validation of boxwing models for gnss satellites · astronomical institute university of bern...

20
Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1 , A.Villiger 1 , R. Dach 1 , A. Jäggi 1 1 Astronomical Institute, University of Bern, Switzerland IGS Workshop 2018 29. October 2018, Wuhan

Upload: others

Post on 25-Aug-2020

60 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Astronomical Institute University of Bern

Validation of boxwing models for GNSS satellites

S. L. McNair1, A.Villiger1, R. Dach1, A. Jäggi1

1Astronomical Institute, University of Bern, Switzerland

IGS Workshop 201829. October 2018, Wuhan

Page 2: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 2 Astronomical Institute University of Bern

Content

Background

Approach

About the scalable boxwing model

Scale Factors

Plate Groupings

Results

Conclusion

Page 3: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 3 Astronomical Institute University of Bern

Background

Background

Radiation Pressure a significant source of error in orbit modeling

Solar Radiation Earth Reflected/Emitted Radiation

New Empirical CODE Orbit Model (ECOM2) [Arnold et al. 2015, J. Geod.]

Effective for GPS & GLONASS outside of eclipse season Less effective for Galileo, etc.

Adjustable boxwing model [Solano, 2014, PhD Thesis]; [Montenbruck et al. 2015, J. Geod.]; [Montenbruck et al. 2017, Adv. Space Research]

Semi-Analytical model for radiation pressure Improved performance during eclipse season

Page 4: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 4 Astronomical Institute University of Bern

Approach

Approach

Implement Scalable-boxwing model in development version of Bernese GNSS Software

Compute scale factors per satellite, plate, etc.

Investigate various plate groupings

Identify long-term trends in scale factors per SVN

Analyze improvements over ECOM2

ECOM2-only

ECOM2-plus-boxwing

ECOM2-plus-scaled-boxwing:

• Satellite-specific, Yearly-average Scale Factors

Page 5: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 5 Astronomical Institute University of Bern

Scalable-Boxwing Model Definition

Radiation Pressure force calculation per plate:

Without immediate thermal re-radiation: Ԧ𝐹 = −Φ

𝑐⋅ 𝐴 cos 𝜃 ⋅ 𝛼 + 𝛿 Ԧ𝑒⨀ +

2

3𝛿 Ԧ𝑒𝑛 + 2𝜌 cos 𝜃 ⋅ Ԧ𝑒𝑛

With immediate thermal re-radiation (MLI): Ԧ𝐹 = −Φ

𝑐⋅ 𝐴 cos 𝜃 ⋅ 𝛼 + 𝛿 Ԧ𝑒⨀ +

2

3Ԧ𝑒𝑛 + 2𝜌 cos 𝜃 ⋅ Ԧ𝑒𝑛

Φ = solar flux𝑐 = speed of light𝐴 = surface area of plate𝛼 = absorptivity of plate𝛿 = diffuse reflectivity of plate𝜌 = specular reflectivity of plateԦ𝑒𝑛 = unit vector normal to plateԦ𝑒⨀ = unit vector towards radiation source𝜃 = angle between Ԧ𝑒⨀ and Ԧ𝑒𝑛

Exact geometry and material properties are not necessarily known. A single scale factor multiplied by the force on a given plate can compensate for uncertainties in all four plate properites.

Scale factors can be introduced as solveable parameters in the least squares model.

Constants

Attitude geometry

Macromodel definition𝛼 + 𝛿 + 𝜌 = 1

Page 6: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 6 Astronomical Institute University of Bern

Example Boxwing Macromodel & Plate Groupings: GPS

Macromodel Definitions:

By SV block Example is GPS IIF

As collection of plates Geometrical and optical properties for each plate

Force calculated on any plate where cos 𝜃 > 0 and summed together

Only specular and diffuse reflectivity are specified

Absorptivity is Calculated

Plate Mod Area (𝐴) [m2] Normal ( Ԧ𝑒𝑛) Specularity (𝜌) Diffusivity (𝛿) Rotation Sys. Description1 1 5.720 [+1, 0, 0] 0.112 0.448 +X2 1 5.720 [-1, 0, 0] 0.112 0.448 -X3 1 7.010 [0, +1, 0] 0.112 0.448 +Y4 1 7.010 [0, -1, 0] 0.112 0.448 -Y5 1 5.400 [0, 0, +1] 0.112 0.448 +Z6 1 5.400 [0, 0, -1] 0.000 0.000 -Z7 0 22.250 [+1, 0, 0] 0.195 0.035 +SUN: [0,+1, 0] Solar panels front8 0 22.250 [-1, 0, 0] 0.196 0.034 -SUN: [0,+1, 0] Solar panels back

[Montenbruck et al, 2015. Adv. In Space Research]

Mult

iscale

Page 7: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 7 Astronomical Institute University of Bern

Monoscale

Example Boxwing Macromodel & Plate Groupings: GPS

Macromodel Definitions:

By SV block Example is GPS IIF

As collection of plates Geometrical and optical properties for each plate

Force calculated on any plate where cos 𝜃 > 0 and summed together

Only specular and diffuse reflectivity are specified

Absorptivity is Calculated

Plate Mod Area (𝐴) [m2] Normal ( Ԧ𝑒𝑛) Specularity (𝜌) Diffusivity (𝛿) Rotation Sys. Description1 1 5.720 [+1, 0, 0] 0.112 0.448 +X2 1 5.720 [-1, 0, 0] 0.112 0.448 -X3 1 7.010 [0, +1, 0] 0.112 0.448 +Y4 1 7.010 [0, -1, 0] 0.112 0.448 -Y5 1 5.400 [0, 0, +1] 0.112 0.448 +Z6 1 5.400 [0, 0, -1] 0.000 0.000 -Z7 0 22.250 [+1, 0, 0] 0.195 0.035 +SUN: [0,+1, 0] Solar panels front8 0 22.250 [-1, 0, 0] 0.196 0.034 -SUN: [0,+1, 0] Solar panels back

[Montenbruck et al, 2015. Adv. In Space Research]

Page 8: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 8 Astronomical Institute University of Bern

Sm

art

scale

-2

Example Boxwing Macromodel & Plate Groupings: GPS

Macromodel Definitions:

By SV block Example is GPS IIF

As collection of plates Geometrical and optical properties for each plate

Force calculated on any plate where cos 𝜃 > 0 and summed together

Only specular and diffuse reflectivity are specified

Absorptivity is Calculated

Plate Mod Area (𝐴) [m2] Normal ( Ԧ𝑒𝑛) Specularity (𝜌) Diffusivity (𝛿) Rotation Sys. Description1 1 5.720 [+1, 0, 0] 0.112 0.448 +X2 1 5.720 [-1, 0, 0] 0.112 0.448 -X3 1 7.010 [0, +1, 0] 0.112 0.448 +Y4 1 7.010 [0, -1, 0] 0.112 0.448 -Y5 1 5.400 [0, 0, +1] 0.112 0.448 +Z6 1 5.400 [0, 0, -1] 0.000 0.000 -Z7 0 22.250 [+1, 0, 0] 0.195 0.035 +SUN: [0,+1, 0] Solar panels front8 0 22.250 [-1, 0, 0] 0.196 0.034 -SUN: [0,+1, 0] Solar panels back

[Montenbruck et al, 2015. Adv. In Space Research]

Page 9: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 9 Astronomical Institute University of Bern

Sm

art

scale

-4

Example Boxwing Macromodel & Plate Groupings: GPS

Macromodel Definitions:

By SV block Example is GPS IIF

As collection of plates Geometrical and optical properties for each plate

Force calculated on any plate where cos 𝜃 > 0 and summed together

Only specular and diffuse reflectivity are specified

Absorptivity is Calculated

Plate Mod Area (𝐴) [m2] Normal ( Ԧ𝑒𝑛) Specularity (𝜌) Diffusivity (𝛿) Rotation Sys. Description1 1 5.720 [+1, 0, 0] 0.112 0.448 +X2 1 5.720 [-1, 0, 0] 0.112 0.448 -X3 1 7.010 [0, +1, 0] 0.112 0.448 +Y4 1 7.010 [0, -1, 0] 0.112 0.448 -Y5 1 5.400 [0, 0, +1] 0.112 0.448 +Z6 1 5.400 [0, 0, -1] 0.000 0.000 -Z7 0 22.250 [+1, 0, 0] 0.195 0.035 +SUN: [0,+1, 0] Solar panels front8 0 22.250 [-1, 0, 0] 0.196 0.034 -SUN: [0,+1, 0] Solar panels back

[Montenbruck et al, 2015. Adv. In Space Research]

Page 10: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 10 Astronomical Institute University of Bern

Sm

art

scale

-3

Example Boxwing Macromodel & Plate Groupings: GPS

Macromodel Definitions:

By SV block Example is GPS IIF

As collection of plates Geometrical and optical properties for each plate

Force calculated on any plate where cos 𝜃 > 0 and summed together

Only specular and diffuse reflectivity are specified

Absorptivity is Calculated

Plate Mod Area (𝐴) [m2] Normal ( Ԧ𝑒𝑛) Specularity (𝜌) Diffusivity (𝛿) Rotation Sys. Description1 1 5.720 [+1, 0, 0] 0.112 0.448 +X2 1 5.720 [-1, 0, 0] 0.112 0.448 -X3 1 7.010 [0, +1, 0] 0.112 0.448 +Y4 1 7.010 [0, -1, 0] 0.112 0.448 -Y5 1 5.400 [0, 0, +1] 0.112 0.448 +Z6 1 5.400 [0, 0, -1] 0.000 0.000 -Z7 0 22.250 [+1, 0, 0] 0.195 0.035 +SUN: [0,+1, 0] Solar panels front8 0 22.250 [-1, 0, 0] 0.196 0.034 -SUN: [0,+1, 0] Solar panels back

[Montenbruck et al, 2015. Adv. In Space Research]

Page 11: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 11 Astronomical Institute University of Bern

Discussion on Thermal re-radiation: Galileo

Satellite geometry and optical properties given by GSA

Front side of solar panel has two different “materials”

~28% of solar panel surface area

With immediate thermal re-radiation yields scale factors closer to 1.

Plate Mod Area (𝐴) [m2] Normal ( Ԧ𝑒𝑛) Specularity (𝜌) Diffusivity (𝛿) Rotation Sys. Description1 1 1.320 [+1, 0, 0] 0.000 0.070 -X Material A2 1 0.440 [-1, 0, 0] 0.000 0.070 +X Material A3 1 0.880 [-1, 0, 0] 0.730 0.190 +X Material C4 1 1.244 [0, +1, 0] 0.000 0.070 -Y Material A5 1 1.539 [0, +1, 0] 0.730 0.190 -Y Material C6 1 1.129 [0, -1, 0] 0.000 0.070 +Y Material A7 1 1.654 [0, -1, 0] 0.730 0.190 +Y Material C8 1 1.053 [0, 0, +1] 0.000 0.070 +Z Material A9 1 1.969 [0, 0, +1] 0.220 0.210 +Z Material B10 1 2.077 [0, 0, -1] 0.000 0.070 -Z Material A11 1 0.959 [0, 0, -1] 0.730 0.190 -Z Material C12 0 7.760 [+1, 0, 0] 0.080 0.000 +SUN: [0,+1, 0] Solar Panels Material E13 ? 3.060 [+1, 0, 0] 0.100 0.000 +SUN: [0,+1, 0] Solar Panels Material D14 0 10.820 [-1, 0, 0] 0.196 0.034 -SUN: [0,+1, 0] Solar Panels back

[https://www.esa.int/spaceinimages/Images/2014/07/Galileo_satellite]

Page 12: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 12 Astronomical Institute University of Bern

Long-term Trends in Scale Factors: Monoscale

Top Left: Scale factors for selected satellites:Monoscale model, daily solution, 1-year

Bottom Left: Scale factors for selected satellites:Monoscale model, 7-day stack, 1-year

Top Right: Scale factors for all satellites:Monoscale model, 1-year stack

Galileo FOCIOVGLONASSBlock IIFIIR-MIIR-BBlock IIR-A

1.2

0.8

1.1

1.0

0.9

Scale

Facto

rs

SVN

Page 13: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 13 Astronomical Institute University of Bern

Yearly Scale Factors: Smartscale-2

Galileo FOCIOVGLONASSBlock IIFIIR-MIIR-BBlock IIR-A

1.8

0.4

1.4

1.0

0.8

1.6

1.2

0.2

0.6

GLONASS & Galileo: similar scale factors for all satellites in same block

Scale factors close to 1.

GPS: more variation between satellites in same block

Scale factors farther away from 1.

Page 14: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 14 Astronomical Institute University of Bern

Long-term Trends in Scale Factors: Smartscale-2

Scale factors for selected satellites:Smartscale-2 model, 7-day stack, 1-yearTop Left: GPS SVN 62Bottom Left: GLONASS SVN 730Top Right: Galileo SVN 203

*Note different scale for GPS

Page 15: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 15 Astronomical Institute University of Bern

Monoscale vs. Smartscale/Multiscale

Co-variances between scale factors due to:

Similar optical properties

Parallel plates

Attitude geometry

Parallel resultant force

+ = ∥

+ =

Page 16: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 16 Astronomical Institute University of Bern

Orbit Misclosures: ECOM-only (1-day solutions)G

alile

o F

OV

IOC

GLO

NA

SS

GPS IIF

IIR-M

IIR-B

IIR-A

IIA

Feb 2017 Mar 2017 Apr 2017 May 2017 Jun 2017 Jul 2017 Aug 2017 Sep 2017 Oct 2017 Nov 2017 Dec 2017 Jan 2018 Feb 2018

18

0

Orb

it m

isclo

sure

s [

cm

]

Page 17: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 17 Astronomical Institute University of Bern

Orbit Misclosures: ECOM-plus-boxwing (1-day solutions)G

alile

o F

OC

IOV

GLO

NA

SS

GPS IIF

IIR-M

IIR-B

IIR-A

IIA

Feb 2017 Mar 2017 Apr 2017 May 2017 Jun 2017 Jul 2017 Aug 2017 Sep 2017 Oct 2017 Nov 2017 Dec 2017 Jan 2018 Feb 2018

18

0

Orb

it m

isclo

sure

s [

cm

]

Page 18: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 18 Astronomical Institute University of Bern

Orbit Misclosures: ECOM-plus-scaled-boxwing

Page 19: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 19 Astronomical Institute University of Bern

Conclusions & Future Work

Conclusions

Able to stack scale factors for long periods of time

Able to distinguish/validate thermal re-radiation

Number of scale factors per satellite depends on characteristics

Improvements at the daily solution level

Forward Work

Page 20: Validation of boxwing models for GNSS satellites · Astronomical Institute University of Bern Validation of boxwing models for GNSS satellites S. L. McNair 1, A.Villiger1, R. Dach,

Slide 20 Astronomical Institute University of Bern

QUESTIONS?