varga - functional analysis and approximations in numerical analysis

Upload: aedicofidia

Post on 06-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    1/87

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    2/87

    CBMS NSF

     REGIONAL CONFERENCE SERIES

    IN APPLIED

     MATHEMATICS

    A series of lectures on topics of current

     research

     interest in

     applied

     mathematics under the direction of

    the

     Conference Board of the Mathematical Sciences, supported by the National Science Foundation and

    published by SIAM.

    G A R R E T T  B IRKHOFF The Numerical Solution  of   Elliptic Equations

    D. V.  L I N D L E Y Bayesian   Statistics A Review

    R . S .

      V A R G A

    Functional Analysis  an d  Approximation  Theory  in   Numerical Analysis

    R R .

      B A H A D U R Some Limit Th eorems

      in

      Statistics

    P A T R I C K   BILUNOSLEY Weak  Convergence

      of

      Measures: Applications  in  Probability

    ].  L .   L I O N S Some Aspects  of   th e   Optimal Control  of  Distributed Parameter Systems

    R O G E R   PENROSE Techniques

     of

      Differential  Topology  in  Relativity

    H E R M A N

      C H B R N O F F

    Seque ntial Analysis

      and

      Optimal Design

    3.

     DURB IN Distribution

      Theory fo r

      Tests Based

      on the

      Sample Distribution Function

    SO L  I .

      R U B I N O W Mathematical Problems

      in the

      Biological Sciences

    P . D.  LAX Hyperbolic  Systems

      of

      Conservation Laws  and the  M athematical  Theory  of   Shock

    Waves

    I. J.  S C H O E N B E R G Card inal Spline Interpolation

    I V A N  SINGER The Theory

      of Best Approximation

      and

      Functional Analysis

    W E R N E R   C.   R H E I N B O L D T Methods

      of

      Solving Systems  of  Nonlinear Equations

    H A N S

      F .

      W E IN B E R G E R Variational  Methods for  Eigenvalue Approximation

    R .

      T Y R R E L L   R O C K A F E L L A R

    Conjugate Duality

      and

      Optimization

    SIR

      J A M E S

     LIGHTHILL Mathematical

      Biqfluiddynamics

    G E R A R D

     SALTON

    Theory  of  Indexing

    C A T H L E E N

     S.

      M O R A W E T Z Notes  on   Time Decay  and  Scattering for  Some Hyperbolic Problems

    F .

      H O P P E N S T E A D T

    Mathematical Theories  of   Populations: Dem ographics Gene tics  and  Epidemics

    R I C H A R D

     ASKE Y

    Orthogonal Polynomials  and  Special Functions

    L . E .  P A Y N E Improperly   Posed Problems  in  Partial  Differential  Equations

    S. R OSEN Lectures

      on the

      Measurement

      an d

      Evaluation

      of   the Performance  of

      Computing Systems

    H E R B E R T

     B .

      K E L L E R Numerical Solution  of Two  Point Boundary  Value  Problems

    J P .

      LASALLE

    T he

     Stab ility  of   Dynamical Systems

      - Z.

      ARTSTEIN Appendix

      A:

      Limiting Equations

    and   Stability ofNonau tonomous Ordinary  Differential  Equations

    D.

      G O T T L I E B   AND

     S. A

    ORSZAG Numerical Analysis  of  Spectral  Methods:  Theory and  Applications

    P E T E R   J H U B E R Robust Statistical Procedures

    H E R B E R T S O L O M O N Geometric Probability

    F R E D   S.   R O B E R T S Graph   Theory

      and Its

      Applications

      to

     Problems

      of

      Society

    J U R I S H A R T M A N I S Feasible Computations  and

      rovable

      Complexity Properties

    Z O H A R M A N N A Lectures   on the  Logic of   Computer Programming

    E L L I S   L .   J O H N S O N

    Integer Programming: Facets

    Subadditivity and

      Duality

     for

      Group

     and

      Semi-

    Group

      Problems

    S H M U E L

      W I N O G R A D Arithmetic Complexity   of  Computations

    J. F. C.  K I N G M A N Mathematics  of  Genetic Diversity

    M O R T O N  E .

      GURTIN

    Topics in  Finite Elasticity

    T H O M A S   G .   K U R T Z Approximation  of  Population Processes

     continued

     on  inside back  cover)

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    3/87

      S.

     Varga

    Kent State

     University

    Kent Ohio

    Functional

     Analysis

     and

    Approximation Theory

    in Numerical Analysis

    SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS

    PHILADELPHIA

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    4/87

    1 0 9 8 7 6 5

    All  rights reserved. Printed in the U nited States of A m erica. No part of this book m ay be

    reproduced stored or transm itted in any m anner withou t the written perm ission of the

    publisher. For inform ation write to the Society for Industrial and A pplied Ma them atics

    3600 University City Science Center Philadelphia

    PA

      19104-2688.

    ISBN 0 89871 003 0

     i m

    is a registered

    Copyright  97 by the society for industrial and applied

    opyri ht

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    5/87

    This

     vo lume is

     dedicated

      to

    G R R E T T  I R K H O F F

    on the occasion of his sixtieth birthday

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    6/87

      his page intentionally left blank

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    7/87

    FUNCTIONAL ANALYSIS AND APPROXIMATION  THEORY

    IN

      NUME RIC L N LYSIS

    Contents

    Preface

      ix

    Chapter 

    L SPLINES   1

    Chapter 2

    G E N E R A L I Z A T I O N S

      OF

      L SPLINES

      11

    Chapter  3

    I N T E R P O L A T I O N A N D A P P R O X I M A T I O N R E S U L T S F O R P IE C E

    W I S E P O L Y N O M I A L S

     IN  H I G H E R D I M E N S I O N S  1 7

    Chapter 4

    T H E

      R A Y L E I G H R I T Z G A L E R K I N M E T H O D  F O R  N O N L I N E A R

    B O U N D A R Y V A L U E P R O B L E M S  25

    Chapter  5

    F O U R I E R A N A L Y S IS  35

    Chapter

      6

    LEAST

     S Q U A R E S M E T H O D S  43

    Chapter 7

    E I G E N V A L U E

      P R O B L E M S  51

    Chapter

      8

    P A R A B O L I C P R O B L E M S  59

    Chapter

      9

    C HEB YSHEV

      S E M I D I S C R E T E A P P R O X I M A T I O N S F O R L I N E A R

    P A R A B O L I C P R O B L E M S

      69

    v ii

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    8/87

      his page intentionally left blank

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    9/87

    Preface

    The purp ose of these lectu re notes is to  survey  in par t the enormo us ly expa nding

    l i te ra ture

      on the   nu m er ica l approximat ion   o f   solut ions   o f  e l l ip t ic bou nda ry v alue

    problems  by  means  o f  var ia t ional   and   finite   e leme nt me thods. Surv ey ing this area

    will,

      as we shall see, require almost constant application of results and techniques

    from   funct ional analysis

      and

      approximat ion theory

      to the field of

      n u m e r i c a l

    analysis,

      an d it is our

      hope that

      th e

     m aterial presented here  w ill   serve

     to

     s t imula te

    further

      act ivi ty which   will   s t rengthen   the   t ies already connecting these  fields.

    Although our primary interest   will   concern the numerical approximat ion of

    elliptic   bou nda ry v alue problems, the methods to be described lend them selves as

    well  ra ther na tura l ly to discussions concerning eigenv alue problems and init ial

    va lue

      problems, such

      as the

      hea t equat ion .

      On the

      negative side,

      it is

     u n f o r t u n a te

    t ha t

      a lmos t noth ing   will

      be

      said here about

      scientific

      computing i.e.,

      the

      real

    problems of implementat ion of such mathematical theories to working programs

    on   h igh-speed computers , and the numerical experience which has al ready been

    gained

      on

     such  problems Fortun ately, scientific com puting

      is one of the key

     points

    of  the mo nog raph by Professor Ga rret t

      B i rkhof f ,

    1

      and w e are  g rateful   to be able to

    refer  the

      reader

      to

      th is w ork .

    The   in tent   of   these lecture notes   is to   make each port ion   of the   notes roughly

    independent of the remaining material . This is why the references used in each

    of

      th e   n ine chapters   a re   compiled separately   at the end of   each chapter .

    It   is a   sincere pleasure   to   acknowledge   th e   suppor t   of the   National Science

    Foundat ion under  a  g rant   to the   Conference Board   of the   Mathematical Sciences ,

    fo r  th e   Regional Conference held   a t   Boston University July 20–24, 1970,   and to

    acknowledge  Professor R obin Esch s superb ha ndl ing of even the most mi nu te

    details

      of   this Conference   in   Boston. Without   h is   unt ir ing   efforts   the   Conference

    would

      not   have been   a   success.

    It

      is also a pleasure to acknowledge the   fact   that these notes   benefi ted   great ly

    from   suggest ions and comments by Garret t   Birkhoff ,   James Dailey, George Fix,

    John Pierce and B lair Sw artz. Finally, we tha nk M rs. Julia Froble for her   careful

    typing

      of the

      manuscr ip t .

    R I C H A R D   S.   V A R G A

    1

      Garret t   B i rkhoff ,   Numerical Solution

     of

      Elliptic Partial

      Differential

      Equations SIAM Publ ica tions ,

    1 9 7 1 78 pp.

    ix

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    10/87

      his page intentionally left blank

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    11/87

    CHAPTER   1

    L-Splines

    1 1 Basic theory Splines,

      as is

      well   known, were  effectively   in t roduced

      to the

    mathematical world

     by I. J. Scho enberg

     [1.1]

     in

     1946,

     an d

      splines hav e since becom e

    the   focus   of  much

      mathematical

      ac t ivi ty .   In

      particular approximation  theorists

    and num erical analy sts hav e of late literally seized upon splines because of their

    m any beau tiful properties and because of their w ide range of application to the

    numerical approximation

      of

     solutions

     of

     differential   equations.

      It is

     these  beautiful

    properties

      and wide

      range

     of

      applications

      of

      splines  which

      we

      propose

      to

      cover

      in

    part  in these lectures.

    The m athem atical developm ent of the theo ry of splines since Schoenberg s

    fundamental  paper  in 1946 has been both extremely diverse and extremely rapid.

    Several recent books on splines (cf. Ah lberg, Nilson and W alsh [1.2], T. N. E.

    Greville [1.3],  I. J.   Schoenberg   [1.4])   indeed attest   to   this rapid development.

    To

      describe

      the

      development

      of

      spline theory,

      w e

      begin here with

      a

      s tudy

      of

    L-splines. This

     is a

     somew hat m iddle ground

     in the

     dev elopment ,

     in

     tha t

      the

     theory

    of  L-splines

     is

     cer ta inly

     not

      classical,

     nor is it the

     m ost general

      to

     da te. How ever ,

     as

    w e

      shall see, most of what is obtained here for L-splines carries over to more

    general splines recent ly investigated

     b y

      several authors.

    To begin, for

      —

     cc  < a < b a ,

     b for w h ich

    In   par t icular , ^ a, b is the   collection   of all

      uni form

      par t i t ions   of   [a , b],  and its

    elements are   denoted   by  A

    u

    .

    For  additonal nota t ion,   if   C

    p

    [a, b]   is the set of all   real-valued   func t ions   wh i ch

    have   c on t inuous deriva t ives  of   order   at   least   p  in   [a , b],  w e   then recall that   the

    Sobolev space  W

    s

    q

    [a , b ],  wh e r e   1   r g  q  oo  and s is any   nonnegat ive in teger ,   is

    This research was supported in part by AEC Grant

      (11-1)-2075.

     

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    12/87

     

    C H A P T E R   1

    def ined  as the

      completion

      of the set of all

      real-valued  funct ions

      eC°°[a, b]

     w i th

    respect to the norm:

    Equivalent ly ,

      W

    s

    q

    [a ,

     b] is the

      collection

     of all

      real-valued  funct ions

      /

      def ined

     on

    [a,b]  w i t h  fo r  s >  Q)D

    s

    ~

    l

    f  a b solu te ly co n t in u o u s  on  [a,b]  an d  D

    s

    feL

    q

    [a,b].

    Clearly,

     for s > 0,

      W

    s

    q

    [a , b] cC

    s

    ~

    l

    [a, b ].

    To describe L-splines, consider the linear

      d i f ferent ia l

      operator L of order  m:

    w h e r e   c

    }

     e C

    j

    [a , b], 0

     ̂

     j

     ^

      m,

     w i th  c

    m

      x) ^ <

    > 0 for all x e   [a ,

     b].

      A n

      imp o r ta n t

    special case

      is the

      choice

      L =

      D

    m

    .  Ne xt ,

      let z be any

      fixed)  posit ive integer with

    1 ̂

      z

     ̂

      m .

     Then, Sp L,

     A ,

     z) ,

     th e

     L-spline  space ,

     is the

      collection

      of all

     real-valued

    funct ions

      w def ined  on [a,

     6]

     such that cf. Ah lberg, Nilson and  Wa lsh [1.2, Chap. 6],

    Greville   [1.5], and Schultz and Varga  [1.6])

    where L* is the  formal  a d jo in t  of

      L, i.e.,

     L*v

    In   other

    w ords, each  w e  Sp L, A , z) is locally a solution

      of

     L*Lw   =  0, pieced together at the

    in ter ior

      k n o t s

      x, in

      such

      a

      way,  d e p e n d i n g

      on z,

      that

      weC

    2m

    ~

    z

    ~

    l

    [a,b].

      Thus,

    Sp L,

     A , z)

     c: C

    2m

    ~

    z

    ~

    l

    [a, b] ,

      but

      because

      of the

      assumed smoothness

      of the

    coefficients

      C j in

      1.1.4),

     w e can

      sharpen this inclusion

     to

      Sp L,

     A, z)  cr  W^~

    z

    [a,

      b].

    In

      a d d i t io n ,  it can be

      verified

      that Sp L, A, z) is a  linear  space  of  d ime n sio n

    2m + z N -

      I).

    In  th e

      important special case

      L =

      D

    m

    ,

      th e

      elements

      of

      Sp D™,

     A , z) are,

      from

      1.1.5), polynomials of degree  2m  — 1 on  each  subinte rval of A, and as such are

    called   polynomial splines.  More specially, when L =  D

    m

      and z =  m,  elements of

    the

      associated

      L-spline

      space are called  Hermite splines,  and the collection of

    such  Hermite splines

      is

      denoted

      by  //

      m )

      A) .

      From

      1.1.5), tf

    (m)

    (A) c W^fab]

    c

      C

    m

    ~

     l

    [a,

     b] .  Similar ly, whe n

     L =

      D

    m

     and z = 1, the

      e lements

     of the

     associated

    L-spline space are called simply

     splines,

     and the collection of such splines is den oted

    by  Sp

      M )

      A). From  1.1.5), Sp

      B I)

      A)

     

    W

    2

    £~

     l

    [a,

     b] c C

    2m

     

    2

    [a,  ] .

    We now

      discuss

     th e

      possibility

     o f

      interpolation

     of

     given func t ions

     by

      elements

      in

    Sp(L, A , z ) .

      Giv e n

      an y  geC

    m

    ~

    l

    [a,b],  it can be

      s h o w n

      by

      e lementary methods

      cf.  [1.6])

      that there exists

      a

      unique s €

     Sp L, A , z)

     w hich in terpolates

      g in the

      sense

    that

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    13/87

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    14/87

     

    H PTER

     

    It is

     also in terestin g

     to

      remark that

      th e

      inequa l i ty

     of

      1.1.10)

     can be

     shown

     to b e

    quasi-optimal  cf. BabuS ka, Prager ,  Vitasek  [1.9,  p.  232])  in the  sense  of

      n-widths

    of

     Kolm ogorov cf. Lo rentz [1.10, Chap.  9]), and  such related ideas for spl ines have

    been studied by Aubin

     [1.11]

     and G olomb

      [1.12].

    Error bo und s analogous to Theorem 1.2 can be obtain ed for  L-spline  inter-

    polation   of  smoother  funct ions  g. In  part icular ,  if ge  W l

    m

    [a,b]  and s is its

    Sp L,

     A , z)- interpolant  in the  sense of

      1 .1 .6 ) ,

      an  in tegrat ion by  parts again shows

    that  the

      second

      integral relation  cf. [1.2, p . 205])

    is

     va lid. This

     is

     sim ilarly used

     in

     p rov ing

      cf.

     [1.13]) the

     er ror bound s

     of the

      following

    theorem.

    T O R M   1.3.  Given  ge

      W\

    m

    [a b] and

      given  Ae2P

    a

      a,b),

      let s be the

      unique

    element  in Sp L, A, z) which interpolates g in the sense o/ 1.1.6).

      Then,

     for 2

     ̂

     q

     ̂

      oo,

    For  polynomial splines

    can be  replaced  by in

      1.1.12) .

    For 0

     ^

     j   ̂ m  — 1 , it is wor th no t ing that  th e  error bound s o f

      1.1.12)

     a re valid

    for  any A e £? a, b}. The  exponent of

     n

     in  1.1.12) is again best possible for the  space

    W\

    m

    [a

    b]

     for general L-spl ine interpolat ion. H ow ever, in t e rms of error bound s for

    g in

      W

    2

    ™[a, b ]

     o r

      W^[a b]

     fo r p olynom ial spl ine interpolat ion, the  exponent  of

      n

    in

      1.1.10) and  1.1.12) can

     in

     special cases

     be

      increased

      by

     when q

    +0 0

      cf .

    Swartz

      and Varga

      [1.13]).

      Next , we

     also

      mention that the results of Theorems

    1.1-1.3  are k no w n to be valid for more general forms of bou nd ary interpolat ion

    than considered in  1.1.6).  In addition, it is also possible to  vary  the parameter z

    from

      knot to knot with n o change in the interpolat ion err or bounds. Such

      refine-

    ments

      can be

     found

     for

      example

      in

      [1.6]

      and

      [1.13].

    From  th e

      in terpolat ion error bounds

      of

     Theorems

      1.2 and

      1.3,

     one can

      deduce,

    via

      the use of  interpolation space  theory  to be  described  in § 1.2), analog ous inter-

    polat ion error bounds

      for

      functions

      g in

      spaces  in termediate

      to

      W™[a,b]

      and

    W|

    m

    [a

    b].

     But the desire is to obtain error b ound s for functions g even

     less

      smooth

    than  C

    m

    ~

    l

    [a

    b],  and

      this poses

      a

      problem. Clearly,

      th e

      interpolation

      of g, as

    defined in  1.1.6) needs  the  existence  of  derivat ives  of g of  o rder

      m —

     1 in

      [a, b],

    and

      thus,

      a

      modificat ion

      of the

      definition

     of

      interpolation

      in

      1.1.6)

     is

     necessary.

    To do

     this,

     we

     make

     use of the

     fam il iar not ion

     ofLagrange

      polynomial interpolation,

    as

     described

      in

     Davis  [1.14,

     Chap. 2 ].

    If  A 6̂ 0,

     b)

      has at  least  2m knots,  let

      J ^ m - i . og

      denote  th e  Lagrange poly-

    nomial interpolation  of degree  2m — 1) of g in the  knots x

    0

      x

    :

      • • • , x

    2m

    -1 i.e.,

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    15/87

    L-SPLINES

     

    Then, a l though

      g

      need

      not

      possess derivatives th ro ug h order

      m — 1 at  x — a ,

    < ^ 2 m -  i,o£ does, and we can  define  interpolat ion  by an s e Sp L, A , z) at  x = a n ow

    by means o f

    Similar definitions  of

     interpolation

      can be

     used

     at

     o ther knots

     of A. W e now

     state

      a

    result

      of

      Swartz

      and

      V arga [1.13] see also Sc hu ltz [1.15]

      for a

      related

      use of

    Lagrange polynomial

      interpolat ion) .

    T H E O R E M

      1.4.  Given  g e

      C

    k

    [a ,

      b ]  with  0  rg  k < 2m and

      given

      A e 

    a

    (a , b)

     with

      at

    least  2m  knots,  le t  s  be the  unique element  in Sp L, A , z)  which interpolates  g in the

    sense that

    where

     ^

    2m

    -\ iS

      *

    s

     tne

     Lagrange

      polynom ial interpolation  ofg

      in the 2m consecutive

    knots  X j . , x

    j i l

    ,

      ••• ,

     x

    ji 

    2m

    -i where

      x,-e

      [ X j . ,

      x

    ji  2m

    - i ] -  Then,

      for 2

     

    q  oo,

    For

      polynom ial splines

      (L = D

    m

    ), the  term

      involving

      H g H ^ ^ b ]  in

      1.1 .16)

      va n be

    deleted.

    In

      1.1.16),

      w e h a v e  used the

     notation

    to

      denote

      the

      usua l  modulus of  continuity

      of any

      bounded  function

      / d e f i n e d

      on

    [a,b].

    For the

      extension

     of the

      result

     of

     Theorem

      1.4 to

      Sobolev spaces,

      w e

     have

      th e

    following  coro llary cf. [1.13]).

    C O R O L L A R Y

      1.5.  With

      th e

      hypotheses

      of

      Theorem  1.4,

      if

      geW

    i

    [a, b]  with

    1

      r  oo and 0

     

    k < 2m, then for

      m a x r ,

     2)  f q  oo,

    For  polynomial splines,  \ \ g \ \ w

    k

    r   l[ a , b ]  can oe  replaced

      by \\D

    k+ 1

    g\\

    Lr[atb]

      in

      1.1.18).

    W e note tha t w hen k = m —

     1

     and  r = 2, the first  inequ ali ty o f  1.1.18) reduces

    to the inequ ality of 1.1.10). Similarly, when   k = 2m — 1 and  r = 2,  the first

    inequal i ty  of  1.1.18)

      reduces

      to the

      inequali ty

     o f

      1.1.12). Th us Theorem

      1.4 and

    Corollary   1 .5

     generalize

      th e

      results

      of

      Theorems

      1.2 and

      1.3, even though

      th e

    process

      of

     interpolat ion

      is  d i f f e r e n t  in

      both cases.

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    16/87

    6

    C H A P T E R  1

    To

      summarize, this section introduces

      L-splines and

      gives representative error

    bounds

      fo r

     L-spline

      interpolation.  For the  extension  of  these

      error

      bounds,  we

    shall

      find it

      useful

      to

      describe

      in the

      next section

      th e

      idea

      of

      interpolating spaces.

    1 2 Interpolation spaces

      and

      applications

    The

      results

      of

      Theorem

      1.4 and

    Corollary

      1.5 can be

     extended

     to

     more general spaces, using

     th e

     idea  ofinterpolation

    spaces  (cf. Bu tzer an d  Berens [1.16,

     Chap.

      3]),  which we

      briefly

      describe.

    Let  X

    0

      and

      X^

      be two  Banach spaces with norms  || • ||

    0

      and || • ||

     1}

     respectively,

    which are

     contained

      in a

     linear Hausdorff  space # , such that

     the

     identi ty mapping

     of

    X

    i

      in

      3 C

      is

     continuous

     for

     i =

     0 and

      i

     = 1. If

     X

    0

      + X

    1

      = { e

     # :/ =

     

    0

      +

     j\

    where /) e

     X

    t

    ,  i =

     0,1},  then X

    0

    r\  X

    1

      and X

    0

      +

     X

    l

      are  iBanach  spaces under the

    norms:

    It  follows  that

    where

      inclusion

     is understood in

      this section

      to

      mean that

      th e

      identity

      mapping  is

    continuous.

      Any Banach space  X

     c3 C

      is said to be an  intermediate

     space

      of  X

    0

    and

     Xi

      if it

      satisfies

      th e

     inclusion

    We now

      give

      Peetre's

      real-variable method (cf.  [1.16]

      and

      Peetre  [1.17])

      for

    constructing

      intermediate spaces  of

     X

    0

      and

      Xi.

      For  each positive

      t

      and  each

    f E X

    0

      + Xi),  define

    Then, for any 9 with 0

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    17/87

    L-SPLINES

     

    i . e . ,  T is a bound ed linear transform ation  from  X

    t

      to  Y

    t

      with norm at most

      M,,

    i  = 0,1. A gain, the  following  is know n (cf. [1.16, p.

     180]

     and

      [1.17]).

    T H E O R E M   1.7.

      Let T be any

      linear transformation  from  (X

    0

      +  XJ  to  (Y

    0

      +

      Y

    which

      satisfies

      (1.2.6).

      Then,

     for any

     Q

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    18/87

     

    C H A P T E R  1

    W e now explicitly show how the  theory of interpolation spaces can be used to

    extend

      the

      L-spline error  bounds

      of

     Theorems

      1.2 and

      1.3.

     For  j  a

      nonnegative

    integer

      with

      0

     ̂

     j

     ^

     m — 1 and 2

     ̂

     q

     ̂

    oo,

      define

      the

      linear transformation

    T

     

    W?[a,

     b]  -»

      W{\a

    t

      b]  by

     means

     of

    where

      s   is the

      unique

     Sp L, A ,

     z)-interpolant

      of g in the

      sense

      of  1.1.6).

     With this

    definition

      of

     T

      and the

      definition

      of the

     Sobolev norm

      in  1.1.3), th e

     error bounds

      1.1.10)

     and

      1.1.12) respectively

     can be

     expressed

      as

    Thus,  if Y

    0

    =  Y

    l

      =  W

    J

    q

    [a,b],  and  X

    0

      =

      W^[a,b]

      and

      X

    l

      =  W

    2

    2

    m

    [a,b],  then

      Tis

    from   1.2.15) a

     bounded linear transformation from

      X

    (

      to

     

    f

      with norm

     at

     most  M

    t

    ,

    i  = 0,1, where

    Hence,  as  X̂ X̂   =

     (W?[a,b], Wl

    m

    [a,

      b])

    9tr

      =  B °

    2

    -

    r

    [a, b],  a =  1 +

      0)m,

      from

     1 .2.13), and as

     (Y

    0

    ,

      Y^)

    9tq

      =

      W

    J

    q

    [a,  b],  then from Theorem 1.7, Tis a bounded linear

    t ransformation   from

      B ?

    r

    [a,

     b ]  to  W

    j

    [a, b]  with norm  at most

    i.e.,

    fo r

     any m < a < 2m and any 1

     ̂

      r

     ̂

     oo.

    The  error bounds  o f  1.2.17)  for  L-spline interpolation,  while  extending  th e

    results

      of

     Theorems

      1.2 and

      1.3, were obtained

      by

      interpolating

      th e

     right-hand

    sides

     of

      1.1.10)

     and

      1.1.12).

     On the

     other hand,

     the

      error bounds

     of

      1.1.10)

     and

      1.1.12)

     also hold

     for different

      values

     of), and

     this permits analogous interpolation

    of the

      left-hand   sides

     of

      1.1.10)

     and  1.1.12). The combination of these

     results

     can

    be

     formulated cf. Hedstrom

      and

     Varga [1.20])

     as the

      following  theorem.

    THEOREM   1.9.  Let

      feB2

    2

     

    r

    [a,b],

      where m 

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    19/87

    L- S P LI N ES

     

    fo r

      0 

    j

     

    m - 1

     and any 2  - ^  p  - ^

      < x >

    In

      particular,

      if f

      e W ^ IX ^]

     WI

     ̂

     

    =

     ff

      2m,  then for 0  7

     

    m,

    The  extension  in Theorem  1.9 of

     Theorems

      1.2 and 1.3 can be  further generalized

    i f

      we apply the theory of interpolation

      spaces

      to Corollary 1.5, w here Lag rang e

    interpolation polynomials

      are

      used

      to

      define interpolation cf.

      1.1.15)).  From

      1.1.18)

     w e obtain  the  following result .

    T H E O R E M

      1.11.  Given  any feB°

    q

    [a,  b],  1 <

      o

     

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    20/87

    10  CHAPTER  1

    [1.16]  P. L.  B U T Z E R   AN D H.   B E R E N S Semi-Groups o f  Operators  an d  Approximations,  Springer-Verlag,

    N ew

      York, 1967.

    [1.17] J.  P E E T R E

    Introduction

     to Interpolation,

      Lecture notes, D epartment

      of

      Mathematics, Lund, 1966.

      In

      Swedish.)

    [1.18]  P.

      G R I S V A R D

    Commutativite

      de

      deux foncteurs  d'interpolation et  applications, J.  Math. Pures

    Appl.,

     45

      1966),

     pp .  143 290.

    [1.19] J.

      P E E T R E Espaces a interpolation,  generalisations, applications, Rend. Sem . Mat. Fiz. Milano ,

    34   1964), pp.133 164.

    [ 1.20]  G E R A L D  W .  H E D S T R O M  AN D  R I C H A R D  S.  V A R G A

    Application

     ofBesov

      spaces

      to spline

     approxima-

    tion, J . Ap prox. Theory,  to

     appear.

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    21/87

    CHAPTER

     

    Generalizations

      of L-Splines

    2 £ -splines.

      There

      are a

      variety

      of

      general izat ions

      of

      L-splines

      and it is of

    interest  to see how

      they extend

      the

      L-spl ine theory.

      W e

      begin this sect ion with

    results

      of

     Jerome

     and Schumaker

     [2.1].

    Let A =

      { A , - } *

    = 1

      be any set of l inearly independent , bounded l inear funct ionals

    on   W ™ [a , b] ,  and let r =  r

    l 5

    r

    2

    ,  • • •  , r

    k

    )

    T

      denote

      an y

      vector

      o f

      real Eucl idean

    fc-space,

     R

    k

    .

      If L is the  l inear

      differential

      opera tor  of

      1.1.4),

      then cf.

      [2.1])

    se

      W™[a,b]  is an

      Lg-spline

      interpolating r with respect to A, i .e. ,

      A , - s )

      =

      r , ,

    i

      :g

      k , provided

      it

      solves

      th e

      fol lowing

      m inimiza t ion

      p r o b l e m :

    The

      relat ionship with L-splines

      in

      1.1.9)

     of

     Theorem

      1.1 is

     clear; while

      th e

      linear

    differential  opera tor  L remains unchanged, the manner of interpolat ion, now by

    means of A, is generalized. For notation, the   space  of all  Lg-splines  such tha t

      s

    satisfies  2.1.1)

     fo r

      some

      r e

      R

    k

      is

     denoted

      by  Sp L, A ) .

    Based  on  resul ts  of Golomb  [2.2],  Jerome  and  Schumaker [2.1] have proved,

    in

      the spirit of Anselone and Laurent [2.3] , the  fo l lowing  theorem.

    T H E O R E M   2.1.

      Given any

      reR

    k

     

    there exists an

      seW^[a b]

      satisfying

      2.1.1).

    A   function  s e  t/

    A

      r)  satisfies  2 .1.1)  if and

      only

      if

    Moreover,

      2.1.1)

     possesses

      a

     unique solution

      if  and

      only

      if  91 n

      t/

    A

      0)

      = {0},

     where

    91 is  the

      null space

      of L.

      Finally,

      Sp L, A) is  a

      l inear space

      of

      dimension

    k  +  dim{9t  n

      C 7

    A

      0 ) }   in

      W ^[ a , b ] .

    W e n o w   assume that each  A

    ;

    e A   is of the  form

      A

    ;

      /)

     =/^ /(x,),  w h e r e

    0  ji  m

      —

     1 and  x,-e  [a ,b] .

      Such

      a A =  { A , - } *

    = 1

      generates

      a  Hermite-Birkhoff

    problem. For  such Hermite-Birkhoff problems,  th e  so lu t ion s of the min imiza t ion

    problem

      2.1.1)

     satisfies, as in

      1.1.5),

    Next ,  one can  assign  a  nonnegat ive in teger t A) , which counts  the  n u m b e r  of

    consecutive deriv ative point fu nc tion als in A for details, see Jerome and V arga

    [2.4]).

     W ith this, the follo w ing can readily be shown cf. [2.4]) .

     

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    22/87

     

    C H A P T E R 2

    T H E O R E M

      2.2.  // A =

    generates

      a Hermite-Birkhoff

      problem with

    partition

      e^

    assume that m ,  assume that

    , and

    assume that

      the

      second integral relation holds

     fo r  A ,  i.e-

      cf.  1.1.11)) ,

    is valid

      for any g G

     Wl

    m

    [a,

     b] and s is the

      unique Lg-spline which interpolates

      g in the

    sense that

    Then  the  error bounds  of  1.1.10)  of  Theorem  1.2,  as  well  as  those  of  1.1.12) of

    Theorem

      1 .3 are

      valid.

    M ore broa dly in terpre ted, the result of T heorem 2.2 can be c learly extended to

    Besov  spaces

    exactly

      as in Theorem  1.9 and  Corollary 1.10, with  identical  error

    bounds, thereby generalizing the results of  [2.4]. T h us ,  Lg-splines offer  generaliza-

    tions  in the  area  of  interp ola tion cf. 2.1.5)),  but do not  generalize  th e  type  of

    differential

     operator L considered.

    2.2

      y splines.

      T he ne xt generaliza tion considered here is due to S chultz [2.5]

    and  Lucas  [2.6].  If

    where

      p,-e  W{[a,

     b]

     n L

    x

    [a, b ],

     0  ̂j  ̂m and

      p

    m

    (x)

     ^

      6

     > 0 in

      [a,b],  assume

    tha t  E  is  W™[a,  b]-elliptic,  i.e., there exists a

     constant

      y >  0 such that

    where

     W™[a,

      b]

     denotes

     the

      subspace

      of funct ions

     u(x)

     of

      W™[a,

     b]

     of

     § 1 .1

     sa t isfying

    the  homogeneous bou nda ry conditions

      D

    k

    u(a)

     = D

    k

    u(b)  = 0 ,  0 ^ / c ^ m —  1 .

    A s

     in § 1.1, let A

     e  (a,

     b ), and let z again be a positive integer s atisfy ing 1

     ^

      z

      g

      m .

    T h e n ,  S(E,

     A , z) ,  th e

      y-spline  space,

      is the

      collection

      of

      real-valued functions

      w

    defined on  [a, b]

      such that, relative

      to A

      cf .

      1.1.5)),

    Ew(x)

      =  0  almost

      everywhere

     in

     each

      sub in te rva l

      x

    i 5

     x

    i

    j ) ,

    G iven any g  eC

    m

      ^[a^b],  it is easily seen cf.  [2.5])  that there exists a unique

    s E

     S(E.

     A, z) which interpolates  g  in the  sense  of  1 .1.6), i.e.,

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    23/87

    G E N E R A L I Z A T I O N S

      O F

      L - S P L I N E S

     

    13

    Because the in terpolat ion of  2.2.4) a t the bou ndar ies en sures the second integral

    relation cf.  1 .1 .11)) ,

      th e

      following contains

      th e

      upper bounds

      of Theorems

     2.4-

    2 . 7 o f S c h u l t z [ 2 . 5 ] .

    THEOREM

     2.3.

      Given  any g e

     C

    m

    ~

     *[a,

      b

    and any  A €

     3?(a,

     b),

      let s be the

      unique

    element in S(E,  A , z) which interpolates g in the sense of  2 .2 .4) .  Then,  the error

    bounds

      of

      1 .1 .10)

      of

      Theorem

      1 .2  are

      valid.  Similarly,

      if  g€\Vl

    m

    [a,b]  and

    A 6 ^

    a

    (a, b), then  th e  bounds  of  1 .1 .12 )  of  Theorem  1 .3  are  valid.

    As  in  §2 .1 , we can  more broadly interpret  th e  result  of Theorem

      2.3

    since  it s

    extension  to  Besov spaces, exactly  as in  Theorem  1 .9 and  Corollary 1.10,  is now

    immediate, thereby generalizing the results of [2.5] and  [2.6].

    Noting that the generalization of

      Lg-splines

      works through more general

    collections  o f  boun ded l inear functionals  A =  { A J f

    = 1

    ,  while  th e  generalization

    of

      y-splines

      w orks throug h more genera l

      differential

      operators, one can combine

    these two ideas s imul taneou sly, and obtain the error b oun ds of  1.1.10) of T heorem

    1 .2  and

      1 .1 .12)

     of Theorem  1.3.  This  has in  fact  been considered  by  Lucas  [2.7].

    The extensio n of these results to Besov spaces is also immediate.

    2 3 Singular splines

    One of the

      more interesting developments with respect

      to

    one-dimensional spline theory

     is

     due ,

     in its

     generalized form,

     to

      Jerome

      and

      Pierce

    [2.8].  We first

      give

     a  brief

      discussion

      of the

      background

      fo r

      this problem. Jamet

    [2.9], using

      finite-differences,

      considered

      th e

      numerical approximat ion

      of the

    solution

      of the

      singular boundary value

     problem:

    where  0

     ^

      a

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    24/87

     

    C H A P T E R

      2

    where

      i t was

     assumed th a t

    and  approximate solutions  of  2.3.3) w ere made  up of  solutions of

    on subin tervals defined by a part i t ion A of

     [0,1].

      While it is true that the above

    equation   can be  expressed  as

     

    L* Lw x )  = 0, w h ere

    note th at since p 0)

     can be

     zero

     in

      2.3.4), these  splines

    are not in

     general

     L -splines

    or  y-splines.  Generalizations  to  higher order singular Hermite splines were also

    considered

      by

     D ailey  [2.11].

    To

      describe

      th e

      singular

     A -splines of

     Jerome

      and

      Pierce [2.8] w hich gene ralizes

    [2.10]),

      let A be the

      form ally self-adjoint operator defined

     by

    where

      it is assumed that cf.

      2.3.4))

    Next ,  le t  H  denote  th e  weighted Sobolov space  of all  real-valued functions  f

    defined  on  [a, b such that  D

    m

    ~ */ is absolutely con tinuous  and

    with  n o r m

    and  consider  the  bil inear form  B u, v) associated w ith A :

    on H x H .  W e

     assume  that

      th e

     operator

     A is

     H -elliptic,  i.e.,

      a

     positive constant

     p

    exists such that

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    25/87

    G E N E R A L I Z A T I O N S

      O F

      L - S P L I N E S

     

    where  H   denotes  the   closed subspace  of  H  of all

      funct ions

      /  w i t h  /^/(a)

    =

      D

    j

    f b )

      = 0 for 0 ̂  j  m   -  1. From  2 .3 .8) and   2 .3 .9) , it  read i ly fo llows tha t H

    is

     a

      Hilbert space under

      the

      inner product

    Next ,

      let M

     = be any set of

      bounded l inear func t ion a ls wh ich

      are

    l inearly  independent

      on

      H .  Then cf .  [2.8]) ,  seH

      is a

      \-spline  interpolat ing

    r

      —  (

    r

    i

     

    r

    2

     

    • »

     r

    J

     

    ^

    fc

      i f

     s

     solves  th e m inimization  problem:

    Because

      o f the

      vanish ing boundary da ta

      fo r

     /eH

    i t

      follows

      tha t ,

      fo r any

     /£//

    there exists a unique A-spline s wh ich interpolates  / in the   sense that

    As  before, Sp A, M ) ,

      th e

      class

      of all s

     w h ich  satisfies  2.3.11)

      for

      some

      r e

     R

    k

     

    is a

    linear space.

    In order to obtain error es t imates for the interpolat ion of 2 .3 .12 ) , w e ne xt

    assume,

      as in §2.1 ,

      that  M =

      ( A / } j = i

      generates

      a

      Hermite-Birkhoff problem, i .e . ,

    each

      A -  6 M is of the

      form

      A, / ) = D

    j

     /(*i)

      wi th

      0

     ̂  ;, ̂

     m - 1 and  x, e [a

    b ].

    In

     th is case,

      any

      A-spline

     s is a

      solution

     of As

     =

      0 on

      subintervals def ined

      f rom

      M,

    jus t  as in  2.2.3) . Because  we are  considering H a  second-integral relat ion holds,

    and the fol low ing error b ou nd s can be proved cf. [2 .8]) .

    THEOREM

      2.4.  //  M   generates  a  H ermite-Birkhof f prob lem with partition

    A e  0 *

    a

      a, b ) , assume that  t M )

     ̂

      n, and

     for

      a ny

     /e

     H let s e H b e i ts unique A-spline

    interpolation  cf .

      2.3.12)) .

      Then, for any 2 ̂   q ̂   oo,

    where   d .  2.3.\0)) , and where

    In  addition,  if

    then for 2   5 S   q ̂   oo,

    forO

      £j

      g m - 1.

    It

      is

      wor th remark ing tha t

      th e

      Sobolev space

      W{[a b]

    for; ^

      m , are al l

      sub-

    spaces of  H .  However , to extend the resul ts of Theorem 2.4 via the theory of

    interme diate spaces, as in the p revi ous theorems of this section, w e w ou ld necessarily

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    26/87

    16

      CHAPTER  2

    work with spaces intermediate  to  H  and, say, W\

    m

    [a

    b],

      and  these  are  not, as in

    previous cases, Besov spaces.

    It is also worth no t ing that  the results o f Jerome  and  Pierce [2.8]  go beyond  th e

    assum ption of 2.3.9), i.e., w eak er assum ptions are m ade in [2.8] corresponding to

      2.3.9),  and existence and uniqueness of interpolation plus error bounds for the

    more general extended Hermite-Birkhoff problem   are  treated there. Since  the

    case

      a

    m

      x)

     

    6

      >  0 on  [a,b]  is not  ruled  out in  2.3.6), th e  results  of  [2.8] thus

    simul taneously generalize

     Lg-splines

     and  y-splines and  give, as a special case,  th e

    k n o w n  results for  er ror bounds  for  spline interpolation  of Theorems  2.2 and  2.3.

    R E F E R E N C E S

    [ 2 . 1 ]

      J . W.

      J E R O M E

      A ND

     L. L .

      S C H U M A K E R

    O n

     L g-splines,

     J . A pprox . T heo ry ,  2  1969) , pp.

     29̂ 9.

    [2.2]

      M.

      G O L O M B

    Splines,

      n-widths, and

      optimal approximation,  MRC Tech.

      Summ.  Rep. 784,

    Mathematics Research Center, United  States  Army, Univers i ty

      of

      W isconsin, Mad ison,

    1 9 6 7 .

    [2.3]  P. M.  ANSELONE

      A ND

     P. J.  L A U R E N T

    A   general method  for the  construction  of  interpolating  or

    smoothing spline-functions,

      N um er .  Math.,

      12

      1968),

      pp.

     66-82.

    [2.4]  J. W.  J E R O M E  A ND  R. S.  V A R G A

    Generalizations

      of spline

     functions

      a nd

      applications

      to

      nonlinear

    boundary

      value  a nd  eigenvalue problems,  Theory  and

      Applications

      of

      Spline

      Functions,

    T. N. E.

      Greville, ed., Academic

      Press, New

      York, 1969,

     pp.  103-155.

    [2.5]  M. H.  S C H U L T Z

    Elliptic

      spline

     functions

      and the Rayleigh-Ritz-Galerkin

      method,

      Math.  Comp.,

    24

      1970), pp.

     65-80.

    [2.6]

      T. R.

      L U C A S

    A

      generalization  of  L-splines,  N um er .  Math.,

      15

      1970),

      pp.

      359-370.

    [2.7]

      ,  A theory

      of

      generalized splines with applications to nonlinear boundary value problems,

    Thesis, Georgia

      Inst i tute

      of Technology,  1970.

    [2.8]

      J.

      J E R O M E

      AND J.

      P I E R C E

    On  spline functions determined  by  singular  self-adjo int differential

    operators, J. Approx. Theory, to

     appear.

    [2.9]

      P.

      J A M E T On the

      convergence

      of finite-difference

      approximations

      to

      one-dimensional singular

    boundary-value

     problems

    N u m e r .  M a t h . ,  1 4 1 970 ) ,

      pp. 355-378.

    [2.10]  P. G.

      CIARLET,

      F.  N A T T E R E R   A ND R. S.  V A R G A

    Numerical methods

      of

      high-order accuracy

      fo r

    singular

      nonlinear boundary value problems,

      Ibid.,  15

      1970),

     pp.

      87-99.

    [2.11]  J . W.  D A I L E Y Approximation

      by

     spline-type  functions

      a nd

     related problems Thesis Case

     W estern

    Reserve University, 1969.

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    27/87

    CHAPTER

     

    Interpolation  and Approximation Results for

    Piecewise-Polynomials in

     H igher Dimensions

    3.1. Tensor products of one dimensional polynomial splines.  For  many applica-

    tions, it is desirable to generalize the re sults of Ch apters 1 and 2 for o ne-d ime nsion al

    piecewise-polynomial func tions or splines to n-dimensional analogues. The  easiest

    of  such  extensions  is

     obtained

      by  simply considering  the  tensor product  of  one-

    dimensional spline spaces. This was considered in   BirkhofT,  Schultz and Varga

    [3.1], specifically for the tensor prod uct of H erm ite polynom ial splines in two-space

    variables.

     To

      describe  briefly

      the

      results

     of

     [3.1],

     let A =

     ^

     

    x  A

    2

    ,

     given

     by

    denote

      a

      parti t ion

      of the

      rectangle

     Q =  [a , b ]   x [c,

     d ]

      in  R

    2

    .  If H

      m )

      A ; Q ) is the set

    of

      all

      real-valued piecewise-polynomial

      funct ions

      v v x , y )   defined

      on Q

      such that

    D

    (ltj)

    w

      = D

    l

    x

    D

    j

    y

    w  is

      continuous

      in Q for all 0   ̂ i, j ^

     m

     — 1, and

      such that  w x,

     y

    is  a  polynomial  of  degree  2m — 1 in  each   of the  variables  x and  y   in  each sub-

    rectangle  [ - X ; , x , - + i ]

      x

      [ y j , y

    j l

    ]   defined

      on fi b y A , we can

      define

      a

      un ique in ter -

    polation  5 in

      H

      m )

      A ;

     Q) of a real-valued

      function

      such that  D

    {p

     

    q}

    f  is cont inuous

    in

     Q for all 0 ̂  p, q   ̂ m — 1, by

     means

     of

    I f

    and

    have  th e

      analogous me aning cf.

     § 1.1)  for the

      part i t ion

    of

    we

      assume that  A is an  element  of ̂ Q),  with  finite a

     ^

     1,

    i . e . , c f . § l . l ) ,

    Then, using  th e  idea  of the

      Peano

      k ernel theorem cf . Sard  [3.2]) in  two-space

    variables,

      the

      following

      w as

      sh o w n

      in

      [3.1].

      We use the

      nota t ion  S^ Q)

      to

      denote

    th e

     set of all  real-valued funct ions /  defined  on Q  such that

      D

      p

    ~

    M)

    /e L

    2

      Q )

     for

    all 0 <

      i

     <

     p.

     and  such that  Z)

      M )

    /  is cont inuous  in

     Q

     for all 0 <

      i +

      i

     < p.

    T H E O R E M   3.1.

      Given

    where

    = •   a,  b ]  x c, d), and

      given

    17

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    28/87

    1 8

    C H A P T E R   3

    le t

    be

      th e  unique interpolation  of f  in the  sense

    o f

      (3.1.2).  Then

    for allQ^h l̂ m

      with

     0

     ̂

      h +   ̂ m .

    Because the

      Hermi te  interpolation

      of

      (3.1.2)

     is

      local,

     the

      result

      of

      Theorem

      3 .1

    is

      actually valid  for any  rectangular polygon,  i.e.,  any  polygon whose sides  are

    parallel to the co ordinate axes in the plane, such as an  L--shaped  region.

    For our  future  needs, we now in troduc e the   fol lowing  no ta t ion . With  n  any

    positive integer, let  Q  be a bounded region in Euclidean rc-space, R . We assume

    that  th e bounded region Q  in  R satisfies   a  restricted cone condition  (cf. Agmon

    [3.3,

      p.

      11]),

      i.e., there exist

      a  finite

      open cover

      { 0 , -} ? = i

      of the

      bo u n d a r y

      dQ ,

     of

    where  each   9

    {

      is an  open subset  of  R ,  and  associated open truncated cones

    {C,}™

    =

      with vertices at the origin such that for any   i  and any xe   0 ,-  n Q, then

    x +  C

    {

     = {w w  = x  +  y,  where ye CJ  lies in Q. Next, if a =

      ( a

    t

    ,

     a

    2

      • • • ,  a

    n

    )  is

    any

      n-tuple of  nonnegative integers, then

    denotes the

      differential

      operator

      of order

    The

      space

      of all

      real-

    valued   funct ions  which have continuous der ivatives

      of all

      orders

      a

      with |a|

     

    m

    in

      Q

      is

     denoted

      by  C

    m

    (Q). T he

      space  C^(Q)

      is the

      collection

      of all

      infinitely  differ-

    entiable functions  u  in Q which vanish identically outside some compact set

    contained

      in

      Q .  Similarly,  CQ(R )

      is the

      collection

      of all

      infinitely  differentiable

    funct ions  in  R which vanish identically outside some compact  set in  R .

    The Sobolev spaces   W ™ £ 1 ) and  W ^( Q . ) , m a nonn egative integer, are the n defined

    as the  respective completions  of  C

    CO

    (Q)  in the  n o r m :

    Similarly,

      W%(R )

      and  W ^(R )  are the  completions  of

      C$(R )

      in the  above norms,

    and

      W^(fJ)

      is the  completion  of Co (Q) in the first  norm  of (3.1.5).

    T he

      result

      of

      Theorem  3.1

      can be

      interpreted

      in

      terms

      of

      Sobolev norms

      as

    follows.

    C O R O L L A R Y   3.2.  With  the  hypotheses  of  Theorem  3.1,

    for

      any k  wi th 0

     

    k

     

    m

    There  are two  inherent shortcomings  of  Theorem  3.1 and its  Corollary 3.2.

    O n e i s  that  the  results  as  stated pertain only  to  rectangular polygons  in

      K

    2

    ,

      and

    not to

      higher dimensions.

      T he

      o ther

      is

      that

      the

      function space  Sf

    m

    (Q)  used

      in

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    29/87

    P I E C E W I S E P O L Y N O M I A L S

      I N

      H I G H E R

      D IM E N S I O N S

    19

    these results  is not  w h a t  one  would expect , namely  the  usual Sobolev  space

    M ^ 2

    m

    (n) .

      These sho rtcomings  of [3.1]  have been more than adequately covered  by

    Bramble  and  Hilbert ' s general izat ion  in  [3.4], [3.5]  and

      [3.6],

      w h i c h  we now

    describe.

    Consider

      any  closed

      hypercube

      Q  in

      /? ,  wi th

      it s

      2 vertices denoted

      by

      x ,,

    1

      i   5 s

      2 . For  u

     € C

    2m

    ~

     

    (Q), the  m th  Hermite  interpolation  u

    m

     of

      u in Q is define d

    as a  polynomia l of degree 2m - 1 in each of its n va riables w hich sat isf ies at  each

    vertex

      x,

    for  any  y =  ( y , ,  • • • , yj  wi th  0

     

    y

    }

     

    m   -  1 for al l 1  j  n.  Because  (3.1 .7)

    is a

      nonsingular l inear system

      of

      (2m)

    n

      equat ions

      in

      (2m)

    n

      u n k n o w n s ,

      it is

     readi ly

    seen that the  funct ion

      u

    m

    ,

     so d efined, is uniqu e. This

     approach,

      in  fact,  generalizes

    th e  Hermite - in te rpola t ion  of (3.1.2)  in two  dimensions .

    Next, let

      R

    be

      decomposed

      in to hypercubes  with sides

      of

      length  h,  i.e.,

    R

    =

      l^JA, wh ere Q ,

     n Q, is, for any

     i

      j,

     e i ther em pty

     or a

     pa r t

     of the

      bounda ry

    of Q,.

      Because  th e  interpolation  of

      (3.1.7)

      is  local,  then given  any  ue C

    2 m

    ~

     

    ( /? ) ,

      a

    u n iq u e in te rpolan t u

    m

     of u can be found w hich satisfies

     (3.1.7)

     at  every vertex of every

    Q - . A s is read ily seen  from

      (3 .1 .7) ,

     D *u

    m

     is c o n t i n u o u s in

      R

    for any a =  ( a , ,  • • • ,

     a j

    with

     0

     

    a,

     

    m - 1 , j = 1 , 2 , • • • ,  n.

    Un l ik e

      the

      one-dimensional case,

      an

      a rb i t r a ry

      function

      u

     e

      W \

    m

    (R )  need  n ot

    have well-defined

     der iva t ives

     at the

     vertices

     of the Q , for the

     in te rpola t ion procedure

    of

      (3.1 .7) . Thu s, it is necessary to  smooth  or

      mollify

      u  to obtain a u

    h

    eC^(R )  for

    which

      th e

      interpolat ion

      of

     (3.1 .7)

     is

     m eaningful . (This

      is the

      ana logue

      of the use of

    Lagrange p olynom ial interpolat ion in § 1 .1 . ) I t has been sh ow n by B ram ble and

    Hilbert that

     a

      mollified

      u

    h

     e  C$(R ) ,  for

     u

     e

      W l

    m

    (R ) ,

      can be

     found such tha t

     fo r all

    h

      >

      0,

      there exists

     a

      cons tan t

      C,

     independent

      of

     h

      and u, wi th

    Next , wi th

     u

    h

     e

      Co(R ),  le t

     u

    hm

     be the H erm ite in te rpola t ion

      of u

    h

     over hypercubes

    of

      side  h,

      in the

      sense

      of

      (3 .1 .7 ) .

     Then,

      based

      on a

      general izat ion

      of the  Peano

    kernel theorem, Bramble

     and

      Hi lber t have shown tha t

    fo r any a =  (a,, a

    2

    , • • • , aj  wi th |a|  2m and 0  a,  m - 1 for all 1 g

    /

      n.

    Thus, combining

      (3.1.8)

     and

      (3.1.9)

     gives

    for

     any a

      wi th

     |a|  2m and 0 

    a,

      m — 1 for all 1 

    /

      n.

    To extend this result of (3.1 .10) to a  bounded region Q

      c =   /? ,

     we use the

      Calderon

    extension theorem  (cf. [3.3, p.  171]) .  Specifically, if Q satisfies a restricted  cone

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    30/87

    20

    CHAPTER

      3

    property, there exists a  bounded  linear transformation

    with $v  = v on

      Q, i.e.,

      for some positive constant C,

    Thus, given

     any  ue  W

    2

    2

    m

    (ty,

      then

      ^w  is an

      element

      of

      W

    2

    2

    m

    (R ),

      and

      (3.1.10) then

    can be

     applied

      to

      S'u, i.e., w ith

     (3.1.10) and

      (3.1.11),

    However ,  since by

      definition  I M I j r ,

    2

    < R n

    ^ I M I z .

    2

    < n )

      f°

    r  an

    y

      VE

    L

    2

    (R )

      an d since

    u  =  u on

      Q,

      it necessarily follow s  that  th e  above in equ ality gives us that , for any

    with

      |a|

     ^

     2m

     and 0

     ^

     a,

     ^

     m

     —

     1 for all 1

     ̂

     i

     ̂

      n ,

    where if

      H

    (

    ^\R )

      is the  subspace  of

      C

    m

      l

    (R )  of all  functions which  are  poly-

    nomials

      of

      degree

      2m — 1 in

      each variable

      on

      each hypercube

      Q, of /? =

    of side h , then

      H

    (

    ^\Q.)  is

     simply

     the

      restriction of

     H

    (

    ^\R )  to  Q. It

     turns

     out

      that

      not

    all

     terms

     in

    of

      l l u j l ^ ^ n )

      are

      needed,

      as

      conjectured

      by G.

      Birkhoff.

      The

      improved

      form  of

    (3.1.12) of B ramble and  Hilbert  [3.4]  is given in the follow ing theorem.

    T H E O R E M  3.3. For any

    for  all

     a

      with  |a| ^

      2m

     and

     0

       ̂ a, ^

     m

     —

     1

     for all  ^  ̂ «,

      where

     K is the set

    of  all  indices  T —  T J  ,

     T

    2

    ,

      • • • ,  t

    n

    )

      with

      \T\ = 2m  such  that  the  polynomial  X

    T

    is  not  identically  its own mth  Hermite  interpolation.  The  result  is

    also true for  Q =  R .

    Note  that  the set  K  of  Theorem  3.3 always contains  the  indices (2m, 0, • • • , 0),

    (0 ,2m, 0, • • • ,

      0),

      • • • , (0,0,  • • • ,  2m),  but for  n > 2, K

      contains other indices

      as

    well.

    The results given thu s far can b e viewe d as results concerning the interpo lation

    and approximation by the tensor product of  one-dimensional Herm ite splines.

    General results concerning approximation by tensor products of one-dimensional

    splines  in higher dimensions have  also  been established by several authors. In

    analogy

      with

      the  notation  of § 1.1, le t  S p

    (m )

    (A,, [a,, & J)  be the  collection  of splines

    defined

      on  [a,-,

     bj,

      of  local degree  2m — 1 on  subdivisions defined  by  A , - .  For

    notation,

      le t

      Q =   n?=i(

    a

    i ^i)

      be a

      rectangular

      parallelepiped in  /? ,  and let

    where A,-6^(0, , b

    t

    ).  Defining  n = max

    l

    ^

    i

    ^

    n

    n

    i

    ,  n =

     min

    we  say  that  A

     e

     ̂ (Q)   if  n/n   ̂a.  Then Schultz  [3.7] has  proved  the

      following

    theorem.

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    31/87

    P IE C E W I S E P O L Y N O M I A L S

      I N

      H I G H E R  D I M E N S I O N S

    21

    T H E O R E M   3.4.

      Given where

    an d  given

    then there exists a such that

    where  0   ̂p ̂   min r, 2m —

     1 ).

    Using an

      approach

     of Harrick  [3.8], suitable extensions can be made cf. [3.7])

    for n-dimen sional

      regions

      Q 

    f|

    =1

      [«;,/?,]  by  considering approximations  in

      where 9 x) is positive  in Q and   vanishes suitably on  dQ

      f o r  details,

      see

     [3.7]).

    It

      is

     interesting that Bramble

      and Hilbert

      [3.5], [3.6]  also  have approximation

    results, analogous

      to

     Theorem 3.3,

     for

     splines, which

     are

      effectively   treated

     as

     tensor

    products

      of

     one-dimensional splines

      on a

      uniform   mesh

      of

      side

      h.  If S^,k

     ^

     2,

    is

      the

      collection

      of all

      funct ions  u

      which have continuous partial derivatives

      of

    order  k — 2  in   R , and,  on any   hypercube  of  side  h, u  is a   polynomial  of  degree

    k  —  1 in  each variable, then  it can be  shown actually  v ia  interpolation) that given

    anyiie W£ /n,

    From this, using

     the Calderon

     extension theorem

      as in the

     proof

      of

     Theorem 3.3,

    one obtains cf. [3.5],

      [3.6])

      the   following.

    T H E O R E M

     3.5.  For any u e W*^),

    Based on notions of  quasi-interpolation,  de Boor and Fix [3.9] have obtained

    deep results which  are  like those  of  3.1.16),  but in the  norms  t t ^ H )   cf. (5.1.2 0)).

    3.2. Zlamal type extensions.  Taking  the  tensor product  to  attack higher-

    dimensional approximation problems

      for

      piece wise-polynomial

      func t ions

      is

     just

    one way of extending one-dimensional results. Another approach, more closely

    allied

      to finite-element

      methods

      is due to M.  Zlamal

      [3.10]-[3.12],

      and can be

    described  as

      follows.

    Assume  that Q is a bounded region in

      R

    2

      which can be triangulated, i.e., Q

    can be exactly decomposed into a finite number of triangular subregions 7],

    1  /̂   ̂N.  Fixing

      i and

      calling

      T

     =  7],  consider

      any

      polynomial

      of

     degree

      two

    in each variable:

    If  P i  are the

      vertices

      of  T

      see Fig.

      1 ) and

      Q

    t

      are the

      midpoints

      of the

      sides

      o f T ,

    1

       ̂ i ̂  3, then  for any

     constants

      / ^ , , C T , ,  1 ̂   i ̂  3, it is easy  to see that there

    exists

     a  unique p ( x j , x

    2

    ) of the   form

      (3.2.1)

     such that

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    32/87

     

    C H A P T E R

      3

    Thus ,

     if/is

      a cont inuous

     function

      on  T, there exists a

      un i que

     polynomial

     p(x

    l

    ,

     x

    2

    )

    interpolating

      on

      T in the sense tha t

    Zlamal  has  sh ow n cf. [3.10]) th e  following.

    T H E O R E M

      3.6.  Given

     any

     Q

     cR

    2

      which

     can be triangulated,  i.e.,

    let h

      denote  the largest  length  of any side of any  T

    {

    ,  and let 0  denote  the  smallest

    interior angle of any T

    {

    . Iffe

      C

    3

    (Q),

     and s is the  unique piecewise-polynomial  which

    interpolates  f in the  sense o f

      3.2.2),

     then

    for

      any triangulation with 9

     ^

     6

    0

      >  0, where K  is independent  of f  and the geom etry.

    Similar results have been obtained   by  Zlamal  for  piecewise-polynomial  of

    degree

      3)

      interpolations, defined

      by

      interpolating

      / and its two first

      partial

    derivatives   at  each vertex  and  interpolating  / at the   center  of gravi ty of  each

     

    t

     

    Since an  interval and a triangle are

     n -simplices

     for n =  1 and n = 2, respectively,

    it

      would seem natural to generalize

     Zlamal s

      results to an n-dimensional setting

    via n-simplices an n-simplex is the convex hu ll of n +  1 noncoplanar

     points

     in  R ),

    as

      done

      recently  by  Ciarlet  and  Wagschal

      [3.13].

      The  inherent shortcomings  of

    these results of  [3.10]-[3.13]  can, however, be seen by the typical result of

     Theorem

    3.6 above. As in

     Theorem 3.1

     and its Co rollary 3.2, the function

     space

     setting for the

    error bou nd of 3.2.3) is again not w hat one would natu ral ly

     expect;

      one would

    expect

      h

    2

      accuracy

      for eW^ft) in

      3.2.3). Fortu nately, Zlamal

      and

      Bramble

    [3.14] have established   an  improved  and  generalized version  of  Th eorem 3.6,

    which  we now

      describe.

    Given

      a

      bounded region  Q

     in

      R ,  whose boundary

      5Q is a

      simplicial complex

      a  generalization  to  R of a  polygon  in R

    2

    ),  assume  a  generalized triangulation

    T

      over

      ft,

      i.e.,  Q .

      is the  set-theoretic

      union

      of a finite

      number

      of

      n-simplices  S,,

    1

     ^

      i   ̂N,

      whose interiors

      are

      pair-wise disjoint

      and

      such that, given

      any

    n-simplex S,

      of the

      triangulation, each

      one of its n —  1 )-faces  is

      either

      a

      portion

    of   the

      boundary  < Q

      or

      else

      is  also  an n —

     l)-face

      of

      another n-simplex

      of the

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    33/87

    P I E C E W I S E - P O L Y N O M I A L S

      IN

      H I G H E R D I M E N S I O N S

     

    tr iangulation.

      For ease of

      description

      here,

      assume

      that all

      simplices

      S,

      are

    equilateral

      and

      that

      the

      region  Q

      can be

      triangulated

      by

      such reg ular simplices

    S?  for a

     sequence  of

     h -* 0 ,

     where

     h is the

      length

      of a common edge of an

     equilateral

    simplex.

      Next,

      if

      T

    h

    (R )

      is the

      subspace

      of

      C° (R )

      of all fun ctio ns which are poly-

    nomials

     o f

      degree

      tw o  in

     each variable

      on  each

      regular) simplex

      5{ of

     R

    n

    of

     edge

      h ,

     then

      T

    h

      G l )  is

      defined

      as the

      restriction

      of  T

    h

    (R )  to

      Q.

     Given

    there

      is, in the manner  of

      3.2.2),

      a

      unique  w

    h

    e  T

    h

    (Q )  which  interpolates

      u at

      each

    vertex

      and

      midpoint

      of

     each

     edge of the

      triangulation

      of Q.

     Then,

      in the

      manner

    of  3.1.8H3.1.12),

     one

     obtains

      th e

      following theorem  cf.

     [3.14]).

    T H E O R E M

      3.7.  Let  Q  be a bounded region in R which can be triangulated by

    regular

      simplices  Sf  for a  sequence  of h

      ->

      0.

      Then

    for

    where C is  independent  ofh and u.

    It  is important  to  note that  the  results  of Theorems  3.3 and  3.7, while proved

    either  fo r hypercubes  or  regular

      simplices

     in R , do  extend  to

     more general regions.

    In the case o f Theorem 3.3,

     rectangular

     parallelepipeds may be used,

     provided

      that

    the

     ratio

     of the  lengths  of any

     edges

      remains  bounded

     above

     and  below  for any  h .

    The same is true of Theorem

      3.7.

    For

      computer  implementat ion

      of

      these  so-called Zlamal-type  finite element

    methods,

      see

     George

      [3.15].

    REFERENCES

    [ 3 . 1 ]  G.  B I R K H O F F ,  M. H.  S C H U L T Z AND R. S.  V A R G A , Piecewise Herm ite interpolation  in one and two

    variables

      with applications

     to

     partial

     differential

      equations, Num er . Math . ,

      1 1

      1968),

     pp.

      232-

    256.

    [3.2]  A.  S A R D ,  Linear

     Approximation,

      Math. Survey 9 , Am erican Mathe m atical Society, Providence,

    Rhode Island, 1963.

    [3.3]

      S.

     A G M O N , Lectures

     o n

     Elliptic Bound ary  Value  Problems,

     V an

      Nostrand, Princeton,

      New

      Jersey,

    1 9 6 5 .

    [ 3 . 4 ]  J. H.  B R A M B L E  AND S. R.  H I L B E R T ,  Bounds for a  class o f  linear functional  with applications  to

    Hermite interpolation,  Numer . Math . ,  16

      1971) ,

     pp.  362-369.

    [3.5]  , Estimation

     of  linear

     functional  on

     Sobolev

      spaces  with applications to  Fourier transforms,

    SIAM J. Nu m er. An al . , 7 1970), pp. 112-124.

    [3.6]  S. R.  H I L B E R T ,  Numerical  methods for  elliptic boundary value problem s,  Thesis, University  of

    Mar y l and ,  1969.

    [3.7]  M. H.  S C H U L T Z ,

      Multivariate

      spline  functions  and  elliptic problems,  Approximat ions wi th

    Special Emphasis on Spline Functions, I. J. Schoenberg, ed., Academic Press, New York,

    1 9 6 9 ,  pp.279-347.

    [3.8]

      I. I.

      H A R R I C K ,

     Approximation

      of

     functions

      which

      vanish

     on the

     boundary

     of

      a

     region, together with

    their partial derivatives,

     by

     functions  of

      special

      type, A kad . Nau k . SSSR  I zv .  Sibirsk . Otd. ,

      4

     1963) , pp. 408^25.

    [3.9]

      C. DE

     B O O R   AND

     G.

      Fix,  Spline approximation

      by

      quasi-interpolants,

      J.

      Approx. Theory,

      to

    appear .

    [3.10] M.  Z L A M A L ,  On the

     finite  element method,  N u m e r .

     M a th .,  12

      1968),

     pp. 394-409.

    [3.11]

      ,

      O n

      some

      finite

      element procedures

     for

      solving second  order  boundary value problems,

    Ibid.,  14 1969), pp. 42-48.

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    34/87

    24  C H A P T E R 3

    [3.12]

      A finite

      element procedure

      of the

      second order  accuracy.

      Ibid.,  14

      1970),

      pp .

      394-402.

    [3.13]  P. G.  CIARLET  AND C.  WAGSCHAL,  Multipoint  Taylor  formulas  an d  applications  to the finite

    element method Ibid.,

      17

      1971),

     pp.

     84-100.

    [3.14]  J.  B R A M B L E

     A ND

     M.

      Z L A M A L

    Triangular elements  in the finite   element method M a t h .

     Comp.

    24

      1970) ,

     pp.

     809-820.

    [3.15] J. A.

      GEORGE,  Computer implementation

      of the finite

      element

      method.

      Thesis Rep. CS208,

    Computer  Science  Department, Stanford University, California,  1971.

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    35/87

    CHAPTER

     

    The Rayleigh-Ritz-Galerkin

      Method

      for

    Nonlinear Boundary Value Problems

    4.1. One dimensional problem. To  show how  theorems about interpolation  and

    approximation by piecewise-polynomial functions can be used to deduce results

    about approximate solutions

      of

      nonlinear boundary value problems,

      we first

    discuss

      two-point boundary value problems, as thoroughly considered in Keller

    [4.1].

    Specifically,  we

      shall consider problems

      of the

      form

    with

      homogeneous Dirichlet boundary conditions

    where

      the

      differential

      operator

      in self-adjoint

     form

      is given by

    For

      one-dimensional problems, nonhomogeneous bound ary conditions  D

    k

    u a )  —

     a

    k

     

    D

    k

    u b)

      =  / ?

    f c

      0

     

    k

     

    m   —  1, can alway s be reduced to the form

      4.1.2)

      by means

    of

      a

      suitable change

      of

      dependent variable. Other types

      of

      boundary conditions,

    such  as  nonlinear, Neumann,  and  mixed boundary conditions  in one  dimension

    can

     also be trea ted cf. [4.2], [4.3] and [4.4]).

    For

      specific assumptions about

      < £

     

    we

     assume that

      all  P are

      bounded

      on

      [a ,

     b ]

    ,

    0

     

    j  m and that the operator  of  4.1.3) is W^a, b ]-elliptic, i.e., there exists a

    positive constant  K  such that

    where  we  recall that  W™[a ,b]  is the  collection  of all  real-valued functions w x),

    where  D

    m

    ~

    1

    w x)  is  absolutely continuous  on [a,

     b ] ,

      D

    m

    w e L

    2

    [ a , b ] ,  and  where

    iyw a)  =  iyw b)  =  0 for 0  j  m —  1. In a ddition, we assume that

      f x , u )

      is a

    real-valued

      measurable

      function

      on

      [a,b]

      x  R

      such that

      f x ,

     v(x))eL

    2

    [a,

      b ]  fo r

    all

     v

     e W™ [a ,

     b ], and such that /  satisfies

     

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    36/87

    26

    C H A P T E R 4

    fo r  a lmost  all  x e  [a, b]  and all  — oo  <

      «,

     v   0,

      there exists

     a

      posi t ive constant

    M(c)

      such that

    Defining

      th e

      qua si-bilinear form

    fo r  all  u,  V E   W ™ [a,b],  we say  that  the  bounda ry va lue p rob l em  o f  (4.1.1 )- 4.1.2)

    admits

      a

      generalized so lu tion

      u  in

      W™[a ,

     b]

     (c f. Bro wder

      4.5]) if

    A

      general result , based

      on the

      theory

      o f

      m o no t o ne o p e r a to r s

      to be

      discussed

    in   §

     4.2,

     is the

      fo l l owing theo rem.

    T O R M  4.1.  W ith  the assu mptions o/ 4.1.4)- 4.1.6), then  the  nonlinear boundary

    value problem (4.1.1)-(4.1.2) admits  a u nique generalized solution  in  W [a,  b].

    Next , if

      S M

      is any finite-dimensio nal  subspace  o f

      W ™ [ a .

    b], then, in  analog y wi th

    (4.1.8),

      we  would cal l  W

    M

      in  S

    M

      the  Galerkin approximation  of the  generalized

    so lu t ion  u of (4.1.1 H4.1.2) if

    The  next resul t shows that

      W

    M

    ,

      so  def ined,  is  uniquely determined,  and  gives

    e r r o r b o u nds  fo r  u — W

    M

     .

    T O R M

      4.2.  W ith

      the

      assumptions

      of

      4.1.4)- 4.1.6),  there

      is a

      unique

      W

    M

      in

    S

    M

      which

     satisfies

      (4.1.9). M oreover, there exist constants  K and K',  independent of

    the  choice of  S

    M

      such that

    for  all 0 ^7

     

    m —  1,  where u is the unique generalized solution of  (4.1.1)-(4.1.2)

    inW^[a b].

    W e

      shall show

      in

      §4.2 that

      th e

      second inequal i ty

     o f

     (4.1.10)

     is a

     co nsequence

      o f

    Theorem

      4.6 on

      mono tone ope ra t o r s .

      The first

      inequality

      o f

     (4.1.10)

     is

     elem entary

    to

      establish,

      and we

     give

     a

      di rect proof .

      For any  v e  W™[a , b] and any

      nonnegat ive

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    37/87

    NONLINE R

      BOUND RY

      V LUE P R OBLEMS

    27

    integer; with  0 g ̂ m   — 1, the

     fact

      that  iyv a)  =

      D*v b)

      = 0 allows  us to  write

    that

    Hence,

    where sgn y =   1 for any y   ̂0 and sgn y =  —  1 if y

    j,]  are

      not, basically because they were derived

      as

      consequences

      of

    error bounds

      in || •

     H ^ i a b ]-

      To be

      more specific, consider

      the

      following  special

    caseof(4.1.1H4.1.2):

  • 8/17/2019 Varga - Functional Analysis and Approximations in Numerical Analysis

    38/87

    28 CHAPTER 4

    where  f x,  w)eC°([0,1]

      x  R),  and  where /  satisfies  the  hypotheses  of (4.1.5)-

    (4.1.6),

      with

      A =  n

    2

    .

     Using

     the

     Hermite subspace  Hj^AJ c

    tf^[0,1], it  follows

    from

     Theorem 4.3 that if the unique generalized solution

     u

     is an element of

     C

    2

    [0,1],

    then

      from

     (4.1.12)

     (with

     a = 2, m =

     1),

    Ciarlet [4.7] improved the above error bound to

    and this has subsequently been generalized in Perrin, Price and Varga [4.8].

    We sketch these developments below.

    Given the  nonlinear boundary value problem  of  (4.1.1)-(4.1.2),  choose  the

    specific y-spline

     subspace

      S

    0

    (Jzf,

     A,

     z),

     where

     

    is

     given

     by

     (4.1.3).

     In

     this develop-

    ment,

     it is important that the  differential  operator  Z£  of (4.1.3) be chosen equal  to

    the  operator  E of (2.2.1) defining  the  y-spline space. Then,  if u is the  generalized

    solution of (4.1.1 H4.1-2) in  ̂[a, b],  and if  V V

     

    is its approximation in  S

    0

    (J ?, A, z)

    (cf. Theorem 4.3), let w be the interpolation  of u in S

    0

    (J5f, A, z) , in the sense of (2.2.4).

    Following the

     construction

     of

     [4.8],

     it can be

     shown that

    If

     ue

     W

    a

    2

    [a,b],  where

     m

     ̂  a ^

     2m, it

      follows

      from

      Theorem

      2.3 and

     Corollary

    1.10

     that

    so that the inequality of (4.1.14), using (4.1.14') with; = 0, reduces to

    Hence,  from  the triangle inequality and the  inequalities of (4.1.14') and  (4.1.14 ),

    for  any 0  ĵ ^ m. Similar results in || •

     ||

    Loo

    [«,6]

     c n

      also be established,  and are

    stated in the

     following

     theorem.

    THEOREM   4.4.

      With  the

      assumptions

      of  (4.1.4)-(4.1.6),  let u be the

      unique

    generalized

     solution

     of 4A.l)- 4.l.2)  in

     ̂ ^[a^b],

     and assume further

      thatueW

    2

    {a,b],

    where m ̂  a ^

     2m. //

      S

    M

      = S

    0

      ^f,

      A, z)

     and W

    M

      is the  unique element  in S

    M

      which

    satisfies

      (4.1.9),

     then

    Furthermore, if u

     e

     C

    ff

    [a,  b],