utep college of engineering - 2d materials rospects for...

22
04222015-1 2D MATERIALS: PROSPECTS FOR ELECTRONICS 1 Luigi Colombo, 2 Sanjay K. Banerjee, & 3 Alan Seabaugh 1 Texas Instruments, Dallas, TX, 2 UT Austin, Austin, TX, 3 Notre Dame University, Notre Dame, IN US - EU Workshop on 2D Layered Materials and Devices April 22-24, 2015

Upload: others

Post on 02-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 04222015-104222015-1

    2D MATERIALS: PROSPECTS FOR ELECTRONICS

    1Luigi Colombo, 2Sanjay K. Banerjee, & 3Alan Seabaugh1Texas Instruments, Dallas, TX, 2UT Austin, Austin, TX, 3Notre Dame University, Notre Dame, IN

    US - EU Workshop on 2D Layered Materials and DevicesApril 22-24, 2015

  • 04222015-2

    ACKNOWLEDGMENTSUT Dallas:

    Robert Wallace; KJ Cho; Moon Kim ; Chris Hinkle; JiyoungKim groups

    UT Austin:Emanuel Tutuc ; Sanjay K Banerjee groups

    Ulsan Korea(now):Rodney Ruoff

  • 04222015-3

    A FEW US PROGRAMS ON NANOELECTRONICS

    3

    Univ. Nebraska-LincolnUniv. Wisconsin-Madison Univ. OaklandSUNY Buffalo UC-Irvine Univ. Delaware

    SUNY-AlbanyPurdue U. Virginia Columbia U NYUCornell GIT Brown

    UT-AustinUT-Dallas NCSU Texas A&MUCSD Harvard

    MIT Notre Dame (2) Columbia / FloridaMinnesota Cornell / PrincetonUC-Santa Barbara UC-Riverside / GeorgiaUC-Riverside / UC-I / UC-SD / Rochester / SUNY-BuffaloDrexel University / U. Illinois-UC / U. PennsylvaniaVirginia Commonwealth / UC-R / Michigan / U. Virginia U. Pittsburgh / U. Wisconsin-Madison / Northwestern

    University of Minnesota

    Carnegie MellonColorado StateJohns HopkinsMITOhio StatePenn StatePurdue

    U. WisconsinU. AlabamaU. ArizonaUC/BerkeleyUC/RiversideUC/Santa BarbaraUT/AustinU. IowaU. Michigan

    U. NebraskaUCLA

    CALTECHColumbiaCornellMITNC StatePurdueRiceStanford

    UC/BerkeleyUC/IrvineUC/RiversideUC/Santa BarbaraU of PAWVAYale

    Notre DameCarnegie MellonGA TechPenn StatePurdueUC/BerkeleyUC/San DiegoUC/Santa Barbara

    UT/AustinUT/Dallas

  • 04222015-4

    NRI MISSION STATEMENT – 2006 TIMEFRAME• NRI MISSION: Demonstrate novel computing devices capable of

    replacing the CMOS FET as a logic switch in the 2020 timeframe. • These devices should show significant advantage over ultimate FETs in

    power, performance, density, and/or cost to enable the semiconductor industry to extend the historical cost and performance trends for information technology. – To meet these goals, NRI pursues five research vectors:

    • NEW DEVICE: Device with alternative state vector• NEW WAYS TO CONNECT DEVICES: Non-charge data transfer• NEW METHODS FOR COMPUTATION: Non-equilibrium systems • NEW METHODS TO MANAGE HEAT: Nanoscale phonon engineering• NEW METHODS OF FABRICATION: Directed self-assembly devices

    – Finally, it is desirable that these technologies be capable of integrating with CMOS, to allow exploitation of their potentially complementary functionality in heterogeneous systems and to enable a smooth transition to a new scaling path.

    J. Welser, IBM/SRC

  • 04222015-5

    COMPUTATIONAL VARIABLES

    • Charge: CMOS, TFET

    • Electric Dipole: FeFET

    • Magnetic Dipole: NML, SWD, and ASL

    • Orbital State: BiSFET

    • Strain: PiezoFET

  • 04222015-6

    FIRST PRINCIPLES PREDICTIONS OF 2D CRYSTAL BANDALIGNMENTS

    preferred band alignments for TFETs

    Two transport optionsin‐plane

    interlayer

    EC

    EV

    Gong et al. Appl. Phys. Lett. 103, 053513 (2013)

    1.3 eV

    1 eV

    SnSe2

    WSe2

    Calculated by density functional theory 

  • 04222015-7

    LIST OF DEVICES UNDER CONSIDERATION

    7D. Nikonov and I Young, JxCDC-0004-Dec-2014

  • 04222015-8

    SWITCHING ENERGY VS. DELAY OF A 32-BITADDER

    Nikonov and Young, IEEE Expl. Sol. St. Comp. Dev. Circ., Dec 2014.

    Benchmarking emerging devices vs. CMOS

  • 04222015-9

    ARE TFET THE SOLUTION?

    Fiori et al, Nature Nanotech, V9, Oct 2014

    Transfer characteristics (IDS versus VGS)

    Need a SS

  • 04222015-10

    BottomBilayer

    TopBilayer

    BN

    10 µm

    Straight edges assumed to be principal crystal axes Layer transfer done while keeping track of orientation

    DOUBLE BILAYER ITFET: FABRICATION ANDROTATIONAL ALIGNMENT

    Fallahazad B et. al., Nano Letters 15,428-433 (2015)

  • 04222015-11

    -0.4 -0.2 0.0 0.2 0.4-3

    -2

    -1

    0

    1

    2

    3

    I int (

    mA

    /cm

    2 )

    0 V

    - 20 V

    20 V

    - 40 V

    I int (

    nA)

    VTL (V)

    VBG = 40 V

    -30

    -20

    -10

    0

    10

    20

    30

    0 50 100 150 2000.0

    0.2

    0.4

    0.6

    0.8

    I int (

    mA

    /cm

    2 )

    0 V10 V

    20 V

    30 VI in

    t (nA

    )

    VTL (mV)

    VBG = 40 V

    0

    2

    4

    6

    86 monolayers

    thick BNNDR!

    5 monolayerthick BN

    NDR!

    DOUBLE BILAYER ITFET: INTERLAYER I-V CHARACTERISTICS AT RT

    Vertical tunneling field-effect transistor using a stacked double bilayer graphene (BLG) and hexagonal boron nitride heterostructure

    B. Fallahazad et al, Nano Letters 15, 428 (2105)S. Kang et al. IEEE ELECTRON DEVICE LETTERS, VOL. 36, NO. 4, APRIL 2015

  • 04222015-12

    2D-2D TUNNELING IN HETEROJUNCTION TFETS

    12

    VGate-MoS2 = 3V

    -3.5 V -3.3 V -3.0 V

    VGate-WSe2 =

    0.0 0.3 0.6 0.9 1.20.0

    0.5

    1.0

    1.5

    2.0

    I D (n

    A)

    VD (V)-0.5 0.0 0.5 1.0

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    I D (A

    )

    VD (V)

    VGate-WSe2 = -3 V

    VGate-WSe2 = -2.5 V

    VGate-WSe2 = -2 V

    Forward biasReverse bias

    BTBT

    Diffusion current

    T. Roy, M. Tosun et al., ACS Nano, 2015

    Gate controlled band‐to‐band tunneling and NDR!

  • 04222015-13

    • "If you cannot measure, your knowledge is meager and unsatisfactory." Lord Kelvin

    and …….

    • “there cannot be devices without materials”andmining is NOT an option as a source of compounds/ML for the SC industry …..

  • 04222015-14

    GRAPHENE SINGLE CRYSTALS:FROM MICRONS TO CENTIMETER

    1 m

    2013-15Single Crystal Graphene and BLG2005

    Monolayer graphite

    Novoselov et al., PNAS 2005Hao et al., Science 2013Hao et al , submitted for pub

  • 04222015-15

    MOBILITY OF GRAPHENE AND MOS2 ANDPREPARATION METHODS

    Fiori et al, Nature Nanotech, V9, Oct 2014

  • 04222015-16

    HEXAGONAL BORON NITRIDE

    Large single crystal controlled thin films needed

    http://arxiv.org/ftp/arxiv/papers/1405/1405.7179.pdfA. Ismach et al., ms in preparationS. Sonde et at., ms in preparation

    CVD h-BN/metals

    100 m

    5 nm

    SiO2 h-BN

    Ni

    h-BNSiO2 /Si

    Top

    Unit cell = (2.5 ± 0.4) ÅRMS roughness = (0.35 ± 0.10) Å

    Bulk h-BN

    200 m

    h-BN/SiO2

  • 04222015-17

    TMDS

    http://www.hqgraphene.com/PeriodicTableElements/Mo.phpYongji Gong, Nature Mat., V. 13, 2014R. Yue et al., ACS Nano, V9(1), 474-480 (2015)

    Bulk Crystal of MoS2 TMD Heterostructuresby CVD

    MoS2 HfSe2

    TMD HeterostructuresBy MBE

  • 04222015-18

    DIFFERENTIAL CONDUCTANCE AT ROOMTEMPERATURE ON NATURAL MOS2

    Electrical properties variations across MoS2 can be correlated with localvariations in stoichiometry as well as metallic and structural defects.

    R. Addou et al., ACS Appl. Mater. Interfaces, 2015, 7 (22), pp 11921–11929

  • 04222015-19

    2D MATERIALS GROWTH SIMULATIONS• 2H structure (L), 1T structure (R)

    • In 2H structure, the second triangle is upside-down, in 1T they are pointing at the same direction.

    • Inhomogeneous adsorption energy: -0.65 eV

    • Homogeneous adsorption energy: -2.56 eV

    • Each bond: 2 eV• Deposition rate: 0.1 ML/s• 1E13 vibrations per second

    KT Cho, UT Dallas

  • 04222015-20

    1949 1958 .……………………………………………..2014

    2015 ????.................................................................................???????????

    J. Pelloux-Prayer et al IEDM 2014Fallahazad et al, Nano Letters, 2015

    2D M

    ater

    ials

    S

    ilico

    n

  • 04222015-21

    FROM A FEW MM TO 300-450 MM IN DIA

    AND MANY KM/MONTH IN TOTAL LENGTH

    1949-50G. Teal, IEEE TED,

    ED-23 (7) 1976http://www.crystal-material.com/Single-Crystal-Materials/Silicon-Si-single-crystal.html

    Today

    Ge Si

    http://pcplus.techradar.com/2009/05/21/how-silicon-chips-are-made/

  • 04222015-22

    SUMMARY• New devices will need rotationally aligned layers and will drive the need

    (similar to lattice matching for cubic system):– To grow single crystals– Selective single crystal growth … heteroepitaxy

    • Defect control (“bulk” and surface) – Chalcogenide materials are especially sensitive to the creation/formation of

    point defects (vacancies) – bulk and surface

    • Need to determine fundamental properties of materials and a deeper understanding of the materials growth processes– Metrology– Standards

    • How about scaled 2D-materials-based devices … submicron???