vco fundamentals john mcneill worcester polytechnic institute [email protected]

62
VCO Fundamentals John McNeill Worcester Polytechnic Institute [email protected]

Upload: abner-morgan-gordon

Post on 24-Dec-2015

226 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

VCO Fundamentals

John McNeill

Worcester Polytechnic [email protected]

Page 2: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

2

Overview

• Functional Block Concept• Oscillator Review• Basic Performance Metrics• Methods of Tuning• Advanced Performance Metrics• Conclusion

Page 3: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

3

Overview

• Functional Block Concept– Applications– Specifications

• Oscillator Review• Basic Performance Metrics• Methods of Tuning• Advanced Performance Metrics• Conclusion

Page 4: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

4

Functional Block Concept

• Input control voltage VTUNE determines frequency of output waveform

Page 5: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

5

Applications: RF System

• Downconvert band of interest to IF• VCO: Electrically tunable selection

Page 6: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

6

Applications: Digital System

• Clock synthesis (frequency multiplication)

÷ N

J. A. McNeill and D. R. Ricketts, “The Designer’s Guide to Jitter in Ring Oscillators.” Springer, 2009

Page 7: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

• from data sheet showing specs

Specifications

7

Page 8: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

8

Overview

• Functional Block Concept• Oscillator Review– Frequency Control– Amplitude Control– Types of Oscillators

• Basic Performance Metrics• Methods of Tuning• Advanced Performance Metrics• Conclusion

Page 9: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

9

Oscillator Review

• Types of Oscillators–Multivibrator– Ring– Resonant– Feedback

• Basic Factors in Oscillator Design– Frequency– Amplitude / Output Power– Startup

Page 10: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

10

Multivibrator

• Conceptual multivibrator oscillator– Also called astable or relaxation oscillator

• One energy storage element

Page 11: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

11

Example: Multivibrator

• Frequency: Controlled by charging current IREF , C, VREF thresholds

• Amplitude: Controlled by thresholds, logic swing• Startup: Guaranteed; no stable state

Page 12: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

12

Ring Oscillator

• Frequency: Controlled by gate delay• Amplitude: Controlled by logic swing• Startup: Guaranteed; no stable state

Page 13: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

13

Resonant Oscillator

• Concept: Natural oscillation frequency of resonance

• Energy flows back and forth between two storage modes

fOSC =1

2π LC

Page 14: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

14

Resonant Oscillator (Ideal)

• Example: swing (ideal)• Energy storage modes: potential, kinetic• Frequency: Controlled by length of pendulum• Amplitude: Controlled by initial position• Startup: Needs initial condition energy input

Page 15: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

15

Resonant Oscillator (Real)

• Problem: Loss of energy due to friction• Turns “organized” energy (potential, kinetic) into

“disorganized” thermal energy (frictional heating)• Amplitude decays toward zero• Requires energy input to maintain amplitude• Amplitude controlled by “supervision”

Page 16: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

16

LC Resonant Oscillator (Ideal)

• Energy storage modes: Magnetic field (L current), Electric field (C voltage)

• Frequency: Controlled by LC

• Amplitude: Controlled by initial condition

• Startup: Needs initial energy input (initial condition)

Page 17: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

17

LC Resonant Oscillator (Real)

• Problem: Loss of energy due to nonideal L, C

– Model as resistor RLOSS; Q of resonator

• E, M field energy lost to resistor heating• Amplitude decays toward zero

Page 18: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

18

LC Resonant Oscillator (Real)

• Problem: Loss of energy due to nonideal L, C• Requires energy input to maintain amplitude• Synthesize “negative resistance”

• Cancel RLOSS with -RNEG

Page 19: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

19

Negative Resistance

• Use active device to synthesize V-I characteristic that “looks like” –RNEG

• Example: amplifier with positive feedback

• Feeds energy into resonator to counteract losses in RLOSS

Page 20: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

20

Feedback Oscillator: Wien Bridge

• Forward gain A=3• Feedback network with transfer

function b(f)

• At fOSC, |b|=1/3 and b =0

• Thought experiment: break loop, inject sine wave, look at signal returned around feedback loop

Page 21: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

21

Ab=1

• “Just right”waveform is self sustaining

Page 22: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

22

Ab=0.99

• “Not enough”waveform decays to zero

Page 23: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

23

Ab=1.01

• “Too much”waveform growsexponentialy

Page 24: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

24

Feedback oscillator

• Stable amplitude condition: Ab=1 EXACTLY• Frequency determined by feedback network Ab=1 condition• Need supervisory circuit to monitor amplitude• Startup: random noise; supervisory circuit begins with Ab>1

Page 25: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

25

Resonant Oscillator (Real)

• Stable amplitude condition: |RNEG| = RLOSS EXACTLY

• Frequency determined by LC network

• Startup: random noise; begin with |RNEG| > RLOSS

• Amplitude grows; soft clip gives average |RNEG| = RLOSS

|RNEG| < RLOSS |RNEG| = RLOSS |RNEG| > RLOSS

Page 26: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

26

Clapp oscillator

• L, C1-C2-C3 set oscillation frequency fOSC

fOSC =1

2π LCeq

Ceq =1

1

C1

+1

C2

+1

C3

⎝ ⎜

⎠ ⎟

Page 27: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

Clapp oscillator

• Circuit configuration • Equivalent circuit

MiniCircuits AN95-007, “Understanding Oscillator Concepts”

Page 28: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

Clapp oscillator

• Frequency: Determined by L, C1, C2, C3

• Amplitude: Grows until limited by gm soft clipping

• Startup: Choose C1, C2 feedback for | RNEG | > RLOSS

Zeq =1

jωC1

+1

jωC2

−gm

ω 2C1C2

Page 29: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

29

Oscillator Summary

• Typical performance of oscillator architectures:

kHz MHz GHz

FREQUENCY fOSC

BETTERPHASENOISE

RESONANT

RING

MULTIVIBRATOR

FEEDBACK

Page 30: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

30

Overview

• Functional Block Concept• Oscillator Review• Basic Performance Metrics– Frequency Range– Tuning Range

• Methods of Tuning• Advanced Performance Metrics• Conclusion

Page 31: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

• from data sheet showing specs

Basic Performance Metrics

31

Page 32: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

32

• from data sheet showing specs

Basic Performance Metrics

Page 33: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

33

Basic Performance Metrics

• Supply: DC operating power• Output

– Sine: output power dBm into 50Ω– Square: compatible logic

• Frequency Range• Tuning Voltage Range

Page 34: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

34

Frequency Range

• Output frequency over tuning voltage range• Caution: Temperature sensitivity

Page 35: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

35

Overview

• Functional Block Concept• Oscillator Review• Basic Performance Metrics• Methods of Tuning• Advanced Performance Metrics• Conclusion

Page 36: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

36

VCOs / Methods of Tuning

• Require electrical control of some parameter determining frequency:

• Multivibrator– Charge / discharge

current

• Ring Oscillator– Gate delay

• Resonant– Voltage control of

capacitance in LC (varactor)

Page 37: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

37

Example: Tuning Multivibrator

• Frequency: Controlled by IREF , C, VREF thresholds

• Use linear transconductanceGM to develop IREF from VTUNE

+ Very linear VTUNE – fOSC characteristic

- But: poor phase noise; fOSC limited to MHz range

fOSC =IREF

4CVREF

fOSC =GM

4CVREF

⎝ ⎜

⎠ ⎟VTUNE€

IREF = GMVTUNE

Page 38: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

38

Tuning LC Resonator: Varactor

• Q-V characteristic of pn junction• Use reverse bias diode for C in resonator€

C j =C j 0

1+VR

Vbi

⎝ ⎜

⎠ ⎟m

C j =dQ

dVR

Q

Page 39: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

39

Example: Clapp oscillator

• Tuning range fMIN, fMAX set by CTUNE maximum, minimum

• Want C1, C2 > CTUNE for wider tuning range

fOSC =1

2π LCTUNE

1+CTUNE

C1

+CTUNE

C2

Page 40: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

40

Overview

• Functional Block Concept• Oscillator Review• Basic Performance Metrics• Methods of Tuning• Advanced Performance Metrics– Tuning Sensitivity– Phase Noise– Supply Pushing– Load Pulling

• Conclusion

Page 41: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

41

Advanced Performance Metrics

• Tuning Sensitivity (V-f linearity)• Phase Noise• Supply/Load Sensitivity

Page 42: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

42

• from data sheet showing specs

Tuning Sensitivity

Page 43: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

43

Frequency Range

• Change in slope [MHz/V] over tuning voltage range

Page 44: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

44

Tuning Sensitivity

• Why do you care?

–PLL: Tuning sensitivity KO affects control parameters

–Loop bandwidth wL (may not be critical)

–Stability (critical!)

Kd θ i −θ o( )

1+ sτ Z

sτ I

KO

s

ωL ≈KdKOτ Z

τ I

Page 45: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

45

Varactor Tuning

• Disadvantages of abrupt junction C-V characteristic (m=1/2)– Smaller tuning range– Inherently nonlinear VTUNE – fOSC characteristic

C j =C j0

1+VTUNE

Vbi

⎝ ⎜

⎠ ⎟m

fOSC =1

2π LC

fOSC ≈1

2π LC j0

VTUNE

Vbi

⎝ ⎜

⎠ ⎟m 2

m =1 2

Page 46: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

46

Hyperabrupt Junction Varactor

• Hyperabrupt junction C-V characteristic (m ≈ 2)+ Larger tuning range; more linear VTUNE – fOSC - Disadvantage: Lower Q in resonator

C j =C j0

1+VTUNE

Vbi

⎝ ⎜

⎠ ⎟m

fOSC =1

2π LC

fOSC ≈1

2π LC j0

VTUNE

Vbi

⎝ ⎜

⎠ ⎟m 2

m =1 2

m →2

Page 47: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

47

• from data sheet showing specs

Phase Noise

Page 48: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

48

Phase Noise

• Power spectrum “close in” to carrier

Page 49: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

49

Phase Noise: RF System

• Mixers convolve LO spectrum with RF• Phase noise “blurs” IF spectrum

Page 50: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

50

Phase Noise: Digital System

• Time domain jitter on synthesized output clock• Decreases timing margin for system using clock

÷ N

Page 51: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

51

Shape of Phase Noise Spectrum

• LC filters noise into narrow band near fundamental• High Q resonator preferred to minimize noise

Page 52: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

52

Phase Noise: Intuitive view

• Sine wave + white noise; Filter; limit; Result:

Page 53: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

53

Phase Noise: Intuitive view

• Sine wave + white noise; Filter; limit; Result:

Page 54: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

54

Phase Noise Description

• Symmetric; look at single sided representation• Normalized to carrier: dBc• At different offset frequencies from carrier• White frequency noise: phase noise with -20dB/decade slope• Other noise processes change slope; 1/f noise gives

-30dB/decade

Page 55: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

55

Phase Noise Specification

• Symmetric; look at single sided• Normalized to carrier: dBc• At different offset frequencies from carrier

Page 56: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

56

Sources of Phase Noise

Noise of active devices

Thermal noise: Losses in resonator, series R of varactor

White noise in VTUNE signal path

Page 57: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

57

Supply / Load Sensitivity

• Ideally tuning voltage is the only way to change output frequency– In reality other factors involved– Mechanism depends on specifics of circuit

• Power supply dependence: Supply Pushing• Impedance mismatch at output: Load Pulling

Page 58: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

58

Supply Pushing

• Change in fOSC due to change in supply voltage• Clapp oscillator: supply affects transistor bias condition,

internal signal amplitudes

Page 59: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

59

Load Pulling

• Change in fOSC due to impedance mismatch at output• Clapp oscillator; reflection couples through transistor

parasitic to LC resonator

Page 60: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

60

Overview

• Functional Block Concept• Oscillator Review• Basic Performance Metrics• Methods of Tuning• Advanced Performance Metrics• Conclusion

Page 61: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

61

Summary: VCO Fundamentals

• First order behavior

– Tuning voltage VTUNE controls output frequency

– Specify by min/max range of fOSC, VTUNE

• Performance limitations– Linearity of tuning characteristic– Spectral purity: phase noise, harmonics– Supply, load dependence

• Different VCO architectures trade frequency range, tuning linearity, phase noise performance

Page 62: VCO Fundamentals John McNeill Worcester Polytechnic Institute mcneill@ece.wpi.edu

62

Questions?