vektoranalízis alapjai (2007, 26 oldal)

Upload: boegoes-balazs

Post on 09-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    1/26

    R 3

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    2/26

    R 2

    M

    x 1

    x 2

    M

    x 3

    t 2

    t 1

    P

    U

    t 1 t 2 (t 1 , t 2) P

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    3/26

    k k = 1,2,3,... k k

    k k

    k

    k

    n n 1

    -1

    -0,5

    0

    0,56

    -1 -0,5 01

    4

    0,5 1

    2

    0

    -2

    -4

    -6 : R

    R 3

    (t ) := ( a t, a t,bt ) .

    t

    (cos t, sin t )

    x 1

    x 2

    U1 := ( 0,2 ) U2 := ( , ) 1(t ) = 2(t ) = ( t, t ) {(U1 , 1), (U2 , 2) R 2

    U1 := ( 0,2 ) R U2 := ( , ) R

    1(t, s ) = 2 (t, s ) = ( t, t, s )

    {(U1 , 1), (U2 , 2)

    U = 2 ,2 0,2

    (t 1 , t 2) = ( t 1 t 2 , t 1 t 2 , t 1)

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    4/26

    (t 1 , t 2) = ( a + t 1) t 2 , (a + t 1) t 2 , t 1)

    U = 2

    , 2

    0,2 [0, 1 ]

    (t 1 , t 2) = ( t 3 t 1 t 2 , t 3 t 1 t 2 , t 3 t 1)

    (x1 , x2) R 2 x21 + x

    22 = 1

    F(x1 , x2 ) = x21 + x22 1

    x1 x2 x1 x2

    M F : R n

    R m M R n F

    M := {x R n | F(x) = 0},

    x R n M F(x) = 0

    xi M M

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    5/26

    F : R n R m

    x M F i

    x j x n k

    M k

    F : R 2 R F(x, y ) := x2 + y 2 1

    S1 := {(x, y ) R 2 | F(x, y ) = 0} R 2

    F : R 3 R F(x,y,z ) := x2 + y2 1 M := {(x,y,z ) R 3 | F(x,y,z ) =

    0}

    F : R 3 R F(x,y,z ) := x2 + y 2 + z2 1 S2 := {(x,y,z )

    R 3 | F(x,y,z ) = 0}

    M P

    R 3 M = [ x1 , x2 ]

    x3

    x 1

    P = t 0v = t 0

    x 3

    x 2

    M

    M : (a, b ) R n

    M t (a, b ) (t ) M

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    6/26

    (U, ) p M p x0 = ( x10 , . . . ,x

    k0 ) 1 i k

    i : ( , ) M, i (t ) = (x0 + te i ) = (x10 ...x i0 + t. . .x k0 ) p

    p

    P

    p M

    M p T p M T p M TM

    : ( , ) M 0 p M (t 0) = p vp =

    ddt t = 0

    (t )

    p

    ( , )

    0 : (a, b ) M v ( t 0 ) := ddt t = t 0 (t ) t 0 (t 0)

    ddt t = 0

    i (t ) =ddt t = 0

    (x0 + te i ) =x i

    (x0 ).

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    7/26

    (t 1 , t 2) = ( t 1 , t 1 , t 2)

    t 1 t 2 t 2 t 1

    x 1

    (x0 ), ...,x k

    (x0) T p M

    T p M p

    : (,) M 0 p M (0)

    1 q 1 (q ) = q t (t ) = 1 (t ). t

    (0) =ddt t = 0

    ( 1 )( t ) =n

    i = 1

    x i

    (x0)d i

    dt(0) =

    n

    i = 1

    vix i

    (x0)

    vi 1 i

    T p M

    T p M

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    8/26

    (t 1 , t 2) := ( t 1 , t 1 , t 2)

    T p M

    v 1

    p

    v 2

    (t 1 , t 2) p = (t 1 , t 2)

    v1 =t 1 = (

    t 1 , t 1 , 0),

    v2 =t 2

    = ( 0,0,1 )

    (t 1 , t 2) = ( 0, 0) p = ( 1,0,0 ) v1 = ( 0,1,0 ) v2 = ( 0,0,1 ) p

    T p M = (0,a,b ) | a, b R ;

    (t 1 , t 2) = ( /2, 5 ) ^ p = ( 0,1,5 ) v1 = ( 1,0,0 ) v2 = ( 0,0,1 )

    T p M = (a,0,b ) | a, b R .

    p ^ p

    M X X p M Xp

    p Xp T p M M X( M )

    (U, ) M x U p T p M

    Xp T p M X

    1(x) X

    k(x)

    Xp U

    X

    X = X1x 1

    + ... + Xkx k

    .

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    9/26

    Xi

    x0 U p x0

    (t, s ) = ( t, t, s )

    X = s e 2tt

    + s2 ts

    (0, 3) p = ( 1,0,3 ) Xp

    Xp = 5e 0

    t (0,3 )+ 32 0

    s (0,3 )= 5(0,1,0 )p + 9(0,0,1 )p = ( 0,5,9 )p

    p p

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    10/26

    M N f : M N f f M N

    M f NTM f TN vp : ( ,) M (0) = p (0) = vp f( vp ) = ddt t = 0f ( (t )) ,

    f N N p

    M

    p

    f

    v pf ( p)

    f v p

    t

    f ( t )

    (U, ) k M p M U R k k

    : U M p x0 e i,x 0 x0 U t (x0 + te i ) R k e i x0 i

    (e i,x 0 ) =ddt t = 0 (x0 + te i ) =

    x i

    (x0)

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    11/26

    V k l

    : V V

    l

    R

    l 2 ( 1)

    ( v1 , . . . ,v i , ...v j , . . . ,v l ) = ( 1) ( v1 , . . . ,v j , ...v i , . . . ,v l ).

    V l l (V )

    v (..., v, ...v, .. ) = 0.

    l (V )

    v1 = 2 v2 + ... + k vk

    p ( v1 , v2 , . . . ,v k ) = p ( 2 v2 + ... + k vk , v2 , . . . ,v k )

    = 2 p ( v2 , v2 , . . . ,v k ) + ... + k p ( vk , v2 , . . . ,v k )1.= 0

    l > k l (V ) = 0 l (V ) v1 , . . . ,v l V p ( v1 , . . . ,v l ) = 0

    V k l > k

    ( v1 , . . . ,v l ) = 0

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    12/26

    l (V )

    l (V ) , l (V ) R +

    ( )( v1 , . . . ,v l ) := ( v1 , . . . ,v l )

    ( + )( v1 , . . . ,v l ) := ( v1 , . . . ,v l ) + ( v1 , . . . ,v l )

    + l (V )

    (V ) k V l l (V ) k

    l

    l (V ) l (V ) {e1 , . . . ,e k } V

    1 i 1 , . . . , i l l i 1 ...i l v1 , . . . ,v l V

    i 1 ...i l ( v1 , . . . ,v l ) :=

    vi 11 vi 12 . . . v

    i 1l

    vi 21 v

    i 22 . . . v

    i 2l

    vi l1 vi l2 . . . v

    i ll

    .

    i 1 ...i l {e1 , . . . ,e k } k l j vj i 1 i 2 i l l l

    i 1 ...i l l V i 1 ...i l l (V )

    { i 1 ...i l | 1 i 1 < i 2 < ... < i l k} l (V ) l (V )

    =1 i 1

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    13/26

    k (V ) k (V ) R = 1...k .

    l (M ) m (M )

    : V V

    l + m

    R ,

    v1 , . . . ,v l + m V

    ( v1 , . . . ,v l + m ) :=1

    l!m !

    ( 1) ( ) ( v (1) , . . . ,v ( l ) ) ( v ( l + 1) , . . . ,v ( l + m )) .

    {1, ...., l + m } ()

    ( 1) ( )

    l + m (M ).

    , 1(M ) 2 (M ) v1 , v2 V

    ( v1 , v2 ) = ( v1 ) ( v2 ) ( v2) ( v1) = ( v1) ( v2 ) ( v1) ( v2) .

    ,, 1(M ) 3(M ) v1 , v2 , v3 V

    ( v1 , v2 , v3) = ( v1) ( v2) ( v3) ( v1) ( v2 ) ( v3)( v1) ( v2) ( v3 )

    .

    1 , ... l 1 (M ) 1 ... l l (M )

    1 ... l ( v1 , . . . ,v l ) =

    1 ( v1) 1( v2 ) 1( vl ) 2 ( v1) 2( v2 ) 2( vl )

    l ( v1 ) l ( v2 ) l ( vl )

    .

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    14/26

    M k M l l p M

    p : T p M T p M

    l

    R

    l l l (M ) 0(M ) M

    l l X1 Xl M

    X1 , . . . ,X l (X1 , . . . ,X l ) p M

    p

    (X1 , . . . ,X l ) p := p (X1,p , . . . ,X l,p )

    l (M ) l p M p l

    X (..., X, ...X, .. ) = 0

    l > k

    l

    (M ) = 0

    l

    (M )

    X1 , . . . ,X l (M ) (X1 , . . . ,X l ) = 0

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    15/26

    f : M R

    df

    XX( M )

    df (X),

    df (X) p M f Xp T p M

    df (X)p := Xp (f ) = t0

    f ( (t )) f ( (0))t

    ,

    (t ) Xp (0) = p (0) = Xp (U, ) p

    Xp X1p Xkp

    df (X)p =k

    i = 1

    Xip (f )x i (x0) ,

    x0 p df p df p : T p M

    R

    df M

    df 1(M ).

    df f : M

    R

    (U, ) M (V, x) V = (U) x := 1 x

    p M k x k

    x = ( x1 , . . . ,x k ) i xi

    dx i (X)p = Xip ,

    dx i X p i

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    16/26

    M k (U, ) M x U p = (x) p T p M

    {x 1 x , ...,x 1 x

    } 1 i 1 , . . . , i l

    l

    dxi 1 ... dx

    i l

    l

    p M

    v1 , . . . ,v l T p M

    dx i 1p ... dxi lp ( v1 , . . . ,v l ) :=

    vi 11 vi 12 . . . v

    i 1l

    vi 21 vi 22 . . . v

    i 2l

    vi l1 vi l2 . . . v

    i ll

    ,

    ( v1j , . . . ,vlj ) vj {

    x 1 x , ...,

    x 1 x

    } l

    k l j vj i 1 i 2 i l

    l l

    dx i 1 ... dx i l l M dx i 1 ... dx i l l (M )

    x U p M

    {dx i 1p ... dxi lp | 1 i 1 < i 2 < ... < i l k}

    l (T p M ) p l (M )

    p =1 i 1

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    17/26

    1 (M ) {dx 1 ,...,dx k } f : M R

    df 1(M )

    df =k

    i = 1

    (f x 1 )x i

    dx i .

    M N f : M N f : (N ) (M ) M f N(M ) f

    (N )

    l (N ) f l (M )

    f ( v1 , ...v l ) = (f v1 , . . . ,f vl ).

    M k (U, ) l (M ) = i 1 ...i l dx

    i 1 ... dx i l , l (U)

    =1 i 1

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    18/26

    =i 1 ...i k

    i 1 ...i k ( )i 1 ...i k 12...k .

    M k (U1 , 1 ) (U2 , 2)

    M

    U1

    U2

    1 2

    1 12

    1 = 1 12...k , 2 =

    2 12...k ,

    1 2 U1 U2 = 1 12

    2 = x 1

    d : (M ) (M ) d : l (M )

    l + 1(M )

    d ( + ) = d + d

    , l

    (M )

    d ( ) = d + ( 1) l d l (M ) m (M )

    d 2 = d d = 0

    d : 0(M ) 1(M )

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    19/26

    l (M ) d (V, x) = i 1 ...i l dx

    i 1 ... dx i l

    d = d ( i 1 ...i l dxi 1 ... dx i l ) = (d i 1 ...i l dx

    i 1 ... dx i l )

    = d i 1 ...i l dxi 1 ... dx i l =

    i 1 ...i lx j

    dx j dx i 1 ... dx i l

    d

    M 1(M ) = 1dx 1 + 2dx 2 d 2(M )

    d = 2x 1

    1x 2

    dx 1 dx 2

    M 1(M ) = 1dx 1 + 2dx 2 + 3dx 3 d

    2(M )

    d = 2x 1

    1x 2

    dx 1 dx 2 + 3x 1

    1x 3

    dx 1 dx 3 + 3x 2

    2x 3

    dx 2 dx 3

    M 2(M )

    = 12 dx 1 dx 2 + 23 dx 2 dx 3 + 31 dx 3 dx 1 ,

    d 3 (M )

    d = 12x 3

    + 23x 1

    + 31x 2

    dx 1 dx 2 dx 3

    V R 3 f : V R

    g : V R 3

    g g = ( g 1 , g 2 , g 3)

    f : V

    R 3 , f = ( 1f, 2f, 3f ) ,

    g : V

    R 3 , g = ( 2g 3 3g 2 , 3 g 1 1 g 3 , 1g 2 2g 1),

    g : V R , g = 1g 1 + 2g 2 + 3g 3 .

    g : V R 3

    f : V R

    g = f g g = 0

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    20/26

    R 3

    R 3

    1 (R 3) 1.

    X( R 3 ) 2.

    2 (R 3)

    1dx + 2 dy + 3dz 1e1 + 2e2 + 3e3 1dy dz + 2dz dx + 3dx dy

    0 (R 3) 3.

    3(R 3)

    dx dy dz

    f : V R

    df = f 1 dx + f 2dy + f 3dz f df

    g : V R 3

    V g 1dx + g 2 dy + g 3 dz

    g

    g : V R 3

    g

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    21/26

    k k

    k M Ik = [ 0, 1 ] ... [0, 1 ]

    k (Ik ) k Ik =(x) dx 1 ... dx k

    I k

    = I k

    dx 1 ... dx k := I k

    (x)dx

    M k : Ik

    M

    k k (M ) k (Ik )

    M

    := I k

    ,

    M k i : Ik M i k j 1i k (M )

    M

    :=i

    M i

    ,

    M k R n : I M = i 1 ..i k dx i 1 ... dx i k k R n

    M

    = I i 1 ...i k

    i 1 ...i k ( )i 1 ...i k

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    22/26

    : [a, b ]R n

    M = f 1dx 1 + ... + f n dx n M =

    ba

    . [a, b ] 1 n

    t = ( f 1( t ) 1t + ... + f n ( t ) nt ) dt

    M

    = ba

    f 1( t ) 1t + ... + f n ( t ) nt dt

    f : V R 3

    f =(f 1 , f 2 , f 3)

    f = ba

    n

    i = 1

    f i ( t ) it dt = ba

    f ( t ) , t dt

    , R n

    R 3

    M R 3 : I2 M =

    f 1 dx 2 dx 3 + f 2dx 3 dx 1 + f 3 dx 1 dx 2

    = f 1 ( )23 + f 2 ( )31 + f 3 ( )12

    = f 1 21

    32

    21 32

    + f 2 31

    12

    31 12

    + f 3 11

    22

    11 22

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    23/26

    n := 1 2 n = (n 1 , n2 , n3)

    n1 = 21

    32

    21 32

    , n2 = 11

    32

    11 32

    , n3 = 11

    22

    11 22

    .

    = f , n

    M

    = I 2

    f , n

    f : V R 3

    f (f 1 , f 2 , f 3) 2

    M

    f = I 2

    f , n

    f : [a, b ]R

    b

    a

    f = f(b ) f (a ),

    f f [a, b ]

    k + 1 Ik + 1

    Ik + 1 = [ 0, 1 ] ... [0, 1 ]

    k + 1,

    2(k + 1) k 2 r k + 1 Ikr,1

    (x1 , . . . ,x k ) (1

    1 xr ,2

    x1 , ...,r

    1 , ...,k + 1

    xk )

    Ikr,0

    (x1 , . . . ,x k ) (1

    xr ,2

    x1 , ...,r

    0, ...,k + 1

    xk )

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    24/26

    r = 0 (x1 , . . . ,x k ) (1

    0,2

    1 x1 , ...,k + 1

    xk )

    Ik1,0 (x1 , . . . ,x k ) (1

    0 ,2

    1 x1 , ...,k + 1

    xk )

    Ik + 1 k I k

    I k := {Ikr,s | 1 r k + 1, s = 0, 1}.

    M k + 1 : Ik + 1 M M := (I k + 1 ) M := { (Ikr,s ) | 1 r k + 1, s = 0, 1}.

    Rk

    Rn

    M

    I k

    M k k 1 M

    M

    d = M

    .

    V R n A, B V : [a, b ] R n

    A = (a ) B = (b ) F : V

    R

    F = f

    f = F(B) F(A)

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    25/26

    F = f (1F, ..., n F) =(f 1 , . . . ,f n ) f dF

    f =

    dF(9)=

    F = F( (b )) F( (a )) = F(B) F(A).

    a b

    A

    R Rn

    B

    0

    A B

    f = ( f 1 , f 2) : V R 2

    : I2 M M ( 1f 2 2f 1) = f

    f = f 1 dx + f 2dy V d = ( 1f 2 2f 1 )dx dy.

    f = M

    (9)=

    Md =

    M(1f 2 2f 1 ).

    f = ( f 1 , f 2 , f 3) : V R 3

    M V

    M

    f = M

    f.

  • 8/8/2019 Vektoranalzis alapjai (2007, 26 oldal)

    26/26

    f = f 1dx + f 2dy + f 3 dz f d

    f = ( f 1 , f 2 , f 3) : V R 3

    M

    V

    M

    f = M

    f.

    f = f 1dy dz + f 2 dz dx + f 1dx dy f d