variation-tolerant circuits: circuit solutions and techniques jim tschanz, keith bowman, and vivek...

14

Upload: spencer-york

Post on 17-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Variation-Tolerant Circuits: Variation-Tolerant Circuits: Circuit Solutions and Circuit Solutions and

TechniquesTechniques

Variation-Tolerant Circuits: Variation-Tolerant Circuits: Circuit Solutions and Circuit Solutions and

TechniquesTechniques

Jim Tschanz, Keith Bowman, and Vivek DeJim Tschanz, Keith Bowman, and Vivek De

Microprocessor Technology LabMicroprocessor Technology LabIntel Corporation, Hillsboro, OregonIntel Corporation, Hillsboro, Oregon

OutlineOutline

Variations overviewVariations overview Process variationsProcess variations Impact of design choicesImpact of design choices Voltage and temperature variationsVoltage and temperature variations

Circuit techniquesCircuit techniques Adaptive body biasAdaptive body bias Adaptive supply voltageAdaptive supply voltage

Future trends & conclusionFuture trends & conclusion

Process VariationsProcess Variations

0.9

1.0

1.1

1.2

1.3

1.4

0 5 10 15 20

Normalized Leakage (Isb)N

orm

aliz

ed F

req

ue

nc

y

0.18 micron~1000 samples

20X

30%

0.9

1.0

1.1

1.2

1.3

1.4

0 5 10 15 20

Normalized Leakage (Isb)N

orm

aliz

ed F

req

ue

nc

y

0.18 micron~1000 samples

20X

30%

1980 1990 2000 2010 2020

100nm

1m

10nm

1980 1990 2000 2010 20201980 1990 2000 2010 2020

100nm

1m

10nm

193nm193nm248nm248nm

365nm365nmLithographyLithographyWavelengthWavelength

65nm65nm

90nm90nm

130nm130nm

GenerationGeneration

GapGap

45nm45nm

32nm32nm

180nm180nm

13nm 13nm EUVEUV

Sub-wavelength lithography

Effect of process variations

• Functionality & Yield• Performance• Power

Design Impacts: Number of PathsDesign Impacts: Number of Paths

0

5

10

15

20

25

0.8 0.9 1.0 1.1 1.2

Normalized Maximum Critical Path Delay

No

rmal

ized

Pro

bab

ility

Den

sity

D2D

WID: Ncp=1

WID: Ncp=2

WID: Ncp=10

WID: Ncp=100

WID: Ncp=1000

WID: Ncp=10000

Large number of critical paths → reduces mean frequency

WID:1 critical path

2

10

100

1000

10000

D2D

Design Impacts: Logic DepthDesign Impacts: Logic Depth

10

100

1000

10000

1000 500 250 130 65 32

Technology Node (nm)

Me

an

Nu

mb

er

of

Do

pa

nt

Ato

ms

0.0

0.5

1.0

Logic depth

Rat

io o

fd

ela

y-

to Io

n-

16 490.0

0.5

1.0

Logic depth

Rat

io o

fd

ela

y-

to Io

n-

16 49

Random dopant fluctuation:Number of dopant atoms

Variation vs. depth

Reducing logic depth increases impact of random variations

Effect of Within-Die VariationsEffect of Within-Die Variations

0

20

40

60

80

100

-4 -3 -2 -1 0 1 2 3 4

Number of FMAX Standard Deviations

Cu

mu

lati

ve D

istr

ibu

tio

n (

%)

Measured DataModel: D2D & WIDModel: D2DModel: WID

Model: Only WID Variations

Model: Only D2D Variations

Model: D2D & WID Variations

D2D variations: impact varianceWID variations: reduce the mean FMAX

Voltage and Temperature Voltage and Temperature VariationsVariations

Time (us)

20 4 6 8 10 12 14 16 18 201.401.451.501.551.601.651.701.751.80

Vcc

Voltage droop

Temp(oC)

core

cache 70C

120C

Thermal profile

Variations are both static and dynamicStatic: Tools required for predictionDynamic: Design margining or adaptation techniques

Variation-Tolerant DesignVariation-Tolerant Design

GATEGATESOURCESOURCE DRAINDRAIN

Reduce Reduce EFFECTSEFFECTS of variation: post-silicon of variation: post-silicon Clock tuningClock tuning Adaptive body biasAdaptive body bias Adaptive supply voltageAdaptive supply voltage

Reduce Reduce EFFECTSEFFECTS of variation: design of variation: design Leakage-reduction techniquesLeakage-reduction techniques Variation-tolerant circuitsVariation-tolerant circuits Dynamic compensation circuitsDynamic compensation circuits

Reduce Reduce SOURCESOURCE of variation of variation Multi-Le and multi-Vt insertionMulti-Le and multi-Vt insertion Circuit styles and logic decisionsCircuit styles and logic decisions Power delivery and thermal designPower delivery and thermal design

Adaptive Body BiasAdaptive Body Bias

0

1

2

3

4

5

6

0.925 1 1.075 1.15 1.225Normalized frequency

No

rmali

zed

leakag

e

ABB

Within-dieABB

No bodybias

Leakage limit

ABB reduces variation in FMAXWID-ABB: Moves ~100% of dies into highest frequency bin

0%

20%

40%

60%

80%

100%

1 1.075

Frequency Bin

100% PerformanceYield

100% PerformanceYield

97% Highest Frequency Bin

97% Highest Frequency Bin

Adaptive Supply VoltageAdaptive Supply Voltage

79%

3%16%

2%

71%

26%

0%

20%

40%

60%

80%

100%

0.9 0.95 1 1.05Frequency Bin

Die

Co

un

t

Fixed VDD: 1.05V

Adaptive VDD6%

37%52%

10%

74%

15%

0%

20%

40%

60%

80%

100%

0.9 0.95 1 1.05Frequency Bin

Die

Co

un

t

Fixed VDD: 1.05V

Adaptive VDD6%

37%52%

10%

74%

15%

0%

20%

40%

60%

80%

100%

0.9 0.95 1 1.05Frequency Bin

Die

Co

un

t

Adaptive VBS

Adaptive VDD + VBS

Adaptive VDD + VBS is most effective

90 100 110 120 130 1400

10

20

30

40

50

90 100 110 120 130 1400

10

20

30

40

50

Dynamic AdaptationDynamic Adaptation

PMOS bias generator

Phase detector & counter

Critical path

divider ROout

Circuit block (CUT)

5

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 20 40 60Time (ms)

No

rmal

ized

fre

qu

ency

0

0.3

0.6

0.9

1.2

1.5

1.8

Bo

dy

bia

s v

olt

ag

e

PMOS body voltage

Frequency

Frequency target

MicroMicro--ControllerController

PowerPowerSensorSensor

SupplySupplyVRMVRM

ThermalThermalSensorSensor

VoltageVoltageSensorSensor

Voltage to Freq.Voltage to Freq.Converter Converter ClockClock

Dynamic body bias control

Itanium® dynamic voltage/frequency

0

10

20

30

40

50

90 100 110 120 130 1400

10

20

30

40

50

90 100 110 120 130 140

Power distributionBefore Foxton

After Foxton

S. Naffziger et. al, ISSCC 2005

Future Circuit TrendsFuture Circuit Trends

Variation-centric designVariation-centric design Probabalistic timing and optimizationProbabalistic timing and optimization Variation-tolerant circuit stylesVariation-tolerant circuit styles Microarchitecture supportMicroarchitecture support

Dynamic adaptationDynamic adaptation Reduce design margins requiredReduce design margins required Supply voltage droopsSupply voltage droops Temperature changesTemperature changes Reliability effectsReliability effects

ConclusionConclusion

Impact of variations is increasingImpact of variations is increasing Aggressive feature size scalingAggressive feature size scaling Increased die size and number of pathsIncreased die size and number of paths Design margins are increasingDesign margins are increasing

Variation-aware design neededVariation-aware design needed Variation-tolerant circuitsVariation-tolerant circuits Post-silicon tuning techniquesPost-silicon tuning techniques Supported by device, circuit, and Supported by device, circuit, and

microarchitecture innovationsmicroarchitecture innovations