variation of particle induced ionization due to different ... · variation of particle induced...

27
Variation of particle induced ionization due to different models and boundary conditions Jan Maik Wissing a , May-Britt Kallenrode a , Nadine Wieters b , Holger Winkler b and Miriam Sinnhuber b a FB Physik b Institute of Environmental Physics October 7, 2009 J.M. Wissing (UOS) variation of ionization models October 7, 2009 1 / 21

Upload: votuong

Post on 05-Jun-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Variation of particle induced ionization due to differentmodels and boundary conditions

Jan Maik Wissinga, May-Britt Kallenrodea,Nadine Wietersb, Holger Winklerb and Miriam Sinnhuberb

a

FB Physik

b

Institute of Environmental Physics

October 7, 2009

J.M. Wissing (UOS) variation of ionization models October 7, 2009 1 / 21

introduction

introduction

particle induced ionization

...is used as input for climate modeling

...is linked to NOx production and ozone

...should not depend (severely) on the model. General agreementis desirable... but realistic?

J.M. Wissing (UOS) variation of ionization models October 7, 2009 2 / 21

introduction motivation

motivation

good agreement (at altitudes covered by both models, 35-85 km)

104 106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

2003 doy 302 6-8h

aimos : solid

Jackman : dashed

J.M. Wissing (UOS) variation of ionization models October 7, 2009 3 / 21

introduction motivation

motivation

poor agreement

106 108

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

2003 doy 302 22-24h

aimos : solid

Jackman : dashed

J.M. Wissing (UOS) variation of ionization models October 7, 2009 4 / 21

introduction general problem: no perfect agreement

introduction

general problem

Ionization models do not always “perfectly” agree.

Which conditions impair intercomparison of ionization models?

This talk will discuss:reasons andimplications on climate and atmosphere modeling.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 5 / 21

usual suspects

possible reasons

potential suspects for variations between models are:

horizontal resolution (cap definition)particles considered (in particular electrons)different input data sets due to satellite selection (e.g. slightlydifferent orbit, instrument performance)

Basic assumption: altitude/particle energy range is adequate.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 6 / 21

usual suspects polar cap

horizontal resolution (in particular cap definition)

polar cap

Common assumption: homogeneous precipitation in the polar capHowever the extension of the polar cap may differ:

In 1D models the polar cap often is defined as 60◦ polewards.

In 3D models the cap definition mightbe based on direct measurements. (e.g.AIMOS empirically uses the high-energeticPOES channels to determine the polarcap.) [Wissing and Kallenrode, 2009]

night

180

°E

90°E

0°E

270°E

107 108 109 1010 1011

flux @m-2 s-1 sr-1 MeV-1D

mep0P1

Kp 3.3

night

180

°E

90°E

0°E

270°E

102 103 104 105 106 107

flux @m-2 s-1 sr-1 MeV-1D

mep0P4

Kp 3.3

J.M. Wissing (UOS) variation of ionization models October 7, 2009 7 / 21

usual suspects polar cap

polar cap definition: impact on ozone depetion modeling?

same flux: October event 2003, protons onlysame climate model: Bremen 3d-CTM, altitude range up to 65 kmpolar cap definition: 60◦ poleward vs. empirical

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 27, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 27, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 27, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 28, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 28, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 28, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 29, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 29, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 29, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 30, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 30, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 30, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 31, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 31, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 31, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

1

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 27, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 27, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 27, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 28, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 28, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 28, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 29, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 29, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 29, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 30, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 30, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 30, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 31, 2003AIMOS ionisationrates (protons homogeneous)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 31, 2003AIMOS ionisationrates (protons)

−60−30−15−10

−5−2−1

0

0˚ 60˚ 120˚ 180˚ 240˚ 300˚ 0˚−90˚

−45˚

45˚

90˚

Bremen 3d−CTM ∆O3 [%] 56km Oct. 31, 2003AIMOS ionisationrates (protons + electrons)

−60−30−15−10

−5−2−1

0

1

[Wis

sing

etal

.,20

09b]

detailedinformation:

by N. Wietersand M.Sinnhuber in afew minutes

No significant difference

Note: only solar protons are considered here (magnetosphericparticles don’t get down to 56 km)

J.M. Wissing (UOS) variation of ionization models October 7, 2009 8 / 21

usual suspects missing particle species

missing particle species: impact on modeling?

Yes, electrons are significant!

Limited impact on altitudes below 65 km and within a solar eventbut definetely existent.Extended impact on altitudes above 65 km and withingeomagnetically quiet time and of cause in the auroral region.

advertisementMore on this topic will be shown by Nadine Wieters and MiriamSinnhuber in a couple of minutes.

However none of the figures in the motivation contains electronionization.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 9 / 21

usual suspects missing particle species

missing particle species: impact on modeling?

Yes, electrons are significant!

Limited impact on altitudes below 65 km and within a solar eventbut definetely existent.Extended impact on altitudes above 65 km and withingeomagnetically quiet time and of cause in the auroral region.

advertisementMore on this topic will be shown by Nadine Wieters and MiriamSinnhuber in a couple of minutes.

However none of the figures in the motivation contains electronionization.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 9 / 21

usual suspects satellite selection

satellite selection

different input data set

295 297.5 300 302.5 305 307.5 310

day of year

10-3

10-2

10-1

100

101

102

103

104

flu

x@i

on

sHc

m2

ssr

Me

VL-

1D GOES10 vs. GOES11 HdashedL

p+ 40-80

p+ 15-40

p+ 9-15

p+ 4-9

Α 21-60

Α 10-21

Α 4-10

energy @MeVD

106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

GOES11: 3

GOES11: 5

GOES10: 3

GOES10: 5

POES+GOES10: 5data and number of fits

0.01 1 100

particle energy @MeVD

1000

1.´106

1.´109

1.´1012

part

icle

flux@H

m2s

sr

MeVL-

1D

spectrum fits northern polar cap: 2003 doy 302 4-6h

GOES11GOES10POES

channels

nominally same instrumentsdifferent satellites (GOES-10/11)variation of input data (satellite inmagnetosphere/magnetosheath)causes variation of ionization dataup to an order of magnitude

106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

GOES11: 3

GOES11: 5

GOES10: 3

GOES10: 5

POES+GOES10: 5data and number of fits

0.01 1 100

particle energy @MeVD

1000

1.´106

1.´109

1.´1012

pa

rtic

leflu

x@H

m2s

sr

MeVL-

1D

spectrum fits northern polar cap: 2003 doy 302 4-6h

GOES11GOES10POES

channels

J.M. Wissing (UOS) variation of ionization models October 7, 2009 10 / 21

boundary condition effects

Assuming these qualifications (same resolution, particle data, species) arefulfilled - variations persist!

May boundary conditions be the culprit?fit function?energy range?

J.M. Wissing (UOS) variation of ionization models October 7, 2009 11 / 21

boundary condition effects operation methods

insights into ionization operation methodssatellite measurements

0.001 0.01 0.1 1 10 100

energy @MeVD

103

104

105

106

107

108

109

1010

1011

1012

1013

flu

x@H

m2s

sr

Me

VL-

1D

energy channels: POES + GOES10�11, day 302, 2003, 20-22h

fit function

0.001 0.01 0.1 1 10 100

energy @MeVD

102

103

104

105

106

107

108

109

1010

1011

1012

1013

flu

x@H

m2s

sr

Me

VL-

1D

fit: energy spectra day 302, 2003, 20-22h

ionization model: ionization as function of particle energy

[Wis

sing

and

Kal

lenr

ode,

2009

]

100 eV 1 keV 10 keV 100 keV 1 MeV 10 MeV 100 MeV

particle energy

100

200

300

400

altitude@k

mD

altitude of maximum energy deposition vs. particle energy - solar max. 60N

protons

electrons

106 108

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssu

re@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitu

de

ap

pro

x.@k

mD

2003 doy 302 20-22h

J.M. Wissing (UOS) variation of ionization models October 7, 2009 12 / 21

boundary condition effects fit of the energy spectrum

fit of the energy spectrum

fit function: the link between satellite measurements and ionization model

creation of a (necessarily) continuous particle spectra alwaysincludes assumptions on the shape of the spectra (fit function)

Note:The fit function seems to be one of the pivotal (or even the main)driver/s of errors.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 13 / 21

boundary condition effects fit functions

fit functions

typical fit functions

Power-Lawsshock accelerationN(E) = KCE−γ

straight line in log-log graphBoltzmann distribution

thermal spectraN(E) = KBexp(−E/(kT ))straight line in linear-log graph

additional variablesenergy range of the spectranumber of fits/intersectionsvariable or fixed position of intersections

J.M. Wissing (UOS) variation of ionization models October 7, 2009 14 / 21

boundary condition effects fit functions

assumptions on fit function show up in ionization

various functions may beusedbut boundary conditionsare visible in ionizationspectrum

0.001 0.01 0.1 1 10 100

energy @MeVD

102

103

104

105

106

107

108

109

1010

1011

1012

1013

flu

x@H

m2s

sr

Me

VL-

1D

fit: energy spectra day 302, 2003, 20-22h

aimos: redJackman: blue

1 100 200 300

102

103

104

105

106

107

Log-Log

Linear-Log106 108

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

2003 doy 302 20-22h

aimos : solid

Jackman : dashed

Power-LawBoltzmann

Power-Law:solidBoltzmann:dashed

impact of fit function

Every fit function shows it’s characteristics in the ionization profile.In case of fixed intersections the ionization profile even may showconstant characteristics.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 15 / 21

boundary condition effects fit functions

assumptions on fit function show up in ionization

various functions may beusedbut boundary conditionsare visible in ionizationspectrum

0.001 0.01 0.1 1 10 100

energy @MeVD

102

103

104

105

106

107

108

109

1010

1011

1012

1013

flu

x@H

m2s

sr

Me

VL-

1D

fit: energy spectra day 302, 2003, 20-22h

aimos: redJackman: blue

1 100 200 300

102

103

104

105

106

107

Log-Log

Linear-Log106 108

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

2003 doy 302 20-22h

aimos : solid

Jackman : dashed

Power-LawBoltzmann

Power-Law:solidBoltzmann:dashed -

--

impact of fit function

Every fit function shows it’s characteristics in the ionization profile.In case of fixed intersections the ionization profile even may showconstant characteristics.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 15 / 21

boundary condition effects fit functions

assumptions on fit function show up in ionization

various functions may beusedbut boundary conditionsare visible in ionizationspectrum

0.001 0.01 0.1 1 10 100

energy @MeVD

102

103

104

105

106

107

108

109

1010

1011

1012

1013

flu

x@H

m2s

sr

Me

VL-

1D

fit: energy spectra day 302, 2003, 20-22h

aimos: redJackman: blue

1 100 200 300

102

103

104

105

106

107

Log-Log

Linear-Log106 108

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

2003 doy 302 20-22h

aimos : solid

Jackman : dashed

Power-LawBoltzmann

Power-Law:solidBoltzmann:dashed -

--

-

-

impact of fit function

Every fit function shows it’s characteristics in the ionization profile.In case of fixed intersections the ionization profile even may showconstant characteristics.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 15 / 21

boundary condition effects fit functions

assumptions on fit function show up in ionization

various functions may beusedbut boundary conditionsare visible in ionizationspectrum

0.001 0.01 0.1 1 10 100

energy @MeVD

102

103

104

105

106

107

108

109

1010

1011

1012

1013

flu

x@H

m2s

sr

Me

VL-

1D

fit: energy spectra day 302, 2003, 20-22h

aimos: redJackman: blue

1 100 200 300

102

103

104

105

106

107

Log-Log

Linear-Log106 108

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

2003 doy 302 20-22h

aimos : solid

Jackman : dashed

Power-LawBoltzmann

Power-Law:solidBoltzmann:dashed -

--

-

-

impact of fit function

Every fit function shows it’s characteristics in the ionization profile.In case of fixed intersections the ionization profile even may showconstant characteristics.

J.M. Wissing (UOS) variation of ionization models October 7, 2009 15 / 21

boundary condition effects impact of the energy range

energy range

extended energy range (e.g. down to 150 eV)

should increase ionization rate in the upper atmosphere - butnowhere else

106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

GOES11: 3

GOES11: 5

GOES10: 3

GOES10: 5

POES+GOES10: 5data and number of fits

0.01 1 100

particle energy @MeVD

1000

1.´106

1.´109

1.´1012

part

icle

flux@H

m2s

sr

MeVL-

1D

spectrum fits northern polar cap: 2003 doy 302 8-10h

GOES11GOES10POES

channels

106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

GOES11: 3

GOES11: 5

GOES10: 3

GOES10: 5

POES+GOES10: 5data and number of fits

0.01 1 100

particle energy @MeVD

1000

1.´106

1.´109

1.´1012

part

icle

flux@H

m2s

sr

MeVL-

1D

spectrum fits northern polar cap: 2003 doy 302 22-24h

GOES11GOES10POES

channels

But an extended energy range may affect other altitudes!

J.M. Wissing (UOS) variation of ionization models October 7, 2009 16 / 21

boundary condition effects impact of the energy range

energy range

extended energy range (e.g. down to 150 eV)

should increase ionization rate in the upper atmosphere - butnowhere else

106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

GOES11: 3

GOES11: 5

GOES10: 3

GOES10: 5

POES+GOES10: 5data and number of fits

0.01 1 100

particle energy @MeVD

1000

1.´106

1.´109

1.´1012

part

icle

flux@H

m2s

sr

MeVL-

1D

spectrum fits northern polar cap: 2003 doy 302 8-10h

GOES11GOES10POES

channels

106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

GOES11: 3

GOES11: 5

GOES10: 3

GOES10: 5

POES+GOES10: 5data and number of fits

0.01 1 100

particle energy @MeVD

1000

1.´106

1.´109

1.´1012

part

icle

flux@H

m2s

sr

MeVL-

1D

spectrum fits northern polar cap: 2003 doy 302 22-24h

GOES11GOES10POES

channels

But an extended energy range may affect other altitudes!

J.M. Wissing (UOS) variation of ionization models October 7, 2009 16 / 21

boundary condition effects impact of the energy range

Extended energy range impliesvariations at lower altitude dueto other fit parameters

general problem

Variations due to energy rangeand fit function affect allionization models based onparticle measurements.

106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

GOES11: 3

GOES11: 5

GOES10: 3

GOES10: 5

POES+GOES10: 5data and number of fits

0.01 1 100

particle energy @MeVD

1000

1.´106

1.´109

1.´1012

part

icle

flux@H

m2s

sr

MeVL-

1D

spectrum fits northern polar cap: 2003 doy 302 6-8h

GOES11GOES10POES

channels

J.M. Wissing (UOS) variation of ionization models October 7, 2009 17 / 21

boundary condition effects impact of the energy range

Extended energy range impliesvariations at lower altitude dueto other fit parameters

general problem

Variations due to energy rangeand fit function affect allionization models based onparticle measurements.

106 108 1010

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

GOES11: 3

GOES11: 5

GOES10: 3

GOES10: 5

POES+GOES10: 5data and number of fits

0.01 1 100

particle energy @MeVD

1000

1.´106

1.´109

1.´1012

part

icle

flux@H

m2s

sr

MeVL-

1D

spectrum fits northern polar cap: 2003 doy 302 6-8h

GOES11GOES10POES

channels

J.M. Wissing (UOS) variation of ionization models October 7, 2009 17 / 21

direct effects of the ionization model direct effects of the ionization model

direct effects of the ionization model

Assuming that boundary condition effects are under control, do theionization models agree now?

J.M. Wissing (UOS) variation of ionization models October 7, 2009 18 / 21

direct effects of the ionization model direct effects of the ionization model

direct effects of the ionization model

energy

same input fromprecipitating particlesfactor 2 inatmosphericdeposition/ionization 106 108

ionisation rate @m-3s-1D

104

102

100

10-2

10-4

Pre

ssure@P

aD

0

16

31

49

66

81

94

108

144

233

444

altitude

appro

x.@k

mD

2003 doy 302 20-22h

aimos : solid

Jackman : dashed

0.01 1 100

Energy @MeVD

1000

100000.

1.´107

1.´109

1.´1011

1.´1013

Flu

x@H

m2s

sr

Me

VL-

1D

fit: energy spectra day 302, 2003, 20-22h

aimos: redJackman: blue

origin not identified

Both models will bere-checked regarding to:

identical assumptionsenergy conservationagreement withmeasurements

J.M. Wissing (UOS) variation of ionization models October 7, 2009 19 / 21

summary

summary

input values

no 3D resolution needed for proton ioniozation below 65 km (60◦

cap)electron impact should be considered (listen to next talks ;-)similar instruments on different satellites may cause a factor 10 inionization

fit function

every kind of/assumption on the fit function severely affectsionization profiledifferent energy range may also affect the ionization rate asminimal variation in the spectrum fit easily creates significantvariation in the ionization profileimpact of fit function and energy range is as important as theionization model itself

open question

How to improve the model chain?Which part of of the model chain has to be adjusted:

ionization modules orproduction rates/interaction cross sections (NOx, HOx)?

J.M. Wissing (UOS) variation of ionization models October 7, 2009 20 / 21

summary

Thanks to...Charles Jackman for providing spectra and ionization rates for thecomparison.the DFG for their financial support.the audiance.

references

Wissing, J.M., and M.-B. Kallenrode, Atmospheric Ionization Module OSnabruck (AIMOS)1: A 3D model to determine atmospheric ionization by energetic charged particles fromdifferent populations, J. Geophys. Res., 114, A06104, doi:10.1029/2008JA013884, 2009

Wissing, J.M., M.-B. Kallenrode, M. Sinnhuber, H. Winkler, N. Wieters, AIMOS 2, J.Geophys. Res. in press, 2009

J.M. Wissing (UOS) variation of ionization models October 7, 2009 21 / 21