vacuum control sysytem for superkekb2 ... control system of superkekb • consolidation of ioc and...

18
Vacuum Control System for SuperKEKB S.Terui, H. Hisamatsu, T. Ishibashi, T. T. Nakamura J. Odagiri, Y. Suetsugu (KEK), N. Yoshifuji (EJT) April 2014 OLAV IV

Upload: lethu

Post on 19-May-2018

222 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Vacuum Control System for SuperKEKB

S.Terui, H. Hisamatsu,T. Ishibashi, T. T. Nakamura

J. Odagiri, Y. Suetsugu (KEK), N. Yoshifuji (EJT)

April 2014 OLAV IV

Page 2: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Contents

• Overview of SuperKEKB vacuum control • Upgrade of configuration• Interlock system• High speed data acquisition of CCGs’ pressure values• Conclusions

April 2014 OLAV IV

Page 3: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Overview of SuperKEKB Vacuum Control System

Components AI AO DI DOVacuum Switch 67Gate Valve 501 167Stopper 16 10CCG 605 605 605Ion Pump 605 677 240NEG Power Supply 488 40 200 400

Flow Meter〜

1000 24Temperature Sensor

〜4000 48

April 2014 OLAV IV

SuperKEKB is a two‐ring electron‐positron collider withasymmetric energies

Page 4: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Needs for Upgrading Control System• Vacuum Control System of KEKB had been operated 

successfully based on:– VME‐based IOC – CAMAC (scanning ADC and DI/DO)

• SuperKEKB is expected to be in operation for decades from 2014– Availability of CAMAC modules will be a serious issue

• We decided to apply Embedded EPICS concept to upgrading the system with up‐to‐date controllers and data loggers

April 2014 OLAV IV

Page 5: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Upgrade of Configuration• We chose F3RP61 (made by  YOKOGAWA) as IOC

– Can work with ordinary PLC’s CPU side‐by‐side on the same PLC‐bus– Can run LINUX

• We chose CompactRIO (cRIO, made by NI)– Can run Channel Access (EPICS protocol)‐Server on cRIO– High analogue I/O channel density in compact chassis (32ch/module) – Can execute high speed data acquisition on built‐in FPGA

April 2014 OLAV IV

OPI

IOC (VME)

CAMAC

PLCDIDO

DO

AI

DI

Channel Access

Ladder Program makes the final decision in ON/OFF control

CPU

GPIB

OPI

cRIOPLC

DIDO

AI

DI

Channel Access

Channel Access

IOC (F3RP61)

CPU

Old System Configuration New System Configuration

The new system is simpler than the old system.

Page 6: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

IOC and Data Logger Upgrade

April 2014 OLAV IV

IOC (VME )  IOC (F3RP61)

Before After

CAMAC  (very  heavy) cRIO (very light)

Page 7: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Concept of Interlock

• We built the normally closed interlock logic with digital input or output modules and the sequence CPU module of the PLC unit to ensure the safety in the operation of the vacuum start‐up and the steady state after it.

• The source components of the input signal are temperature sensors, flow meters, gate valves and beam stoppers, vacuum switch, CCGs. 

April 2014 OLAV IV

Page 8: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Interlock Logic (Introduction)• We put a CCG and ion pump every 10 m in SuperKEKB main 

ring.• Gate valves divide the vacuum region to ensure serviceability 

of the vacuum components.• At least one vacuum switch is installed in the region between 

two gate valves.

April 2014 OLAV IV

Vacuum switch 

Gate valve

Ion Pump

VSWs detect pressures higher than 1 Pa.

Page 9: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Interlock Logic (CCG)

April 2014 OLAV IV

TIMER T00201 60 sec. HV on/off request

E00201

X00301

vacuum switch status HV on/off request

E00201

discharge status

X00317

delayed timer status

T00201

Y00601

HV output

(close after 60 sec.)

00001

00002

The CCG usually emits gases at the beginning of discharge. The interlock logic has a delay time of 60 seconds.

The relay of vacuum switch status is closed  when the pressure is less than about 1 Pa.

CCG

Meaning in Ladder sequence program E: shared relay, I: internal relay, X: digital input relay, Y: digital output relay, L: FA Link relay, U: UNIWIRE relay, T: delayed timer relay

Schematic diagram of  ladder program

The CCG controller returns normal discharge status when the pressure is less than about 10‐3 Pa.

Page 10: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Interlock Logic (Steady state, Gate valves)

April 2014 OLAV IV

In the steady state, where some of CCGs in the region operate stably, it becomes possible to apply HV to ion pumps and to activate NEG pumps.

open request

E04001 I00301

steady state

00020 close request

E04101 L00002

steady state next door

Y00803

open

steady state

Gate valve

Without any request to open, the valve remain in close position.

Page 11: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Interlock Logic( Ion pump and NEG activation)

April 2014 OLAV IV

I00301

steady state

00021

Y00813

ion pump HV ready

U00001

NEG activation ready

I00301

steady state

X00529

magnets state

HER only

00022

X00301

vacuum switch status

E00501

interlock kill request

X00301

vacuum switch status

E00601

interlock kill request

E00701

restrict output request

NEG

Ion Pump

When the pressure in the region gets worse in cases, the HV of CCGs is turned off at first.Then the status is no longer a steady state, and the HV of ion pumps and the heater power for NEG activation are turned off immediately by the interlock logic. 

These relays kill the request to stop the IP baking and the NEG activation process irrespective of CCGs status.

This relay inhibits the output from power supplies for NEG activation.It will be used for the case where the beam pipe is exposed to air for maintenance, for example.

Page 12: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

A procedure of the vacuum start‐up

April 2014 OLAV IV

Start rough pumping with a turbo‐molecular pump (0.26 m3/s for N2) and a scroll‐type dry 

pump (0.2 m3/min)

HV is applied to CCGs and ion pumps in the region

TMP

Scroll

Start baking of IPs for 1‐2 days

Activate NEG pumps with a pattern operation for 0.5‐2 days

Check the vacuum switch status

Target pressure is less than 1E‐7 Pa after the NEG activation

Page 13: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Typical trend of pressures in a region between two gate valves after IP baking 

and NEG activation

April 2014 OLAV IV

Baking of IP start

NEG activation start

NEG activation end

The test result was good

This point shows the pressure values is less than 1E‐7 Pa.

Page 14: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

High speed data acquisition of CCGs’ pressure values 

April 2014 OLAV IV

The pressures are usually recorded every several seconds by CCGs located every 10 m in the ring.In an accidental case, therefore, it is sometimes difficult to localize the leak pointwhere the pressure must have risen at first.

High speed recording of pressures for at least several minutes before the accident will help the identification of problem.

Assuming that the propagation speed of pressure rise is same to that of sound (~350 m/s),the frequency of data acquisition of 35 Hz or more is required for every CCG.

Problem

Concept of solution

Request from solution

We chose 100 Hz scanning!

Page 15: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

What’s each cRIO doing

Role‐sharing of high speed data acquisition

cRIO

AI(CCGs’ pressure value)

FPGA:Scanning cycle of 10 ms

Real Time(RT) OS :Make from accumulated data with the time stamp to the array of circular buffer.  

WindowsPC:Monitoring event triggers. Analyzing pressure data from memory of cRIOs.

Ethernet

D1 D2

D4

D3

D5

D6

D12

D11

D10

D7D8

D9

KEKBMainRing

cRIOs synchronize with a NTP server

CPUThere are twelve cRIO in KEKB.These cRIO connect to the control network.

Page 16: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Flow of the high speed data acquisition

(1) The data acquired every twenty minutes are stored in the memory of the cRIOas the circular buffering system until  the trigger is generated.

(2)If the first signal of the pressure rise is excited as the trigger at some stations, the signal is provided to other stations.

(3)After the trigger is generated, the data of the pressure, with time stamp for 5 minutes before entering the trigger and for 15 minutes after entering the trigger, is created on the each cRIO as text file.

(4)The signal as the trigger is monitored by the alarm system. When the operator notice exciting the signal, the operator can get the data from the cRIO.

The test at 2 stations is on the way. It is difficult to establish both RT, which runs CA‐Server, and FPGA. 

Page 17: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Conclusions

• PLC‐based IOC was applied to upgrading the vacuum control system of SuperKEKB

• Consolidation of IOC and PLC considerably simplified the configuration of front‐end control

• The test of the control system has been succeeded according to the normally closed interlock logic.

• High speed data acquisition of CCGs’ pressure values is built and under test now.

April 2014 OLAV IV

Page 18: Vacuum control sysytem for SuperKEKB2 ... control system of SuperKEKB • Consolidation of IOC and PLC considerably simplified the configuration of front‐end control • The test

Thank you for your attention

April 2014 OLAV IV