useful trigometric identities

Upload: engmaurilio7703

Post on 04-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Useful Trigometric Identities

    1/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 1/15

    Spring 2004

    Useful Trigometric Identities in AC Machine Analysis

    1. sin

    2

    + cos

    2

    = 12. sin = sin cos cos sin

    3. cos = cos cos sin sin

    4. Acos + Bsin = A2 B2 sin , = tan 1 A B

    5. Acos + Bsin = A2 B2 cos , = tan 1 B A

    6. sin cos = 12

    [sin + sin

    7. cos cos =12 [cos + cos

    8. sin sin = 12

    [cos - cos

    9. cos + cos 23

    + cos 23

    = 0

    10. sin + sin 23

    + sin 23

    = 0

    11. sin cos + sin 23

    cos 23

    + sin 23

    cos 23

    0

    12. cos2

    + cos2

    23 + cos

    2

    23

    3

    2

    13. sin2 + sin2 23

    + sin2 23

    = 32

    14. cos cos 23

    + cos 23

    cos 23

    + cos 23

    cos 34

    15. sin sin 23

    + sin 23

    sin 23

    + sin 23

    sin 34

    16. sin cos 23

    + sin 23

    cos + sin 23

    cos 23

    3 34

    17. sin cos 23

    + sin 23

    cos 23

    + sin 23

    cos = 3 34

    18. cos cos + cos 23

    cos 23

    + cos 23

    cos 23

    = 32

    cos

    19. sin sin + sin 23

    sin 23

    + sin 23

    sin 23

    = 32

    cos

    20. sin cos + sin 23

    cos 23

    + sin 23

    cos 23

    = 32

    sin

  • 7/30/2019 Useful Trigometric Identities

    2/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 2/15

    Spring 2004

    Synchronous Machine Windings

    G

    C

    C

    B

    B

    A

    Quadrature Axis

    Direct

    Axis

    Reference

    D

    F

    Q

    Q

    F

    D

    A

    Transient Model for a Synchronous Machine

    Generator Convention

    G

  • 7/30/2019 Useful Trigometric Identities

    3/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 3/15

    Spring 2004

    Notation

    f can represent i, v, .

    f

    = r rotating reference frame fixed on the rotor

    s stationary reference frame fixed on the stator

    = s stator quantity

    r rotor quantity

    a A-Phase quantityb B-Phase quantity

    c C-phase quantity

    d direct-axis quantity

    q quadrature-axis quantity

    F field quantity

    D direct-axis damper winding quantity

    Q quadrature-axis damped winding quantity

    g eddy current winding quantity

    l leakage quantitym mutual quantity

    = rotor quantities referred to the stator

    (superscript on the subscript)

    fabc

    fa

    fbfc

    ; fr

    dq0

    frd

    fr

    qfr0

    F denotes that the quantity F is a complex vectorF denotes that the quantity F is a phasor

  • 7/30/2019 Useful Trigometric Identities

    4/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 4/15

    Spring 2004

    Inductances

    Stator Flux Linkage Equations:

    abc Lsiabc LsriFDgQ

    Rotor Flux Linkage Equations:

    FDgQ LTsriabc LriFDgQ

    Combined Stator and Rotor Flux Linkage Equations:

    abcFDgQ

    Ls LsrLTsr Lr

    iabciFDgQ

    a

    b

    c

    F

    D

    g

    Q

    Laa Lab Lac LaF LaD Lag LaQ

    Lba Lbb Lbc LbF LbD Lbg LbQ

    Lca Lcb Lcc LcF LcD Lcg LcQ

    LFa LFb LFc LFF LF D LF g LFQ

    LDa LDb LDc LDF LDD LDg LDQ

    Lga Lgb Lgc LgF LgD Lgg LgQ

    LQa LQb LQc LQF LQD LQg LQQ

    ia

    ib

    ic

    iF

    iD

    ig

    iQ

    where

  • 7/30/2019 Useful Trigometric Identities

    5/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 5/15

    Spring 2004

    Stator Self-inductances

    Laa

    Ls

    Lm

    cos2d

    Lbb Ls Lmcos2 d 2 3

    Lcc Ls Lmcos2 d 2 3

    Stator Mutual-inductances

    Lab Lba Ms Lmcos2 d 6

    Lbc Lcb Ms Lmcos2 d 2

    Lca Lac Ms Lmcos2 d 5 6

    Rotor Self-inductances

    LF

    LD

    Lg

    LQ

    Rotor Mutual-inductances

    LFD

    LDF

    Mrd

    LgQ LQg Mrq

    LFg LgF LDg LDg 0

    LFQ LQF LDQ LDQ 0

    Stator-rotor Mutual-inductances

    LaF LFa MFcosd

    LbF LFb MFcos d 2 3

    LcF LFc MFcos d 2 3

    LaD LDa MDcosd

    LbD LDb MDcos d 2 3

    LcD LDc MDcos d 2 3

  • 7/30/2019 Useful Trigometric Identities

    6/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 6/15

    Spring 2004

    Lag

    Lga

    Mgcos

    d

    Lbg Lgb Mgcos d 2 3

    Lcg Lgc Mgcos d 2 3

    LaQ LQa MQsind

    LbQ LQb MQsin d 2 3

    LcQ LQc MQsin d 2 3

  • 7/30/2019 Useful Trigometric Identities

    7/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 7/15

    Spring 2004

    Parks Transformation

    frodq R r P 0 fabc

    where r r2

    Coordinate axis transformation

    P 0 :2

    3

    1

    2

    1

    2

    1

    2

    1 1

    2

    1

    2

    0 323

    2

    abc odq

    Transformation to rotating reference frame

    R r :

    1 0 0

    0 cosr sin r0 sinr cos r

    0dqs 0dqr Rotation

    Combine into one step

    P r R r P 0

    fr0dq P r fabc

    fr0

    frd

    frq

    2

    3

    1

    2

    1

    2

    1

    2

    cosr cos r23 cos r

    23

    sinr sin r23 sin r

    23

    fa

    fb

    fc

  • 7/30/2019 Useful Trigometric Identities

    8/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 8/15

    Spring 2004

    P r :2

    3

    1

    2

    1

    2

    1

    2

    cosr cos r23 cos r

    23

    sinr sin r23 sin r

    23

    P 1 r PT r

    P 1 r2

    3

    1

    2cosr sinr

    1

    2cos r

    23 sin r

    23

    1

    2cos r

    23 sin r

    23

    P rdP 1 r

    dt

    0 0 0

    0 0

    0 0

    : x

  • 7/30/2019 Useful Trigometric Identities

    9/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 9/15

    Spring 2004

    Synchronous Machine Equations

    1. Stator Voltage Equations: (Note: p = d/dt)

    vabcs rsiabcs pabcs

    v0dqs rsi0dqs p0dqs x0dqs

    2. Rotor Voltage Equation:

    vFDgQr RriFDgQr pFDgQr

    3. Stator Flux Linkage Equations:

    abcs Lsiabcs LsriFDgQr

    odqs Lsiodqs LsriFDgQr

    4. Rotor Flux Linkage Equations:

    FDgQr LTsriabcs LriFDgQr

    FDgQr LT

    sriabcs LriFDgQr

  • 7/30/2019 Useful Trigometric Identities

    10/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 10/15

    Spring 2004

    0s

    ds

    qs

    Fr

    Dr

    gr

    Qr

    L0

    0 0 0 0 0 0

    0 Ld 0 kMF kMD 0 0

    0 0 Lq 0 0 kMg kMQ

    0 kMF 0 LF MD 0 0

    0 kMD 0 MD LD 0 0

    0 0 kMg 0 0 Lg MQ

    0 0 kMQ 0 0 MQ LQ

    i0s

    ids

    iqs

    iFr

    iDr

    igr

    iQr

    k3

    2

    TE idq iqd

    p3 t i0 v0 id vd iq vq

    Ea0MFiFe

    j

    2

    Ea

    Ea0MFiF

    2

  • 7/30/2019 Useful Trigometric Identities

    11/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 11/15

    Spring 2004

    Synchronous Machine Parameters

    Xd

    direct axis reactance

    Xq quadrature axis reactance

    Xd direct axis transient reactance

    Xq quadrature axis transient reactance

    Xd direct axis subtransient reactance

    Xq quadrature axis subtransient reactance

    X2 negative sequence reactance

    X0 zero sequence reactance

    rsdc stator dc resistance

    rsac stator ac resistance

    rf r field resistance referred to the statorr2 negative sequence resistance

    Td0 direct axis open-circuit transient time-constant

    Td direct axis short-circuit transient time-constant

    Td direct axis short-circuit subtransient time-constant

    Ta armature short-circuit (d.c.) time-constant

  • 7/30/2019 Useful Trigometric Identities

    12/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 12/15

    Spring 2004

    Machine Turbo Hydro Synchronous Synchronous

    Constant Generator Generator Condensor Motor

    Xd 1.1 1.15 1.80 1.20

    Xq 1.08 0.75 1.15 0.90

    Xd 0.23 0.37 0.40 0.35

    Xq 0.23 0.75 1.15 0.90

    Xd 0.12 0.24 0.25 0.30

    Xq 0.15 0.34 0.30 0.40

    X2 0.13 0.29 0.27 0.35X0 0.05 0.11 0.09 0.16

    rsdc 0.003 0.012 0.008 0.01

    rsac 0.005 0.012 0.008 0.01

    r2 0.035 0.100 0.05 0.06

    Td0 5.6 5.6 9.0 6.0

    Td 1.1 1.8 2.0 1.4

    Td 0.035 0.035 0.035 0.035Ta 0.16 0.15 0.17 0.15

  • 7/30/2019 Useful Trigometric Identities

    13/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 13/15

    Spring 2004

    Hydro Generator (salient pole rotor)

    Xmd 0kMD Xmq 0kMQ

    Xd 0Ld Xmd Xld s

    Xq 0Lq Xmq Xlqs

    XdXmdXl f r

    Xmd

    Xl f r

    Xld s

    Xq Xmd Xld s

    XdXmdXld r Xl f r

    XmdXl f r Xl f r Xld r Xld r XmdXld s

    XqXmqXlqr

    Xmq XlqrXlqs

    X2Xd Xq

    2

    X0Xld Xlq

    2

  • 7/30/2019 Useful Trigometric Identities

    14/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 14/15

    Spring 2004

    Td01

    rf r

    Xmd Xl f r

    b

    TdXdXd

    Tdo

    TdXdXd

    Tdo

    Tq

    Xq

    Xq Tqo

    Ta1

    rsb

    2XdXq

    Xd Xq

  • 7/30/2019 Useful Trigometric Identities

    15/15

    UI: EE422/NTU: PS 512-S

    Power Systems Analysis

    Session 13; Page 15/15

    Spring 2004

    Three Phase Short Circuit of a Synchronous Machine

    ias t 2 Ea1

    Xd

    1Xd

    1Xd

    et

    Td

    1X

    d

    1X

    de

    t

    Td sin et

    2 Ea12

    1Xd

    1Xq

    et

    Ta sin

    2 Ea12

    1Xd

    1Xq

    et

    Ta sin 2et

    Name Magnitude Frequency T

    Steady Ea1

    XdFundamental

    Transient Ea1

    Xd

    1Xd

    Fundamental Td

    Subtransient Ea1

    Xd

    1Xd

    Fundamental Td

    Asymmetrical Ea12

    1X

    d

    1Xq

    sin Zero Ta

    Second Harmonic Ea12

    1Xd

    1Xq

    Double Fundamental Ta