a + bz

Distance and traveltime formulas:

X = 2p

∫ zp

0

dz√u2(z)− p2

T = 2

∫ zp

0

u2(z)√u2(z)− p2

dz

For source wave data f (t), the predicted wave data is approximatedby Apredf (t − Tpred)

Srinath Mahankali Velocity Inversion October 17, 2020 11 / 17

Page 21: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Ray Tracing

Distance and traveltime formulas:

X = 2p

∫ zp

0

dz√u2(z)− p2

T = 2

∫ zp

0

u2(z)√u2(z)− p2

dz

For source wave data f (t), the predicted wave data is approximatedby Apredf (t − Tpred)

Srinath Mahankali Velocity Inversion October 17, 2020 11 / 17

Page 22: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Ray Tracing

Distance and traveltime formulas:

X = 2p

∫ zp

0

dz√u2(z)− p2

T = 2

∫ zp

0

u2(z)√u2(z)− p2

dz

For source wave data f (t), the predicted wave data is approximatedby Apredf (t − Tpred)

Srinath Mahankali Velocity Inversion October 17, 2020 11 / 17

Page 23: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Ray Tracing

Distance and traveltime formulas:

X = 2p

∫ zp

0

dz√u2(z)− p2

T = 2

∫ zp

0

u2(z)√u2(z)− p2

dz

For source wave data f (t), the predicted wave data is approximatedby Apredf (t − Tpred)

Srinath Mahankali Velocity Inversion October 17, 2020 11 / 17

Page 24: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Velocity Model in Two Dimensions

Theorem

Assume f (t) is nonnegative and compactly supported. Then, W 22 (g , h) is

jointly convex in a, b over the following region U:

U := (a, b) ∈ R2 : a, b > 0,bXr

2a≥ S0, T (Xr , a, b) ≥ T (Xr , a

∗, b∗)

for some positive constant S0.

For large Xr , the convex region contains (a∗, b∗)

Nonuniqueness of solution fixed by adding multiple receiver locations

Srinath Mahankali Velocity Inversion October 17, 2020 12 / 17

Page 25: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Velocity Model in Two Dimensions

Theorem

Assume f (t) is nonnegative and compactly supported. Then, W 22 (g , h) is

jointly convex in a, b over the following region U:

U := (a, b) ∈ R2 : a, b > 0,bXr

2a≥ S0, T (Xr , a, b) ≥ T (Xr , a

∗, b∗)

for some positive constant S0.

For large Xr , the convex region contains (a∗, b∗)

Nonuniqueness of solution fixed by adding multiple receiver locations

Srinath Mahankali Velocity Inversion October 17, 2020 12 / 17

Page 26: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Velocity Model in Two Dimensions

Theorem

Assume f (t) is nonnegative and compactly supported. Then, W 22 (g , h) is

jointly convex in a, b over the following region U:

U := (a, b) ∈ R2 : a, b > 0,bXr

2a≥ S0, T (Xr , a, b) ≥ T (Xr , a

∗, b∗)

for some positive constant S0.

For large Xr , the convex region contains (a∗, b∗)

Nonuniqueness of solution fixed by adding multiple receiver locations

Srinath Mahankali Velocity Inversion October 17, 2020 12 / 17

Page 27: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Velocity Model in Two Dimensions

Srinath Mahankali Velocity Inversion October 17, 2020 13 / 17

Page 28: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Velocity Model in Two Dimensions

Srinath Mahankali Velocity Inversion October 17, 2020 13 / 17

Page 29: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Velocity Model in Two Dimensions

Srinath Mahankali Velocity Inversion October 17, 2020 13 / 17

Page 30: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Future Work

Study models with a larger number of parameters

Possible to study convexity using frequency instead of time domain

Srinath Mahankali Velocity Inversion October 17, 2020 14 / 17

Page 31: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Future Work

Study models with a larger number of parameters

Possible to study convexity using frequency instead of time domain

Srinath Mahankali Velocity Inversion October 17, 2020 14 / 17

Page 32: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Acknowledgements

I am extremely thankful to:

My mentor, Prof. Yunan Yang

The PRIMES program

My parents and my brother

Srinath Mahankali Velocity Inversion October 17, 2020 15 / 17

Page 33: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

Acknowledgements

I am extremely thankful to:

My mentor, Prof. Yunan Yang

The PRIMES program

My parents and my brother

Link to my paper (posted on PRIMES website):https://arxiv.org/abs/2009.00708

Srinath Mahankali Velocity Inversion October 17, 2020 15 / 17

Page 34: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

References

Wafik B. Beydoun and Albert Tarantola. First Born and Rytovapproximations: Modeling and inversion conditions in a canonicalexample. The Journal of the Acoustical Society of America,83(3):1045–1055, 1988.

Romain Brossier, Stephane Operto, and Jean Virieux. Which residualnorm for robust elastic frequency-domain full waveform inversion.Geophysics, 75, 05 2010.

Bjorn Engquist and Brittany D. Froese. Application of theWasserstein metric to seismic signals. arXiv preprint arXiv:1311.4581,2013.

Bjorn Engquist, Kui Ren, and Yunan Yang. The quadraticWasserstein metric for inverse data matching. Inverse Problems,36(5):055001, May 2020.

Srinath Mahankali Velocity Inversion October 17, 2020 16 / 17

Page 35: Velocity Inversion Using the Quadratic Wasserstein Metric...Oct 03, 2020  · -8 -6 -4 -2 0 2 4 6 8-2 < x < 2 0 0.05 0.1 0.15 0.2 0.25 Graph of f(x)-10 -5 0 5 10-4 < s < 4 0 50 100

References

Gaspard Monge. Memoire sur la theorie des deblais et des remblais.Histoire de l’Academie Royale des Sciences de Paris, 1781.

Yunan Yang. Analysis and Application of Optimal Transport ForChallenging Seismic Inverse Problems, 2019.

Srinath Mahankali Velocity Inversion October 17, 2020 17 / 17