using the “clicker”

15
Using the “Clicker” If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding the power switch, on the left, up. Next, store your student number in the clicker. You only have to do this once. Press the * button to enter the setup menu. Press the up arrow button to get to ID Press the big green arrow key Press the T button, then the up arrow to get a U Enter the rest of your BU ID. Press the big green arrow key.

Upload: byron-mccullough

Post on 31-Dec-2015

51 views

Category:

Documents


5 download

DESCRIPTION

Using the “Clicker”. If you have a clicker now, and did not do this last time, please enter your ID in your clicker. First, turn on your clicker by sliding the power switch, on the left, up. Next, store your student number in the clicker. You only have to do this once. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Using the “Clicker”

Using the “Clicker”If you have a clicker now, and did not do this last time, please enter your ID in your clicker.

First, turn on your clicker by sliding the power switch, on the left, up. Next, store your student number in the clicker. You only have to do this once.

Press the * button to enter the setup menu.Press the up arrow button to get to IDPress the big green arrow keyPress the T button, then the up arrow to get a UEnter the rest of your BU ID.Press the big green arrow key.

Page 2: Using the “Clicker”

Moving with the EarthRemember: for uniform circular motion, the acceleration has

magnitude v2/r = 2r, where =v/r = 2/T

So let’s calculate the acceleration:1) caused by the Earth’s rotation about its axis. 2) caused by the Earth’s orbit around the Sun. Note: 1 yr = 60*60*24*365 s = 3.15 x 107 s = x 107 s (good approx)

rorb = 1.50 x 1011 m, rrot = 0.7(6.38x106 m) = 5 x 106 morb = 2/T = 2 x 10-7 rad/s, rot = 365 orb = 7.30 x 10-5 rad/s

agrav = g = 9.8 m/s2

arot = 2r = (50 x 10-10 )(5 x 106) = 0.025 m/s2

aorb = 2r = (4 x 10-14)(1.5 x 10-11) = 0.006 m/s2

Page 3: Using the “Clicker”

Gravitron (or The Rotor)

In a particular carnival ride, riders are pressed against the vertical wall of a rotating ride, and then the floor is removed. Which force acting on each rider is directed toward the center of the circle?

1. A normal force.

2. A force of gravity.

3. A force of static friction.

4. A force of kinetic friction.

5. None of the above.

Page 4: Using the “Clicker”

Gravitron (see the worksheet)Gravitron simulation

Sketch a free-body diagram for the rider.

Apply Newton’s Second Law, once for each direction.

Page 5: Using the “Clicker”

Gravitron (work together)

Sketch a free-body diagram for the rider.

Apply Newton’s Second Law, once for each direction.

y direction: FS mg = may = 0 (he hopes)

x direction: FN = max = m (v2/r)

Axis of rotation

mg

FS

FN

y

x

He’s blurry because he is going so fast!

a

Page 6: Using the “Clicker”

Vertical circular motion

Examples• Water buckets• Cars on hilly roads• Roller coasters

Page 7: Using the “Clicker”

Ball on a string

When a ball with a weight of 5.0 N is whirled in a vertical circle, the string, which can withstand a tension of up to 13 N, can break.

Let’s see how to answer questions such as:

Why?

Where is the ball when the string is most likely to break?

What is the minimum speed of the ball needed to break the string?

Page 8: Using the “Clicker”

Ball on a string – free-body diagrams

Sketch one or more free-body diagrams, and apply Newton’s Second Law to find an expression for the tension in the string.

At the top At the bottom

Page 9: Using the “Clicker”

Ball on a string – free-body diagrams

Sketch one or more free-body diagrams, and apply Newton’s Second Law to find an expression for the tension in the string.

At the top At the bottom

Assume same speed ma =

mv2/r = 8 N

So, T = 3 Nmg = 5 N So, ma

= mv2/r = 8 N when it breaks

Breaks at T = 13 N

Weight = mg = 5 N

T + mg = mv2/r

T = mv2/r – mg

T – mg = mv2/r

T = mv2/r + mg

(Actually, v will be smaller at the top)

Do the bottom first

Page 10: Using the “Clicker”

A water bucket

As long as you go fast enough, you can whirl a water bucket in a vertical circle without getting wet.

What is the minimum speed of the bucket necessary to keep the water in the bucket?

The bucket has a mass m, and follows a circular path of radius r.

If you go too slow, the string will go slack, and the water and the bucket will stay together along a parabolic free fall path.

Page 11: Using the “Clicker”

Free-body diagram for the water bucket

Sketch a free-body diagram for the bucket (or the water), and apply Newton’s Second Law.

Mw g or Mb+wg

FN on water, or T on bucket + waterMa =

Mv2/r

“Toward center” is

down

Mg + FN = Mv2/r

But critical speed is when FN or T = 0

So Mg = Mv2min

/r or vmin = (rg)1/2

Page 12: Using the “Clicker”

Roller coaster

On a roller coaster, when the coaster is traveling fast at the bottom of a circular loop, you feel much heavier than usual. Why?

Draw a free-body diagram and apply Newton’s Second Law.

Page 13: Using the “Clicker”

Roller coaster

On a roller coaster, when the coaster is traveling fast at the bottom of a circular loop, you feel much heavier than usual. Why?

Draw a free-body diagram and apply Newton’s Second Law.

FN

mg

ma = m(v2/r)FN – mg = mv2/r so

FN = mg + mv2/r

The faster you go, the larger the normal force has to be. The normal force is equal to your apparent weight.

Page 14: Using the “Clicker”

Driving on a hilly road

As you drive at relatively high speed v over the top of a hill curved in an arc of radius r, you feel almost weightless and your car comes close to losing contact with the road. Why?Draw a free-body diagram and apply Newton’s Second Law.

r

Page 15: Using the “Clicker”

Driving on a hilly road

As you drive at relatively high speed v over the top of a hill curved in an arc of radius r, you feel almost weightless and your car comes close to losing contact with the road. Why?Draw a free-body diagram and apply Newton’s Second Law.

Mv2/r

MgFN -> 0

FN – Mg = M(-v2/r) loses contact when FN = 0 at v = (rg)1/2

Warning to drivers: Your braking is worst at the crest of a hill.