van est differentiation and van est integration · based on joint work with: david li-bland...

48
Van Est differentiation and Van Est integration Eckhard Meinrenken Global Poisson Seminar, April 2020 Eckhard Meinrenken Van Est differentiation and Van Est integration

Upload: others

Post on 24-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est differentiation and Van Est integration

Eckhard Meinrenken

Global Poisson Seminar, April 2020

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 2: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Based on joint work with:

David Li-Bland (L’Ens. Math. 61 (2015)),

Maria Amelia Salazar (Math. Ann. 376 (2020)).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 3: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Overview

For a Lie group G , there is the group cochain complex

(C•(G ), δ)

where Cp(G ) = C∞(Gp), and

(δf )(g1, . . . , gp+1)

= f (g2, . . . , gp+1) +

p∑i=1

(−1)i f (g1, . . . , gigi+1, . . . , gp+1)

+ (−1)p+1f (g1, . . . , gp).

For a Lie algebra g, there is the Chevalley-Eilenberg complex

(C•(g),d)

where Cp(g) = ∧pg∗, and d = dCE .

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 4: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Overview

Theorem (Van Est, 1953)

There is a canonical cochain map

VEG : C•(G )→ C•(g)

inducing an isomorphism in low degree (dependingon connectivity properties).

Working with the complex C•(G )e of germs of functions, getisomorphism in all degrees. (Houard, Swierczkowski).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 5: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Overview

Let K be a maximal compact subgroup of G .

Theorem (Van Est, 1955)

There is a canonical isomorphism between thecohomology of (C•(G ), δ) and the cohomology of(C•(g)K−basic, d).

Dupont, Shulman-Tischler, Guichardet (1970s) described explicitcochain maps

RG/K : C•(g)K−basic → C•(G )

realizing this isomorphism.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 6: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Overview

Let G ⇒ M be a Lie groupoid, with Lie algebroid A = Lie(G ).

Weinstein-Xu (1991) constructed a cochain map

VEG : C•(G )→ C•(A).

Crainic (2003) proved versions of van Est’s theorems in thiscontext.

Li-Bland-M (2015) gave construction of VEG , and of a cochainmap C•(A)→ C•(G )M , using ‘Perturbation Lemma’.

Cabrera-Marcut-Salazar (2017) gave a formula for a right inverse

RG : C•(A)→ C•(G )M .

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 7: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Overview

Objectives:

Conceptual understanding of these maps and their properties;avoiding ‘calculations’.

Show that maps of Cabrera-Marcut-Salazar and Li-Bland-Mare the same.

Further generalizations, new results.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 8: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

I. The Perturbation Lemma

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 9: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

The Perturbation Lemma: setting

Given a double complex

D0,1δ//

d

OO

D1,1δ//

d

OO

D0,0δ//

d

OO

D1,0δ//

d

OO

we have corresponding total complex

(Tot•(D),d + δ).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 10: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

The Perturbation Lemma: setting

Consider a double complex with augmentations

X1i//

d

OO

D0,1δ//

d

OO

D1,1δ//

d

OO

X0i//

d

OO

D0,0δ//

d

OO

D1,0δ//

d

OO

Y0δ//

j

OO

Y1δ//

j

OO

with a horizontal homotopy h: D•,• → D•−1,•

hδ + δh = idD −i p, p: D0,• → X•, p i = idX .

Claim: can turn h into homotopy operator for (Tot•(D),d + δ).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 11: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

The Perturbation Lemma: statement

Lemma (Brown, Gugenheim)

Suppose[h, δ] = idD−i p, p i = idX .

Put h′ = h(1 + dh)−1, p′ = p(1 + dh)−1. Then

[h′, d + δ] = idD−i p′, p′ i = idX .

(Proof: Direct verification.) So, can invert the second map in

Y•j−→ Tot•(D)

i←− X•,

thereby producing a cochain map

p′ j = p (1 + dh)−1 j : Y• → X•.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 12: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

The Perturbation Lemma: statement

On elements of degree p, the map

p (1 + dh)−1 j = p (−dh)p j : Yp → Xp

is a ‘zig-zag’:

X2 D0,2poo

D0,1

d

OO

D1,1−hoo

D1,0

d

OO

D2,0−hoo

Y2

j

OO

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 13: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

The Perturbation Lemma: example

Example (Cech-de Rham double complex)

Let M be manifold with open cover U = Ua.

Cp(U ,Ωq) =⊕

Ωq(Ua0 ∩ · · · ∩ Uap)

Ω1(M)

i//

d

OO

C 0(U ,Ω1)δ//

d

OO

C 1(U ,Ω1)δ//

d

OO

Ω0(M)

i//

d

OO

C 0(U ,Ω0)δ//

d

OO

C 1(U ,Ω0)

d

OO

δ//

C 0(U ,R)?j

OO

δ// C 1(U ,R)

?j

OO

δ//

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 14: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

The Perturbation Lemma: example

Example (Cech-de Rham double complex)

Partition of unity χa horizontal homotopy

(hω)a0···ap−1 =∑a

χa ωa a0···ap−1 , [h, δ] = 1− i p

where p: ωa 7→∑

a χaωa.So, can ‘invert’ the second map in

C •(U ,R)j−→ Tot•(C (U ,Ω))

i←− Ω•(M)

to produce a Cech-de Rham cochain map

C •(U ,R)j−→ Tot•(C (U ,Ω))

p(1+dh)−1

−→ Ω•(M)

For good cover this is a quasi-isomorphism. (Homotopy inverse toj constructed by Perturbation Lemma as well).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 15: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

The Perturbation Lemma: example

Cf. Bott-Tu, Differential Forms in Algebraic Topology, page 102:

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 16: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

The Perturbation Lemma: addendum

Suppose we also have vertical homotopy k, so [d, k] = idD−j q.So, have zig-zags in both directions:

φ• = p (1 + dh)−1 j : Y• → X•

ψ• = q (1 + dk)−1 i : X• → Y•.

Lemma

Suppose h k = 0, p k = 0. Then φ• ψ• = idX.

Idea of proof: successively ‘shorten’ the zig-zags.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 17: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

X2i //

D0,2p

oo

−k

D0,1

d

OO

δ //D1,1

−hoo

−k

D1,0

d

OO

δ //D2,0

−hoo

q

Y2

j

OO

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 18: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

X2i //

D0,2p

oo

−k

D0,1

d

OO

δ //D1,1

−hoo

−k

D1,0

d

OO

δ //D2,0

−hoo

Y2

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 19: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

X2i //

D0,2p

oo

−k

D0,1

d

OO

δ //D1,1

−hoo

−k

D1,0

d

OO

D2,0

Y2

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 20: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

X2i //

D0,2p

oo

−k

D0,1

d

OO

δ //D1,1

−hoo

D1,0 D2,0

Y2

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 21: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

X2i //

D0,2p

oo

−k

D0,1

d

OO

D1,1

D1,0 D2,0

Y2

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 22: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

X2i //

D0,2p

oo

D0,1 D1,1

D1,0 D2,0

Y2

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 23: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

X2

idX

D0,2

D0,1 D1,1

D1,0 D2,0

Y2

Q.E.D.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 24: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

II. Van Est maps for Lie groups and Lie algebras

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 25: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est double complex

Recall Cp(G ) = C∞(Gp), Cq(g) = ∧qg∗.

Van Est double complex (D(G ), δ,d):

Dp,q(G ) = C∞(Gp × G ,∧qg∗),

with

(δψ)(g1, . . . , gp+1; g)

= ψ(g2, . . . , gp+1; g) +

p∑i=1

(−1)iψ(g1, . . . , gigi+1, . . . , gp+1; g)

+ (−1)p+1ψ(g1, . . . , gp; gp+1g)

and d = (−1)pdCE (using principal G -action on last factor).

Horizontal and vertical augmentation maps:

i : C•(g)→ D0,•(G ), j : C•(G )→ D•,0(G ).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 26: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est double complex

∧1g∗

i//

d

OO

C∞(G 0 × G ,∧1g∗)δ//

d

OO

C∞(G 1 × G ,∧1g∗)δ

//

d

OO

∧0g∗

i//

d

OO

C∞(G 0 × G ,∧0g∗)δ//

d

OO

C∞(G 0 × G ,∧1g∗)

d

OO

δ//

C∞(G 0)?

j

OO

δ// C∞(G 1)

?

j

OO

δ//

For K ⊆ G , this restricts to the K -basic subcomplexes

D•,•(G )K−basic, (∧•g∗)K−basic.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 27: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est differentiation

HereDp,q(G )K−basic = C∞(Gp × G , (∧qg∗)k−hor)

K .

Lemma

For K ⊆ G compact (e.g. K = e) have horizontal homotopyoperator,

h = AvK hG

where AvK denotes averaging, and

(hGψ)(g1, . . . , gp−1; g) = (−1)pψ(g1, . . . , gp−1, g ; e)

So, we obtain a cochain map

VEG/K = p (1 + dh)−1 j : C•(G )→ C•(g)K−basic.

Q: What is this map?Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 28: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est differentiation

Consider Gp+1-action on Gp

(a0, . . . , ap) · (g1, . . . , gp) = (a0g1a−11 , a1g2a

−12 . . . , ap−1gpa

−1p ).

Let AvK : C∞(Gp)→ C∞(Gp) averaging wrt Kp+1 ⊆ Gp+1.

Theorem (M-Salazar)

We have VEG/K = VEG AvK with

VEG (f ) = (d(1) · · · d(p)f )∣∣(e,...,e)

.

Hered (i) : C∞(Gp,∧g∗)→ C∞(Gp,∧g∗)

is CE differential for diagonal action of G ⊆ Gp+1−i ⊆ Gp+1.

VEG is the ‘standard’ van Est map.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 29: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est integration

For integration, we identify

(∧qg∗)K−basic = Ωq(G/K )G .

Similarly,Dp,q(G )K−basic = C∞(Gp, Ωq(G/K )).

Here, dCE becomes de Rham differential.

Suppose K ⊆ G is maximal compact. Then

G/K ∼= g/k.

For G semisimple, follows from Cartan decomposition: G = K × p.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 30: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est integration

The linear retraction of G/K ∼= g/k defines a de Rham homotopyoperator,

k : C∞(Gp, Ωq(G/K ))→ C∞(Gp, Ωq−1(G/K ))

and hence a van Est integration map

RG/K = q (1 + δk)−1 i : C•(g)K−basic → C•(G ).

Theorem (M-Salazar)

The van Est integration map RG/K is a right inverse to the van Estdifferentiation map VEG/K .

Proof: check h k = 0, p k = 0.

Q: What is the map RG/K?

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 31: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est integration

(∧g∗)K−basic∼= Ω(G/K )G , α 7→ αG/K .

Theorem (M-Salazar)

The cochain map RG/K : (∧g∗)K−basic → C∞(Gp) is given by

RG/K (α)(g1, . . . , gp) =

∫[0,1]p

γ(g1, . . . , gp)∗αG/K

where γ(g1, . . . , gp) : [0, 1]p → G/K defined below.

Definition ofγ(g1, . . . , gp)

∣∣t1,··· ,tp

∈ G/K

uses retraction λt of G/K ∼= g/k:

eK → G/Kgp−→ G/K

λtp−→ G/K · · · g1−→ G/Kλt1−→ G/K

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 32: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

III. Lie groupoids and Lie algebroids

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 33: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Lie groupoids

We’ll now consider similar techniques for Lie groupoids G ⇒ M.

G manifold of arrows;M ⊆ G submanifolds of units;s, t : G → M source, target (surjective submersions):

t(g) s(g)

g

Multiplication = concatenation (gh, defined when s(g) = t(h))

Units = trivial arrows

Inversion = reversing arrows

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 34: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Lie groupoids

The space BpG ⊆ Gp of p-arrows

m0 m1 m2 · · · · · · mp

g1 g2 g3gp

is a simplicial manifold, with face maps

∂i : BpG → Bp−1G

dropping mi . Explicitly,

∂i (g1, . . . , gp) =

(g2, . . . , gp) i = 0

(g1, . . . , gigi+1, . . . , gp) 0 < i < p

(g1, . . . , gp−1) i = p

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 35: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Lie groupoids

Groupoid cochain complex: C•(G ) = C∞(B•G ) with differential

δ =

p+1∑i=0

(−1)i∂∗i : Cp(G )→ Cp+1(G )

Variations:

Normalized subcomplex C•(G ): pullbacks under degeneracymaps are 0.

Localized complex Cp(G )M = Cp(G )/ ∼ of smooth germsalong M ⊆ BpG .

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 36: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Lie groupoids

A Lie groupoid G ⇒ M with source, target maps s, t : G → M hasan associated Lie algebroid A⇒ M:

A = Lie(G ) = TG |M/TM

anchor a : Lie(G )→ TM induced from T t−T s : TG → TM,

[·, ·] from Γ(Lie(G )) ∼= X(G )L

For Lie algebroid A→ M, have Lie algebroid complex

C•(A) = Γ(∧•A∗)

with Chevellay-Eilenberg (or de Rham) differential.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 37: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Lie groupoids

Example (Alexander-Spanier complex)

Pair(M)⇒ M pair groupoid Bk Pair(M) = Mk+1. So,

C•(Pair(M)) = C∞(M•+1),

with

(δf )(m0, . . . ,mp+1) =∑

(−1)i f (m0, . . . , mi , . . . ,mp+1)

has trivial cohomology. But localized complex C•(Pair(M))Mcomputes de Rham cohomology.

Actually, for every proper Lie groupoid G ⇒ M the complex C•(G )has trivial cohomology (M. Crainic, 2003).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 38: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est double complex

Given G ⇒ M, define

EpG = (a0, . . . , ap) ∈ Gp+1| s(a0) = . . . = s(ap).

This is a principal G -bundle

EpG

πp

κp// BpG

M

πp(a0, . . . , ap) = the common source,

κp(a0, . . . , ap) = (a0a−11 , a1a

−12 , . . . , ap−1a

−1p )

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 39: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est double complex for Lie groupoids

Get simplicial manifold

EpG

πp

κp// BpG

M

with face maps ∂i : EpG → Ep−1G deleting i-th entry. Fibration

κp : EpG → BpG fiberwise forms (Ω•F (EpG ), dRh).

Definition (Crainic, 2003)

The double complex (D•,•, δ,d) with

Dp,q = ΩqF (EpG ),

δ =∑

(−1)i∂∗i , d = (−1)pdRh is the van Est double complex.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 40: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est double complex for Lie groupoids

Γ(∧1A∗)

i//

d

OO

Ω1F (E0G )

δ//

d

OO

Ω1F (E1G )

δ//

d

OO

Γ(∧0A∗)

i//

d

OO

Ω0F (E0G )

δ//

d

OO

Ω0F (E1G )

d

OO

δ//

C∞(B0G )?

j

OO

δ// C∞(B1G )

?

j

OO

δ//

Here:

i = inclusion as left-invariant (leafwise) forms,

j = κ∗p

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 41: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est differentiation for Lie groupoids

G. Segal: Classifying spaces and spectral sequences (1968) ⇒

Theorem

There is a canonical simplicial deformation retraction from E•Gonto M.

As a consequence, get a horizontal homotopy operator,

δh + hδ = id−i p, p i = id .

Here p: ΩqF (E0G )→ Γ(∧qA∗) is restriction to M ⊆ E0G = G .

we obtain a van Est differentiation map

VEG : p (1 + dh)−1 j : C•(G )→ C•(A).

Q: What is this map?

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 42: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est differentiation for Lie groupoids

Theorem (Li-Bland, M)

The cochain map

VEG : p (1 + dh)−1 j : C•(G )→ C•(A).

is the Van Est map of Weinstein-Xu (1991).

Weinstein-Xu’s map VEG : C∞(BpG )→ Γ(∧pA∗) is given by

VEG (f )(X1, . . . ,Xp) =∑s∈Sp

sign(s) L(X 1,]s(1)) · · · L(X p,]

s(p)) f∣∣∣M

Here X i ,], X ∈ Γ(A), i = 0, . . . , p is the generating vector field forthe i-th G -action on BpG :

h.(g1, . . . , gp) = (g1, . . . , gih−1, hgi+1, . . . , gp).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 43: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est differentiation for Lie groupoids

Example

For the pair groupoid Pair(M)⇒ M, the map

VEPair(M) : C∞(Mp+1)→ Ωp(M)

is given by

VEPair(M)(f0 ⊗ · · · ⊗ fp) = f0 df1 ∧ · · · ∧ dfp

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 44: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est integration for Lie groupoids

Next, let’s consider vertical homotopies.

Definition (Cabrera-Marcut-Salazar)

A tubular structure for G ⇒ M is a tubular neighborhoodembedding

A = Lie(G )→ G

taking vector bundle fibers to t-fibers.

We’ll pretend that this is a global diffeomorphism.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 45: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est integration for Lie groupoids

∀p, the principal G -bundle has a canonical trivialization

EpG ∼= BpG ×M G .

Tubular structure retraction of EpG onto BpG .

vertical homotopy operator k : Ω•F (E•G )→ Ω•−1F (E•G ),

[d, k] = id−j q;

here q is given by the pullbacks under BpG → EpG .

we obtain a van Est integration map

RG = q (1 + δk)−1 i : C•(A)→ C•(G )M .

As before, we can check VEG RG = idC(A).

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 46: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Van Est integration for Lie groupoids

Q: What is this cochain map RG = q (1 + δk)−1 i?

Theorem (M-Salazar)

This composition is the van Est integration map RG ofCabrera-Marcut-Salazar (2017).

Explicitly, with Γ(∧A∗) ∼= ΩF (G )L,

(RGα)(g1, . . . , gp) =

∫[0,1]p

γ(g1, . . . , gp)∗αL.

Hereγ(g1, . . . , gp) : [0, 1]p → G is given by

s(gp) ∈ Ggp−→ G

λtp−→ G · · · g1−→ Gλt1−→ G

(In C-M-S 2017, it was checked by direct calculation that RG iscochain map, right inverse to VEG .)

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 47: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Further remarks, work in progress

We also consider van Est integrations for proper groupoidactions of G ⇒ M on manifolds Q → M. (Cf. Crainic 2003)

More complicated discussion for more general van Est map ofMehta (2006) and Abad-Crainic (2011),

VEG : Ω•(B•G )→W•,•(A)

In joint work (in progress) with Jeff Pike, we plan togeneralize further to double groupoids, LA-groupoids, doubleLie algebroids and such.

Eckhard Meinrenken Van Est differentiation and Van Est integration

Page 48: Van Est differentiation and Van Est integration · Based on joint work with: David Li-Bland (L’Ens. Math. 61 (2015)), Maria Amelia Salazar (Math. Ann. 376 (2020)). Eckhard Meinrenken

Thanks, and stay safe!

Eckhard Meinrenken Van Est differentiation and Van Est integration