useful conversion factors - mhriau.ac.irmhriau.ac.ir/_douranportal/documents/heat transfer...

47

Upload: others

Post on 31-Jan-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

  • hol29362_ifc 10/30/2008 18:42

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.1 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Useful conversion factors

    Physical quantity Symbol SI to English conversion English to SI conversion

    Length L 1 m = 3.2808 ft 1 ft = 0.3048 mArea A 1 m2 = 10.7639 ft2 1 ft2 = 0.092903 m2Volume V 1 m3 = 35.3134 ft3 1 ft3 = 0.028317 m3Velocity v 1 m/s = 3.2808 ft/s 1 ft/s = 0.3048 m/sDensity ρ 1 kg/m3 = 0.06243 lbm/ft3 1 lbm/ft3 = 16.018 kg/m3Force F 1 N = 0.2248 lbf 1 lbf = 4.4482 NMass m 1 kg = 2.20462 lbm 1 lbm = 0.45359237 kgPressure p 1 N/m2 = 1.45038 × 10−4 lbf /in2 1 lbf /in2 = 6894.76 N/m2Energy, heat q 1 kJ = 0.94783 Btu 1 Btu = 1.05504 kJHeat flow q 1 W = 3.4121 Btu/h 1 Btu/h = 0.29307 WHeat flux per unit area q/A 1 W/m2 = 0.317 Btu/h · ft2 1 Btu/h · ft2 = 3.154 W/m2Heat flux per unit length q/L 1 W/m = 1.0403 Btu/h · ft 1 Btu/h · ft = 0.9613 W/mHeat generation per unit volume q̇ 1 W/m3 = 0.096623 Btu/h · ft3 1 Btu/h · ft3 = 10.35 W/m3Energy per unit mass q/m 1 kJ/kg = 0.4299 Btu/lbm 1 Btu/lbm = 2.326 kJ/kgSpecific heat c 1 kJ/kg · ◦C = 0.23884 Btu/lbm · ◦F 1 Btu/lbm · ◦F = 4.1869 kJ/kg · ◦CThermal conductivity k 1 W/m · ◦C = 0.5778 Btu/h · ft · ◦F 1 Btu/h · ft · ◦F = 1.7307 W/m · ◦CConvection heat-transfer coefficient h 1 W/m2 · ◦C = 0.1761 Btu/h · ft2 · ◦F 1 Btu/h · ft2 · ◦F = 5.6782 W/m2 · ◦CDynamic 1 kg/m · s = 0.672 lbm/ft · sViscosity μ = 2419.2 lbm/ft · h 1 lbm/ft · s = 1.4881 kg/m · sKinematic viscosity and thermal diffusivity ν, α 1 m2/s = 10.7639 ft2/s 1 ft2/s = 0.092903 m2/s

    Important physical constants

    Avogadro’s number N0 = 6.022045 × 1026 molecules/kg molUniversal gas constant R= 1545.35 ft · lbf/lbm · mol · ◦R

    = 8314.41 J/kg mol · K= 1.986 Btu/lbm · mol · ◦R= 1.986 kcal/kg mol · K

    Planck’s constant h= 6.626176 × 10−34 J · secBoltzmann’s constant k= 1.380662 × 10−23 J/molecule · K

    = 8.6173 × 10−5 eV/molecule · KSpeed of light in vacuum c= 2.997925 × 108 m/sStandard gravitational acceleration g= 32.174 ft/s2

    = 9.80665 m/s2

    Electron mass me= 9.1095 × 10−31 kgCharge on the electron e= 1.602189 × 10−19 CStefan-Boltzmann constant σ= 0.1714 × 10−8 Btu/hr · ft2 · R4

    = 5.669 × 10−8 W/m2 · K4

    1 atm = 14.69595 lbf/in2 = 760 mmHg at 32◦F= 29.92 inHg at 32◦F = 2116.21 lbf/ft2= 1.01325 × 105 N/m2

  • hol29362_ifc 10/30/2008 18:42

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.2 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Basic Heat-Transfer Relations

    Fourier’s law of heat conduction:

    qx = −kA∂T∂x

    Characteristic thermal resistance for conduction =�x/kACharacteristic thermal resistance for convection = 1/hAOverall heat transfer =�Toverall/�Rthermal

    Convection heat transfer from a surface:

    q=hA(Tsurface − Tfree stream) for exterior flowsq=hA(Tsurface − Tfluid bulk) for flow in channels

    Forced convection: Nu = f(Re, Pr) (Chapters 5 and 6, Tables 5-2 and 6-8)Free convection: Nu = f(Gr, Pr) (Chapter 7, Table 7-5)

    Re = ρuxμ

    Gr = ρ2gβ�Tx3

    μ2Pr = cpμ

    k

    x= characteristic dimensionGeneral procedure for analysis of convection problems: Section 7-14, Figure 7-15, Insideback cover.

    Radiation heat transfer (Chapter 8)

    Blackbody emissive power,energy emitted by blackbody

    area · time = σT4

    Radiosity = energy leaving surfacearea · time

    Irradiation = energy incident on surfacearea · time

    Radiation shape factor Fmn= fraction of energy leaving surface mand arriving at surface n

    Reciprocity relation: AmFmn=AnFnmRadiation heat transfer from surface with area A1, emissivity 1, and temperature T1(K) tolarge enclosure at temperature T2(K):

    q= σA11(T 41 − T 42 )LMTD method for heat exchangers (Section 10-5):

    q=UAF �Tmwhere F = factor for specific heat exchanger; �Tm= LMTD for counterflow double-pipeheat exchanger with same inlet and exit temperatures

    Effectiveness-NTU method for heat exchangers (Section 10-6, Table 10-3):

    = Temperaure difference for fluid with minimum value of mcLargest temperature difference in heat exchanger

    NTU = UACmin

    = f(NTU, Cmin/Cmax)See List of Symbols on page xvii for definitions of terms.

  • Hol29362_Ch01 10/7/2008 18:49

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.6 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    6 1-2 Thermal Conductivity

    liquids and solids, but in general, many open questions and concepts still need clarificationwhere liquids and solids are concerned.

    The mechanism of thermal conduction in a gas is a simple one. We identify the kineticenergy of a molecule with its temperature; thus, in a high-temperature region, the moleculeshave higher velocities than in some lower-temperature region. The molecules are in contin-uous random motion, colliding with one another and exchanging energy and momentum.The molecules have this random motion whether or not a temperature gradient exists in thegas. If a molecule moves from a high-temperature region to a region of lower temperature,it transports kinetic energy to the lower-temperature part of the system and gives up thisenergy through collisions with lower-energy molecules.

    Table 1-1 lists typical values of the thermal conductivities for several materials toindicate the relative orders of magnitude to be expected in practice. More complete tabularinformation is given in Appendix A. In general, the thermal conductivity is stronglytemperature-dependent.

    Table 1-1 Thermal conductivity of various materials at 0◦C.Thermal conductivity

    k

    Material W/m · ◦C Btu/h · ft · ◦FMetals:

    Silver (pure) 410 237Copper (pure) 385 223Aluminum (pure) 202 117Nickel (pure) 93 54Iron (pure) 73 42Carbon steel, 1% C 43 25Lead (pure) 35 20.3Chrome-nickel steel (18% Cr, 8% Ni) 16.3 9.4

    Nonmetallic solids:Diamond 2300 1329Quartz, parallel to axis 41.6 24Magnesite 4.15 2.4Marble 2.08−2.94 1.2−1.7Sandstone 1.83 1.06Glass, window 0.78 0.45Maple or oak 0.17 0.096Hard rubber 0.15 0.087Polyvinyl chloride 0.09 0.052Styrofoam 0.033 0.019Sawdust 0.059 0.034Glass wool 0.038 0.022Ice 2.22 1.28

    Liquids:Mercury 8.21 4.74Water 0.556 0.327Ammonia 0.540 0.312Lubricating oil, SAE 50 0.147 0.085Freon 12, CCl2F2 0.073 0.042

    Gases:Hydrogen 0.175 0.101Helium 0.141 0.081Air 0.024 0.0139Water vapor (saturated) 0.0206 0.0119Carbon dioxide 0.0146 0.00844

  • Hol29362_Ch01 10/7/2008 18:49

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.11 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 1 Introduction 11

    thermal properties of the fluid (thermal conductivity, specific heat, density). This is expectedbecause viscosity influences the velocity profile and, correspondingly, the energy-transferrate in the region near the wall.

    If a heated plate were exposed to ambient room air without an external source of motion,a movement of the air would be experienced as a result of the density gradients near theplate. We call this natural, or free, convection as opposed to forced convection, whichis experienced in the case of the fan blowing air over a plate. Boiling and condensationphenomena are also grouped under the general subject of convection heat transfer. Theapproximate ranges of convection heat-transfer coefficients are indicated in Table 1-3.

    Convection Energy Balance on a Flow Channel

    The energy transfer expressed by Equation (1-8) is used for evaluating the convection lossfor flow over an external surface. Of equal importance is the convection gain or loss resultingfrom a fluid flowing inside a channel or tube as shown in Figure 1-8. In this case, the heatedwall at Tw loses heat to the cooler fluid, which consequently rises in temperature as it flows

    Table 1-3 Approximate values of convection heat-transfer coefficients.

    h

    Mode W/m2 · ◦C Btu/h · ft2 · ◦FAcross 2.5-cm air gap evacuated to a pressure

    of 10−6 atm and subjectedto �T = 100◦C − 30◦C 0.087 0.015

    Free convection, �T = 30◦CVertical plate 0.3 m [1 ft] high in air 4.5 0.79Horizontal cylinder, 5-cm diameter, in air 6.5 1.14Horizontal cylinder, 2-cm diameter,

    in water 890 157Heat transfer across 1.5-cm vertical air

    gap with �T = 60◦C 2.64 0.46Fine wire in air, d= 0.02 mm,�T = 55◦C 490 86

    Forced convectionAirflow at 2 m/s over 0.2-m square plate 12 2.1Airflow at 35 m/s over 0.75-m square plate 75 13.2Airflow at Mach number = 3, p= 1/20 atm,T∞ = −40◦C, across 0.2-m square plate 56 9.9

    Air at 2 atm flowing in 2.5-cm-diametertube at 10 m/s 65 11.4

    Water at 0.5 kg/s flowing in 2.5-cm-diametertube 3500 616

    Airflow across 5-cm-diameter cylinderwith velocity of 50 m/s 180 32

    Liquid bismuth at 4.5 kg/s and 420◦Cin 5.0-cm-diameter tube 3410 600

    Airflow at 50 m/s across fine wire,d= 0.04 mm 3850 678

    Boiling waterIn a pool or container 2500–35,000 440–6200Flowing in a tube 5000–100,000 880–17,600

    Condensation of water vapor, 1 atmVertical surfaces 4000–11,300 700–2000Outside horizontal tubes 9500–25,000 1700–4400

    Dropwise condensation 170,000–290,000 30,000–50,000

  • hol29362_ch02 10/13/2008 18:58

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.30 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    30 2-4 Radial Systems

    Table 2-1 Insulation types and applications.

    ThermalTemperature conductivity, Density,

    Type range, ◦C mW/m · ◦C kg/m3 Application1 Linde evacuated superinsulation −240–1100 0.0015–0.72 Variable Many2 Urethane foam −180–150 16–20 25–48 Hot and cold pipes3 Urethane foam −170–110 16–20 32 Tanks4 Cellular glass blocks −200–200 29–108 110–150 Tanks and pipes5 Fiberglass blanket for wrapping −80–290 22–78 10–50 Pipe and pipe fittings6 Fiberglass blankets −170–230 25–86 10–50 Tanks and equipment7 Fiberglass preformed shapes −50–230 32–55 10–50 Piping8 Elastomeric sheets −40–100 36–39 70–100 Tanks9 Fiberglass mats 60–370 30–55 10–50 Pipe and pipe fittings

    10 Elastomeric preformed shapes −40–100 36–39 70–100 Pipe and fittings11 Fiberglass with vapor −5–70 29–45 10–32 Refrigeration lines

    barrier blanket12 Fiberglass without vapor to 250 29–45 24–48 Hot piping

    barrier jacket13 Fiberglass boards 20–450 33–52 25–100 Boilers, tanks,

    heat exchangers14 Cellular glass blocks and boards 20–500 29–108 110–150 Hot piping15 Urethane foam blocks and 100–150 16–20 25–65 Piping

    boards16 Mineral fiber preformed shapes to 650 35–91 125–160 Hot piping17 Mineral fiber blankets to 750 37–81 125 Hot piping18 Mineral wool blocks 450–1000 52–130 175–290 Hot piping19 Calcium silicate blocks, boards 230–1000 32–85 100–160 Hot piping, boilers,

    chimney linings20 Mineral fiber blocks to 1100 52–130 210 Boilers and tanks

    Figure 2-3 One-dimensional heat flowthrough a hollow cylinderand electrical analog.

    L

    q

    rri

    ro dr

    Ti

    R th =ln(ro/ri)2 kL π

    q

    To

  • hol29362_ch02 10/13/2008 18:58

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.50 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    50 2-10 Fins

    Figure 2-11 Efficiencies of straight rectangular and triangular fins.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.5 1 1.5 2 2.5

    L

    tLc �

    L � 2 rectangular L triangular

    Am � tLc rectangular

    2 Lc triangulart

    t

    L

    t

    Lc3/2(h/kAm)

    1/2

    Fin

    effi

    cien

    cy,

    ƒη

    Figure 2-12 Efficiencies of circumferential fins of rectangularprofile, according to Reference 3.

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 0.5 1 1.5 2 2.5 3

    t

    L r1r2

    Lc3�2(h�kAm)1�2

    Lc = L +

    r2c = r1 + Lc

    L = r2 − r1

    Am = tLc

    Fin

    effi

    cien

    cy,

    t2

    1

    2

    34 5

    r2c�r1

    number of applications, and the interested reader should consult Siegel and Howell [9] forinformation on this subject.

    In some cases a valid method of evaluating fin performance is to compare the heattransfer with the fin to that which would be obtained without the fin. The ratio of thesequantities is

    q with fin

    q without fin= ηfAfhθ0

    hAbθ0

  • hol29362_ch03 10/29/2008 15:34

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.84 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    84 3-4 The Conduction Shape Factor

    Table 3-1 Conduction shape factors, summarized from References 6 and 7.Note: For buried objects the temperature difference is �T = Tobject − Tfar field. The far-fieldtemperature is taken the same as the isothermal surface temperature for semi-infinite media.

    Physical system Schematic Shape factor Restrictions

    Isothermal cylinder of radius rburied in semi-infinite mediumhaving isothermal surface

    D

    r

    L

    Isothermal2πL

    cosh−1(D/r)2πL

    ln(D/r)

    L� r

    L� rD> 3r

    Isothermal sphere of radius rburied in infinite medium

    r

    4πr

    Isothermal sphere of radius rburied in semi-infinite mediumhaving isothermal surface�T = Tsurf − Tfar field D

    r

    Isothermal 4πr

    1 − r/2D

    Conduction between twoisothermal cylinders of lengthLburied in infinite medium

    D

    r1 r2 2πL

    cosh−1(D2−r21−r22

    2r1r2

    ) L� rL�D

    Row of horizontal cylindersof length L in semi-infinitemedium with isothermalsurface

    Isothermal

    D

    r

    l

    S= 2πLln[(

    1πr

    )sinh(2πD/l)

    ] D> 2r

    Buried cube in infinitemedium, L on a side

    L

    8.24L

  • hol29362_ch03 10/29/2008 15:34

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.85 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 3 Steady-State Conduction—Multiple Dimensions 85

    Table 3-1 (Continued).

    Physical system Schematic Shape factor Restrictions

    Isothermal cylinderof radius r placed insemi-infinite mediumas shown

    2r

    L

    Isothermal2πL

    ln(2L/r)L� 2r

    Isothermal rectangularparallelepiped buried insemi-infinite medium havingisothermal surface

    b

    c

    aL

    Isothermal1.685L

    [log

    (1 + ba

    )]−0.59 (bc

    )−0.078 See Reference 7

    Plane wall

    L

    A

    A

    L

    One-dimensional heat flow

    Hollow cylinder, length L

    +

    riro

    2πL

    ln(ro/ri)L� r

    Hollow sphere

    +

    riro

    4πroriro− ri

    Thin horizontal disk buriedin semi-infinite mediumwith isothermal surface

    Isothermal2r D

    4r8r4πr

    π/2 − tan−1(r/2D)

    D= 0D� 2rD/2r> 1tan−1(r/2D) in radians

    Hemisphere buried insemi-infinite medium�T = Tsphere − Tfar field

    +r

    Isothermal 2πr

    Isothermal sphere buried insemi-infinite medium withinsulated surface +

    r

    D

    T∞�

    Insulated 4πr

    1 + r/2D

    Two isothermal spheresburied in infinite medium

    + +

    r1 r2

    D

    4πr2r2r1

    [1 − (r1/D)4

    1−(r2/D)2]

    − 2r2DD> 5rmax

  • hol29362_Ch03 11/6/2008 9:46

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.86 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    86 3-4 The Conduction Shape Factor

    Table 3-1 (Continued).

    Physical system Schematic Shape factor Restrictions

    Thin rectangular plate oflengthL, buried in semi-infinitemedium having isothermalsurface

    D

    W

    Isothermal

    L

    πW

    ln(4W/L)

    2πW

    ln(4W/L)

    2πW

    ln(2πD/L)

    D= 0W>L

    D�WW>L

    W �LD> 2W

    Parallel disks buried ininfinite medium

    D

    t1 t2r

    4πr[π2 − tan−1(r/D)

    ] D> 5rtan−1(r/D)in radians

    Eccentric cylinders of length L

    D

    r1

    r2

    + +

    2πL

    cosh−1(r21+r22−D2

    2r1r2

    ) L� r2

    Cylinder centered in a squareof length L

    W

    +Wr

    L

    2πL

    ln(0.54W/r)L�W

    Horizontal cylinder of length Lcentered in infinite plate

    D

    Isothermal

    Isothermal

    +r

    D

    2πL

    ln(4D/r)

    Thin horizontal disk buried insemi-infinite medium withadiabatic surface�T = Tdisk − Tfar field

    D

    Insulated

    2r

    4πr

    π/2 + tan−1(r/2D)D/2r> 1tan−1(r/2D)in radians

  • hol29362_Ch03 10/14/2008 18:0

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.92 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    92 3-5 Numerical Method of Analysis

    Table 3-2 Summary of nodal formulas for finite-difference calculations. (Dashed lines indicate element volume.)†

    Nodal equation for equal increments in x and yPhysical situation (second equation in situation is in form for Gauss-Seidel iteration)

    (a) Interior node

    m, n + 1

    m, n − 1

    m, nm − 1, n m + 1, nΔy

    Δy

    Δx Δx

    0 = Tm+1,n+ Tm,n+1 + Tm−1,n+ Tm,n−1 − 4Tm,n

    Tm,n= (Tm+1,n+ Tm,n+1 + Tm−1,n+ Tm,n−1)/4

    (b) Convection boundary node

    m, n + 1

    m, n − 1

    m, nm − 1, n

    Δy

    Δy

    Δx

    h, T∞

    0 = h�xkT∞ + 12 (2Tm−1,n+ Tm,n+1 + Tm,n−1)−

    (h�xk

    + 2)Tm,n

    Tm,n= Tm−1,n+(Tm,n+1+Tm,n−1)/2+Bi T∞2+BiBi = h�x

    k

    (c) Exterior corner with convection boundary

    m, n − 1

    m, nm − 1, n

    Δy

    Δx

    h, T∞

    0 = 2 h�xkT∞ + (Tm−1,n+ Tm,n−1)− 2

    (h�xk

    + 1)Tm,n

    Tm,n= (Tm−1,n + Tm,n−1)/2 + Bi T∞1+BiBi = h�x

    k

    (d) Interior corner with convection boundary

    m, n − 1

    m, n + 1

    m, nm − 1, n m + 1, n

    h, T∞Δy

    Δx

    0 = 2 h�xkT∞ + 2Tm−1,n+ Tm,n+1 + Tm+1,n+ Tm,n−1 − 2

    (3 + h�x

    k

    )Tm,n

    Tm,n= Bi T∞+Tm,n+1+Tm−1,n+(Tm+1,n + Tm,n−1)/23+BiBi = h�x

    k

  • hol29362_ch03 10/29/2008 15:34

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.93 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 3 Steady-State Conduction—Multiple Dimensions 93

    Table 3-2 (Continued).

    Nodal equation for equal increments in x and yPhysical situation (second equation in situation is in form for Gauss-Seidel iteration)

    (e) Insulated boundary

    m, n − 1

    m, n + 1

    m − 1, n

    Δy

    Δx

    m, nIn

    sula

    ted

    0 = Tm,n+1 + Tm,n−1 + 2Tm−1,n− 4Tm,nTm,n= (Tm,n+1 + Tm,n−1 + 2Tm−1,n)/4

    (f ) Interior node near curved boundary‡

    3

    21

    m, n + 1

    m, n − 1

    m, nm − 1, n m + 1, n

    h,T∞�Δy

    Δy

    Δx

    a Δx

    Δx

    c Δx

    b Δx

    0 = 2b(b+ 1) T2 + 2a+ 1Tm+1,n+ 2b+ 1Tm,n−1 + 2a(a+ 1) T1 − 2

    (1a + 1b

    )Tm,n

    (g) Boundary node with convection alongcurved boundary—node 2 for (f ) above§

    0 = b√a2 + b2 T1 +

    b√c2 + 1T3 +

    a+1bTm,n+ h�xk (

    √c2 + 1 +

    √a2 + b2)T∞

    −[

    b√a2 + b2 +

    b√c2+1 +

    a+1b

    + (√c2 + 1 +

    √a2 + b2) h�x

    k

    ]T2

    †Convection boundary may be converted to insulated surface by setting h= 0 (Bi = 0).‡This equation is obtained by multiplying the resistance by 4/(a+ 1)(b+ 1)§This relation is obtained by dividing the resistance formulation by 2.

    Nine-Node Problem EXAMPLE 3-5Consider the square of Figure Example 3-5. The left face is maintained at 100◦C and the top faceat 500◦C, while the other two faces are exposed to an environment at 100◦C:

    h= 10 W/m2 · ◦C and k= 10 W/m · ◦CThe block is 1 m square. Compute the temperature of the various nodes as indicated inFigure Example 3-5 and the heat flows at the boundaries.

    SolutionThe nodal equation for nodes 1, 2, 4, and 5 is

    Tm+1,n+ Tm−1,n+ Tm,n+1 + Tm,n−1 − 4Tm,n= 0The equation for nodes 3, 6, 7, and 8 is given by Equation (3-25), and the equation for 9 is givenby Equation (3-26):

    h�x

    k= (10)(1)(3)(10)

    = 13

  • hol29362_Ch04 10/30/2008 17:34

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.149 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Figure 4-5 Temperature distribution in the semi-infinite solid with convection boundary condition.

    1

    0.1

    0.01

    0.001

    0.00010 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

    0.05

    0.1

    0.2

    0.3

    0.5

    1

    23

    h( )1/2/kατ

    (4 )1/2ατx

    1−(T

    −T

    ∞)/

    (Ti −

    T∞

    ) =

    1− q

    iq

    Figure 4-6 Nomenclature for one-dimensional solids suddenly subjected to convectionenvironment at T∞: (a) infinite plate of thickness 2L; (b) infinite cylinder ofradius r0; (c) sphere of radius r0.

    T0 = centerline temperature T0 = centerline axis temperature T0 = center temperature

    (a) (b) (c)

    LL

    xr0

    r0 r

    r

    ++

    149

  • hol29362_Ch04 10/30/2008 20:6

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.150 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Fig

    ure

    4-7

    Mid

    plan

    ete

    mpe

    ratu

    refo

    ran

    infin

    itepl

    ate

    ofth

    ickn

    ess

    2L:(

    a)fu

    llsc

    ale.

    k�hL

    1.0

    0.8

    0.7

    0.6 0.5

    0.4 0.30.2

    0.1 0.06

    0

    1412

    109

    87

    65

    4

    3

    2.5

    2.0 1.8

    1.6 1.4

    1.2

    100

    9080

    7060

    50

    4540 35

    30

    25

    20 18

    16

    01

    23

    46

    810

    1412

    2216

    1820

    2426

    2830

    4050

    6070

    8090

    100

    110

    130

    150

    200

    300

    400

    500

    600

    700

    1.0

    0.7

    0.5

    0.3

    0.4

    0.2

    0.1

    0.07

    0.05

    0.04

    0.03

    0.02

    0.00

    7

    0.01

    0.00

    50.

    004

    0.00

    3

    0.00

    2

    0.00

    1

    �L2

    = F

    oατ

    0

    i

    θθ

    =(T0−T∞)/(Ti−T∞)

    (a)

    150

  • hol29362_ch04 10/14/2008 19:33

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.151 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 4 Unsteady-State Conduction 151

    Figure 4-7 (Continued). (b) expanded scale for 0< Fo< 4, from Reference 2.

    1.0

    0.7

    0.5

    0.1

    0.2

    0.3

    0.4

    10 2 3 40.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.2

    0�

    i =

    (T0

    − T

    ∞)�(

    Ti −

    T∞

    ) θ

    θ

    ατ = FoL2

    100

    1825

    161087

    1.4

    1.6

    1.8

    2.0

    2.5

    3

    4

    5

    6

    k�hL

    = 1

    �Bi

    (b)

    If one considers the solid as behaving as a lumped capacity during the cooling or heatingprocess, that is, small internal resistance compared to surface resistance, the exponentialcooling curve of Figure 4-5 may be replotted in expanded form, as shown in Figure 4-13using the Biot-Fourier product as the abscissa. We note that the following parameters applyfor the bodies considered in the Heisler charts.

    (A/V)inf plate = 1/L(A/V)inf cylinder = 2/r0(A/V)sphere = 3/r0

    Obviously, there are many other practical heating and cooling problems of interest. Thesolutions for a large number of cases are presented in graphical form by Schneider [7], andreaders interested in such calculations will find this reference to be of great utility.

    The Biot and Fourier Numbers

    A quick inspection of Figures 4-5 to 4-16 indicates that the dimensionless temperatureprofiles and heat flows may all be expressed in terms of two dimensionless parameterscalled the Biot and Fourier numbers:

    Biot number = Bi = hsk

    Fourier number = Fo = ατs2

    = kτρcs2

    In these parameters s designates a characteristic dimension of the body; for the plate it isthe half-thickness, whereas for the cylinder and sphere it is the radius. The Biot numbercompares the relative magnitudes of surface-convection and internal-conduction resistances

  • hol29362_Ch04 10/30/2008 17:34

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.152 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Fig

    ure

    4-8

    Axi

    ste

    mpe

    ratu

    refo

    ran

    infin

    itecy

    linde

    rof

    radi

    usr 0

    :(a)

    full

    scal

    e.

    1.0

    0.7

    0.5

    0.4

    0.3

    0.2

    0.1

    0.07

    0.05

    0.04

    0.03

    0.02

    0.01

    0.00

    7

    0.00

    50.

    004

    0.00

    3

    0.00

    2

    0.00

    135

    030

    020

    015

    014

    013

    012

    011

    010

    090

    8070

    6050

    4030

    2628

    2422

    2018

    1614

    1210

    86

    43

    21

    0

    100

    90 8070

    60

    50

    4035

    30

    2520 18 16

    45

    1412

    10 98

    76

    5 4

    k�hr0

    3.5 3

    .02.

    5

    2.01.8

    1.6

    1.41.2

    1.0

    0.8

    0.6 0.5

    0.4 0.30.2 0.1

    0

    0

    i

    θθ

    =(T0−T∞)/(Ti−T∞)

    (a)

    ατ=

    Fo

    r 02

    152

  • hol29362_ch04 10/14/2008 19:33

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.153 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 4 Unsteady-State Conduction 153

    Figure 4-8 (Continued). (b) expanded scale for 0< Fo< 4, from Reference 2.

    1.0

    0.7

    0.5

    0.1

    0.2

    0.3

    0.4

    10 2 3

    4

    3.0

    2.5

    3.5

    40 0.2 0.4 0.6 0.8 1.0 1.2 1.6 1.8 2.0

    0�

    i = (T

    0 −

    T∞

    )�(T

    i − T

    ∞)

    θθ

    ατ = For0

    2

    100

    20

    2550

    161412

    89

    7

    6

    k�hr

    0 =

    1�B

    i

    5

    (b)

    to heat transfer. The Fourier modulus compares a characteristic body dimension with anapproximate temperature-wave penetration depth for a given time τ.

    A very low value of the Biot modulus means that internal-conduction resistance isnegligible in comparison with surface-convection resistance. This in turn implies that thetemperature will be nearly uniform throughout the solid, and its behavior may be approxi-mated by the lumped-capacity method of analysis. It is interesting to note that the exponentof Equation (4-5) may be expressed in terms of the Biot and Fourier numbers if one takesthe ratio V/A as the characteristic dimension s. Then,

    hA

    ρcVτ= hτ

    ρcs= hsk

    ρcs2= Bi Fo

    Applicability of the Heisler Charts

    The calculations for the Heisler charts were performed by truncating the infinite seriessolutions for the problems into a few terms. This restricts the applicability of the charts tovalues of the Fourier number greater than 0.2.

    Fo = ατs2> 0.2

    For smaller values of this parameter the reader should consult the solutions and charts givenin the references at the end of the chapter. Calculations using the truncated series solutionsdirectly are discussed in Appendix C.

  • hol29362_Ch04 10/30/2008 17:34

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.154 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Fig

    ure

    4-9

    Cen

    ter

    tem

    pera

    ture

    for

    asp

    here

    ofra

    diusr 0

    :(a)

    full

    scal

    e.

    00.

    51.

    0

    1.0

    0.7

    0.5

    0.4

    0.3

    0.2

    0.1

    0.07

    0.05

    0.04

    0.03

    0.02

    0.01

    0.00

    7

    0.00

    50.

    004

    0.00

    3

    0.00

    2

    0.00

    11.

    52

    2.5

    35

    67

    910

    1520

    2530

    3540

    4550

    9013

    017

    021

    025

    04

    8 ατ�r

    0=

    Fo

    100

    9080

    70

    906050

    4035

    30 25

    20 18

    16

    14 12 10-

    3.5

    2.8

    2.6

    2.4

    2.2

    2.0 1.8

    1.6 1.4

    1.2 1.0

    0.75

    0.05

    0.5

    0.4

    0.30.2

    0

    9 8 76

    54

    45

    k�hr

    0

    2

    0

    i

    θθ

    =(T0−T∞)/(Ti−T∞)

    (a)

    154

  • hol29362_ch04 10/14/2008 19:33

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.155 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Figure 4-9 (Continued). (b) expanded scale for 0< Fo< 3, from Reference 2.

    1.0

    0.7

    0.5

    0.1

    0.2

    0.3

    0.4

    0.5 1.0 1.5 2.0 2.5 3.000 0.1 0.20.05 0.35

    0.5 0.75 1.0 1.2 1.6 2.0 2.4 2.8 3.0 3.5

    0/

    i = (T

    0 −

    T∞

    )/(T

    i − T

    ∞)

    θθ

    ατ = Fo0r2

    100

    25303550

    18141210

    89

    7

    6

    5

    4

    k/hr

    0 =

    1/B

    i

    (b)

    Figure 4-10 Temperature as a function of center temperature in aninfinite plate of thickness 2L, from Reference 2.

    0.01 0.02 0.05 0.1 0.2 1.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    20

    0

    3 5 10 20 50 1000.5

    � 0

    =(T

    −T

    ∞)/

    (T0

    −T

    ∞)

    θθ

    =khL

    1Bi

    0.8

    0.9

    1.0

    0.6

    0.4

    x/L = 0.2

    155

  • hol29362_ch04 10/14/2008 19:33

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.156 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Figure 4-11 Temperature as a function of axis temperature in aninfinite cylinder of radius r0, from Reference 2.

    0.01 0.02 0.05 0.1 0.2 1.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    20

    0

    3 5 10 20 50 1000.5

    / 0

    =(T

    −T

    ∞)/

    (T0

    −T

    ∞)

    θθ

    =khr0

    1Bi

    0.8

    0.9

    1.0

    0.6

    0.4

    r /r0 = 0.2

    Figure 4-12 Temperature as a function of center temperature for asphere of radius r0, from Reference 2.

    0.01 0.02 0.05 0.1 0.2 1.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    20

    0

    3 5 10 20 50 1000.5

    =khr0

    1Bi

    r/r0 = 0.2

    0.4

    0.6

    0.8

    0.9

    1.0

    0θ θ=

    (T−

    T∞

    )/(T

    0−

    T∞

    )

    156

  • hol29362_ch04 10/14/2008 19:33

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.157 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Figure 4-13 Temperature variation with time for solids that may betreated as lumped capacities: (a) 0

  • hol29362_ch04 10/14/2008 19:33

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.158 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Figure 4-13 (Continued).

    0 0.02 0.04 0.06 0.08 0.10.9

    0.91

    0.92

    0.93

    0.94

    0.95

    0.96

    0.97

    0.98

    0.99

    1

    (c)

    BiFo = c�h(A/V)τ

    θθi

    Figure 4-14 Dimensionless heat loss Q/Q0 of an infinite plane of thickness 2L with time,from Reference 6.

    10−5 10−4 10−3 10−2 10−1 1 10 102 103 104

    = Fo Bi2h2

    k2ατ

    QQ0

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0

    hL/k

    =0.

    001

    0.00

    20.

    005

    0.01

    0.02

    0.05 0.1

    0.2

    0.5

    1 2 5

    10 20 50

    158

  • hol29362_ch04 10/14/2008 19:33

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.159 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 4 Unsteady-State Conduction 159

    Figure 4-15 Dimensionlesss heat loss Q/Q0 of an infinite cylinder of radius r0 with time,from Reference 6.

    10−5 10−4 10−3 10−2 10−1 1 10 102 103 104

    = Fo Bi2h2

    k2ατ

    QQ0

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0

    hr0

    /k=

    0.00

    10.

    002

    0.00

    50.

    010.

    020.

    05 0.1

    0.2

    0.5

    1 2 5

    10 20 50

    Figure 4-16 Dimensionless heat loss Q/Q0 of a sphere of radius r0 with time, fromReference 6.

    10−5 10−4 10−3 10−2 10−1 1 10 102 103 104

    = Fo Bi2h2

    k2ατ

    QQ0

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    0

    hr0

    /k=

    0.00

    10.

    002

    0.00

    5

    0.05 0.1

    0.2

    0.5

    1 2 5

    10 20 500.0

    10.

    02

    Sudden Exposure of Semi-InfiniteSlab to Convection EXAMPLE 4-5

    The slab of Example 4-4 is suddenly exposed to a convection-surface environment of 70◦C witha heat-transfer coefficient of 525 W/m2 · ◦C. Calculate the time required for the temperature toreach 120◦C at the depth of 4.0 cm for this circumstance.

    SolutionWe may use either Equation (4-15) or Figure 4-5 for solution of this problem, but Figure 4-5 iseasier to apply because the time appears in two terms. Even when the figure is used, an iterativeprocedure is required because the time appears in both of the variables h

    √ατ/k and x/(2

    √ατ).

  • hol29362_Ch04 10/30/2008 17:34

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.173 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 4 Unsteady-State Conduction 173

    displayed in Table 4-2, the most restrictive stability requirement (smallest�τ) is exhibitedby an exterior corner node, assuming all the convection nodes have the same value of Bi.

    Table 4-2 Explicit nodal equations. (Dashed lines indicate element volume.)†

    StabilityPhysical situation Nodal equation for �x = �y requirement

    (a) Interior node

    m, n − 1

    m, n + 1

    m − 1, nΔy

    Δy

    Δx Δx

    m, n m + 1, n

    Tp+1m,n = Fo

    (Tpm−1,n+ T

    pm,n+1 + T

    pm+1,n+ T

    pm,n−1

    )+[1 − 4(Fo)]Tpm,n

    Tp+1m,n = Fo

    (Tpm−1,n+ T

    pm,n+1 + T

    pm+1,n+ T

    pm,n−1

    −4Tpm,n)

    + Tpm,n

    Fo ≤ 14

    (b) Convection boundary node

    m, n + 1

    m, n − 1

    Δy

    Δy

    Δx

    m, nm − 1, n h, T∞�

    Tp+1m,n = Fo [2Tpm−1,n+ T

    pm,n+1 + T

    pm,n−1 + 2(Bi)T

    p∞]+[1 − 4(Fo)− 2(Fo)(Bi)]Tpm,n

    Tp+1m,n = Fo [2Bi (Tp∞ − Tpm,n)+ 2Tpm−1,n+ T

    pm,n+1

    +Tpm,n−1 − 4T

    pm,n] + Tpm,n

    Fo(2 + Bi)≤ 12

    (c) Exterior corner with convectionboundary

    m, n − 1

    m − 1, n

    Δy

    Δx

    m, n

    h, T∞�

    Tp+1m,n = 2(Fo) [Tpm−1,n+ T

    pm,n−1 + 2(Bi)T

    p∞]+[1 − 4(Fo)− 4(Fo)(Bi)]Tpm,n

    Tp+1m,n = 2Fo [Tpm−1,n+ T

    pm,n−1 − 2T

    pm,n

    +2Bi(Tp∞ − Tpm,n)] + Tpm,n

    Fo(1 + Bi)≤ 14

    (d) Interior corner with convectionboundary

    m, n + 1

    m, n − 1

    Δy

    Δx

    m − 1, n m + 1, n

    h, T∞�

    m, n

    Tp+1m,n = 23 (Fo) [2T

    pm,n+1 + 2T

    pm+1,n

    +2Tpm−1,n+ T

    pm,n−1 + 2(Bi)T

    p∞]+[1 − 4(Fo)− 43 (Fo)(Bi)]T

    pm,n

    Tp+1m,n = (4/3)Fo [Tpm,n+1 + T

    pm+1,n

    +Tpm−1,n− 3T

    pm,n+ Bi (Tp∞ − Tpm,n)] + Tpm,n

    Fo(3 + Bi)≤ 34

  • hol29362_Ch04 11/6/2008 10:1

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.174 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    174 4-6 Transient Numerical Method

    Table 4-2 (Continued).

    StabilityPhysical situation Nodal equation for �x = �y requirement

    (e) Insulated boundary

    ∆y

    ∆x

    m − 1, n

    m, n + 1

    m, n − 1

    m, n

    Insu

    late

    d

    Tp+1m,n = Fo [2Tpm−1,n+ T

    pm,n+1 + T

    pm,n−1]

    +[1 − 4(Fo)]Tpm,nFo ≤ 14

    †Convection surfaces may be made insulated by setting h= 0 (Bi = 0).

    Table 4-3 Implicit nodal equations. (Dashed lines indicate volume element.)

    Physical situation Nodal equation for �x = �y

    (a) Interior node

    ∆x ∆x

    ∆y

    ∆ym – 1,n

    m – 1,n

    m,n m + 1,n

    m + 1,n

    [1 + 4(Fo)]Tp+1m,n − Fo(Tp+1m−1,n+ T

    p+1m,n+1 + T

    p+1m+1,n

    + Tp+1m,n−1

    )− Tpm,n= 0

    (b) Convection boundary node

    ∆x

    ∆y

    ∆ym – 1, n

    m, n

    m, n − 1

    m, n + 1

    h, T∞

    [1 + 2(Fo)(2 + Bi)]Tp+1m,n − Fo[Tp+1m,n+1 + T

    p+1m,n−1

    +2Tp+1m−1,n+ 2(Bi)T

    p+1∞]− Tpm,n= 0

    (c) Exterior corner with convection boundary

    ∆x

    ∆y

    m – 1, nm ,n

    m, n − 1

    h, T∞

    [1 + 4(Fo)(1 + Bi)]Tp+1m,n − 2(Fo)[Tp+1m−1,n+ T

    p+1m,n−1

    +2(Bi)Tp+1∞]− Tpm,n= 0

  • hol29362_Ch04 10/30/2008 17:34

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.175 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 4 Unsteady-State Conduction 175

    Table 4-3 (Continued).

    Physical situation Nodal equation for �x = �y

    (d) Interior corner with convectionboundary

    Δx

    Δy

    m – 1, n m, n

    m, n − 1

    m, n + 1

    m + 1, n

    h, T∞�

    [1 + 4(Fo)

    (1 + Bi

    3

    )]Tp+1m,n − 2(Fo)3 ×

    [2Tp+1m−1,n+ T

    p+1m,n−1

    + 2Tp+1m,n+1 + 2T

    p+1m+1,n+ 2(Bi)T

    p+1∞]− Tpm,n= 0

    (e) Insulated boundary

    Δx

    Δy

    m – 1, n m, n

    m, n − 1

    m, n + 1

    Insu

    late

    d

    [1 + 4(Fo)]Tp+1m,n − Fo(

    2Tp+1m−1,n+ T

    p+1m,n+1 + T

    p+1m,n−1

    )− Tpm,n= 0

    The advantage of an explicit forward-difference procedure is the direct calculationof future nodal temperatures; however, the stability of this calculation is governed by theselection of the values of �x and �τ. A selection of a small value of �x automaticallyforces the selection of some maximum value of �τ. On the other hand, no such restrictionis imposed on the solution of the equations that are obtained from the implicit formulation.This means that larger time increments can be selected to speed the calculation. The obviousdisadvantage of the implicit method is the larger number of calculations for each time step.For problems involving a large number of nodes, however, the implicit method may result inless total computer time expended for the final solution because very small time incrementsmay be imposed in the explicit method from stability requirements. Much larger incrementsin �τ can be employed with the implicit method to speed the solution.

    Most problems will involve only a modest number of nodes and the explicit formulationwill be quite satisfactory for a solution, particularly when considered from the standpointof the more generalized formulation presented in the following section.

    For a discussion of many applications of numerical analysis to transient heat conductionproblems, the reader is referred to References 4, 8, 13, 14, and 15.

    It should be obvious to the reader by now that finite-difference techniques may beapplied to almost any situation with just a little patience and care. Very complicated problemsthen become quite easy to solve with only modest computer facilities. The use of MicrosoftExcel for solution of transient heat-transfer problems is discussed in Appendix D.

    Finite-element methods for use in conduction heat-transfer problems are discussed inReferences 9 to 13. A number of software packages are available commercially.

  • hol29362_Ch05 10/31/2008 14:59

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.265 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 5 Principles of Convection 265

    Table 5-2 Summary of equations for flow over flat plates. Properties evaluated at Tf = (Tw+ T∞)/2 unless otherwise noted.

    Flow regime Restrictions Equation Equation number

    Heat transfer

    Laminar, local Tw= const, Rex < 5 × 105, Nux= 0.332 Pr1/3Re1/2x (5-44)0.6< Pr< 50

    Laminar, local Tw= const, Rex < 5 × 105, Nux= 0.3387 Re1/2x Pr

    1/3[1 +

    (0.0468

    Pr

    )2/3]1/4 (5-51)Rex Pr> 100

    Laminar, local qw= const, Rex < 5 × 105, Nux= 0.453 Re1/2x Pr1/3 (5-48)0.6< Pr< 50

    Laminar, local qw= const, Rex < 5 × 105 Nux= 0.4637 Re1/2x Pr

    1/3[1 +

    (0.0207

    Pr

    )2/3]1/4 (5-51)

    Laminar, average ReL < 5 × 105, Tw= const NuL= 2 Nux=L= 0.664 Re1/2L Pr1/3 (5-46)Laminar, local Tw= const, Rex < 5 × 105, Nux= 0.564(Rex Pr)1/2

    Pr � 1 (liquid metals)Laminar, local Tw= const, starting at Nux= 0.332 Pr1/3 Re1/2x

    [1 − ( x0x )3/4

    ]−1/3(5-43)

    x= x0, Rex < 5 × 105,0.6< Pr< 50

    Turbulent, local Tw= const, 5 × 105

  • hol29362_ch06 10/31/2008 14:58

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.312 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    312 6-6 Summary

    Table 6-8 Summary of forced-convection relations. (See text for property evaluation.)

    Subscripts: b= bulk temperature, f = film temperature, ∞ = free stream temperature,w= wall temperature

    Geometry Equation Restrictions Equation number

    Tube flow Nud = 0.023 Re0.8d Prn Fully developed turbulent flow, (6-4a)n= 0.4 for heating,n= 0.3 for cooling,0.6< Pr< 100,2500

  • hol29362_ch06 10/31/2008 14:58

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.313 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    C H A P T E R 6 Empirical and Practical Relations for Forced-Convection Heat Transfer 313

    Table 6-8 (Continued).

    Subscripts: b= bulk temperature, f = film temperature, ∞ = free stream temperature,w= wall temperature

    Geometry Equation Restrictions Equation number

    Flow across spheres Nudf = 0.37 Re0.6df Pr ∼ 0.7 (gases), 17

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.649 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    A P P E N D I X

    A TablesTable A-1 The error function.

    x

    2√

    ατerf

    x

    2√

    ατ

    x

    2√

    ατerf

    x

    2√

    ατ

    x

    2√

    ατerf

    x

    2√

    ατ

    0.00 0.00000 0.76 0.71754 1.52 0.968410.02 0.02256 0.78 0.73001 1.54 0.970590.04 0.04511 0.80 0.74210 1.56 0.972630.06 0.06762 0.82 0.75381 1.58 0.974550.08 0.09008 0.84 0.76514 1.60 0.97636

    0.10 0.11246 0.86 0.77610 1.62 0.978040.12 0.13476 0.88 0.78669 1.64 0.979620.14 0.15695 0.90 0.79691 1.66 0.981100.16 0.17901 0.92 0.80677 1.68 0.982490.18 0.20094 0.94 0.81627 1.70 0.98379

    0.20 0.22270 0.96 0.82542 1.72 0.985000.22 0.24430 0.98 0.83423 1.74 0.986130.24 0.26570 1.00 0.84270 1.76 0.987190.26 0.28690 1.02 0.85084 1.78 0.988170.28 0.30788 1.04 0.85865 1.80 0.98909

    0.30 0.32863 1.06 0.86614 1.82 0.989940.32 0.34913 1.08 0.87333 1.84 0.990740.34 0.36936 1.10 0.88020 1.86 0.991470.36 0.38933 1.12 0.88079 1.88 0.992160.38 0.40901 1.14 0.89308 1.90 0.99279

    0.40 0.42839 1.16 0.89910 1.92 0.993380.42 0.44749 1.18 0.90484 1.94 0.993920.44 0.46622 1.20 0.91031 1.96 0.994430.46 0.48466 1.22 0.91553 1.98 0.994890.48 0.50275 1.24 0.92050 2.00 0.995322

    0.50 0.52050 1.26 0.92524 2.10 0.9970200.52 0.53790 1.28 0.92973 2.20 0.9981370.54 0.55494 1.30 0.93401 2.30 0.9988570.56 0.57162 1.32 0.93806 2.40 0.9993110.58 0.58792 1.34 0.94191 2.50 0.999593

    0.60 0.60386 1.36 0.94556 2.60 0.9997640.62 0.61941 1.38 0.94902 2.70 0.9998660.64 0.63459 1.40 0.95228 2.80 0.9999250.66 0.64938 1.42 0.95538 2.90 0.9999590.68 0.66278 1.44 0.95830 3.00 0.999978

    0.70 0.67780 1.46 0.96105 3.20 0.9999940.72 0.69143 1.48 0.96365 3.40 0.9999980.74 0.70468 1.50 0.96610 3.60 1.000000

    649

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.650 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Tab

    leA

    -2Pr

    oper

    tyva

    lues

    for

    met

    als.

    † Pro

    pert

    ies

    at20

    ◦ CT

    herm

    alco

    nduc

    tivi

    tyk,W

    /m·◦

    C

    ρc p

    ×10

    5−1

    00◦ C

    0◦C

    100◦

    C20

    0◦C

    300◦

    C40

    0◦C

    600◦

    C80

    0◦C

    1000

    ◦ C12

    00◦ C

    Met

    alkg

    /m3

    kJ/k

    g·◦

    CW

    /m·◦

    Cm

    2 /s

    −148

    ◦ F32

    ◦ F21

    2◦F

    392◦

    F57

    2◦F

    752◦

    F11

    12◦ F

    1472

    ◦ F18

    32◦ F

    2192

    ◦ F

    Alu

    min

    um:

    Pure

    2,70

    70.

    896

    204

    8.41

    821

    520

    220

    621

    522

    824

    9A

    l-C

    u(D

    ural

    umin

    ),94

    –96%

    Al,

    3–5%

    Cu,

    trac

    eM

    g2,

    787

    0.88

    316

    46.

    676

    126

    159

    182

    194

    Al-

    Si(S

    ilum

    in,

    copp

    er-b

    eari

    ng),

    86.5

    %A

    l,1%

    Cu

    2,65

    90.

    867

    137

    5.93

    311

    913

    714

    415

    216

    1A

    l-Si

    (Alu

    sil)

    ,78

    –80%

    Al,

    20–2

    2%Si

    2,62

    70.

    854

    161

    7.17

    214

    415

    716

    817

    517

    8A

    l-M

    g-Si

    ,97%

    Al,

    1%M

    g,1%

    Si,

    1%M

    n2,

    707

    0.89

    217

    77.

    311

    175

    189

    204

    Lea

    d11

    ,373

    0.13

    035

    2.34

    336

    .935

    .133

    .431

    .529

    .8Ir

    on:

    Pure

    7,89

    70.

    452

    732.

    034

    8773

    6762

    5548

    4036

    3536

    Wro

    ught

    iron

    ,0.5

    %C

    7,84

    90.

    4659

    1.62

    659

    5752

    4845

    3633

    3333

    Stee

    l(C

    max

    ≈1.

    5%):

    Car

    bon

    stee

    lC

    ≈0.

    5%7,

    833

    0.46

    554

    1.47

    455

    5248

    4542

    3531

    2931

    1.0%

    7,80

    10.

    473

    431.

    172

    4343

    4240

    3633

    2928

    291.

    5%7,

    753

    0.48

    636

    0.97

    036

    3636

    3533

    3128

    2829

    650

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.651 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Tab

    leA

    -2Pr

    oper

    tyva

    lues

    for

    met

    als†

    (Con

    tinu

    ed).

    Pro

    pert

    ies

    at20

    ◦ CT

    herm

    alco

    nduc

    tivi

    tyk

    ,W/m

    ·◦C

    ρc p

    ×10

    5−1

    00◦ C

    0◦C

    100◦

    C20

    0◦C

    300◦

    C40

    0◦C

    600◦

    C80

    0◦C

    1000

    ◦ C12

    00◦ C

    Met

    alkg

    /m3

    kJ/k

    g·◦

    CW

    /m·◦

    Cm

    2 /s

    −148

    ◦ F32

    ◦ F21

    2◦F

    392◦

    F57

    2◦F

    752◦

    F11

    12◦ F

    1472

    ◦ F18

    32◦ F

    2192

    ◦ F

    Nic

    kels

    teel

    Ni≈

    0%7,

    897

    0.45

    273

    2.02

    620

    %7,

    933

    0.46

    190.

    526

    40%

    8,16

    90.

    4610

    0.27

    980

    %8,

    618

    0.46

    350.

    872

    Inva

    r36

    %N

    i8,

    137

    0.46

    10.7

    0.28

    6C

    hrom

    est

    eel

    Cr=

    0%7,

    897

    0.45

    273

    2.02

    687

    7367

    6255

    4840

    3635

    361%

    7,86

    50.

    4661

    1.66

    562

    5552

    4742

    3633

    335%

    7,83

    30.

    4640

    1.11

    040

    3836

    3633

    2929

    2920

    %7,

    689

    0.46

    220.

    635

    2222

    2222

    2424

    2629

    Cr-

    Ni(

    chro

    me-

    nick

    el):

    15%

    Cr,

    10%

    Ni

    7,86

    50.

    4619

    0.52

    718

    %C

    r,8%

    Ni

    (V2A

    )7,

    817

    0.46

    16.3

    0.44

    416

    .317

    1719

    1922

    2731

    20%

    Cr,

    15%

    Ni

    7,83

    30.

    4615

    .10.

    415

    25%

    Cr,

    20%

    Ni

    7,86

    50.

    4612

    .80.

    361

    Tun

    gste

    nst

    eel

    W=

    0%7,

    897

    0.45

    273

    2.02

    61%

    7,91

    30.

    448

    661.

    858

    5%8,

    073

    0.43

    554

    1.52

    510

    %8,

    314

    0.41

    948

    1.39

    1C

    oppe

    r:Pu

    re8,

    954

    0.38

    3138

    611

    .234

    407

    386

    379

    374

    369

    363

    353

    Alu

    min

    umbr

    onze

    95%

    Cu,

    5%A

    l8,

    666

    0.41

    083

    2.33

    0

    651

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.652 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    Tab

    leA

    -2Pr

    oper

    tyva

    lues

    for

    met

    als†

    (Con

    tinu

    ed).

    Pro

    pert

    ies

    at20

    ◦ CT

    herm

    alco

    nduc

    tivi

    tyk,W

    /m·◦

    C

    ρ,

    c pk

    α×

    105

    −100

    ◦ C0◦

    C10

    0◦C

    200◦

    C30

    0◦C

    400◦

    C60

    0◦C

    800◦

    C10

    00◦ C

    1200

    ◦ CM

    etal

    kg/m

    3kJ

    /kg

    ·◦C

    W/m

    ·◦C

    m2 /

    s−1

    48◦ F

    32◦ F

    212◦

    F39

    2◦F

    572◦

    F75

    2◦F

    1112

    ◦ F14

    72◦ F

    1832

    ◦ F21

    92◦ F

    Bro

    nze

    75%

    Cu,

    25%

    Sn8,

    666

    0.34

    326

    0.85

    9R

    edbr

    ass

    85%

    Cu,

    9%Sn

    ,6%

    Zn

    8,71

    40.

    385

    611.

    804

    5971

    Bra

    ss70

    %C

    u,30

    %Z

    n8,

    522

    0.38

    511

    13.

    412

    8812

    814

    414

    714

    7G

    erm

    ansi

    lver

    62%

    Cu,

    15%

    Ni,

    22%

    Zn

    8,61

    80.

    394

    24.9

    0.73

    319

    .231

    4045

    48C

    onst

    anta

    n60

    %C

    u,40

    %N

    i8,

    922

    0.41

    022

    .70.

    612

    2122

    .226

    Mag

    nesi

    um:

    Pure

    1,74

    61.

    013

    171

    9.70

    817

    817

    116

    816

    315

    7M

    g-A

    l(el

    ectr

    o-ly

    tic)

    6–8%

    Al,

    1–2%

    Zn

    1,81

    01.

    0066

    3.60

    552

    6274

    83M

    olyb

    denu

    m10

    ,220

    0.25

    112

    34.

    790

    138

    125

    118

    114

    111

    109

    106

    102

    9992

    Nic

    kel:

    Pure

    (99.

    9%)

    8,90

    60.

    4459

    902.

    266

    104

    9383

    7364

    59N

    i-C

    r90

    %N

    i,10

    %C

    r8,

    666

    0.44

    417

    0.44

    417

    .118

    .920

    .922

    .824

    .680

    %N

    i,20

    %C

    r8,

    314

    0.44

    412

    .60.

    343

    12.3

    13.8

    15.6

    17.1

    18.0

    22.5

    Silv

    er:

    Pure

    st10

    ,524

    0.23

    4041

    917

    .004

    419

    417

    415

    412

    Pure

    (99.

    9%)

    10,5

    250.

    2340

    407

    16.5

    6341

    941

    041

    537

    436

    236

    0T

    in,p

    ure

    7,30

    40.

    2265

    643.

    884

    7465

    .959

    57T

    ungs

    ten

    19,3

    500.

    1344

    163

    6.27

    116

    615

    114

    213

    312

    611

    276

    Zin

    c,pu

    re7,

    144

    0.38

    4311

    2.2

    4.10

    611

    411

    210

    910

    610

    093

    † Ada

    pted

    toSI

    units

    from

    E.R

    .G.E

    cker

    tand

    R.M

    .Dra

    ke,H

    eata

    ndM

    ass

    Tran

    sfer

    ,2nd

    ed.N

    ewY

    ork:

    McG

    raw

    -Hill

    ,195

    9.

    652

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.653 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    A P P E N D I X A Tables 653

    Table A-3 Properties of nonmetals.†

    Temperature k ρ c α × 107Substance ◦C W/m · ◦C kg/m3 kJ/kg · ◦C m2/s

    Structural and heat-resistant materials

    Acoustic tile 30 0.06 290 1.3 1.6Aluminum oxide,

    sapphire 30 46 3970 0.76 150Aluminum oxide,

    polycrystalline 30 36 3970 0.76 120Asphalt 20–55 0.74–0.76Bakelite 30 0.23 1200 1.6 1.2Brick:

    Building brick,common 20 0.69 1600 0.84 5.2Face 1.32 2000

    Carborundum brick 600 18.51400 11.1

    Chrome brick 200 2.32 3000 0.84 9.2550 2.47 9.8900 1.99 7.9

    Diatomaceous earth,molded and fired 200 0.24

    870 0.31Fireclay brick 500 1.04 2000 0.96 5.4

    Burnt 2426◦F 800 1.071100 1.09

    Burnt 2642◦F 500 1.28 2300 0.96 5.8800 1.37

    1100 1.40Missouri 200 1.00 2600 0.96 4.0

    600 1.471400 1.77

    Magnesite 200 3.81 1.13650 2.77

    1200 1.90Cement, portland 0.29 1500

    Mortar 23 1.16Coal,

    anthracite 30 0.26 1300 1.25 1.6Concrete, cinder 23 0.76

    Stone, 1-2-4 mix 20 1.37 1900–2300 0.88 8.2–6.8Glass, window 20 0.78 (avg) 2700 0.84 3.4

    Corosilicate 30–75 1.09 2200Graphite, pyrolytic

    parallel to layers 30 1900 2200 0.71 12,200perpendicular to

    layers 30 5.6 2200 0.71 36Gypsum board 30 0.16Lexan 30 0.2 1200 1.3 1.3Nylon 30 0.16 1100 1.6 0.9Particle board,

    low density 30 0.079 590 1.3 1.0high density 30 0.17 1000 1.3 1.3

    Phenolic 30 0.03 1400 1.6 0.13Plaster, gypsum 20 0.48 1440 0.84 4.0

    Metal lath 20 0.47Wood lath 20 0.28

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.654 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    654 A P P E N D I X A Tables

    Table A-3 Properties of nonmetals† (Continued).

    Temperature k ρ c α × 107Substance ◦C W/m · ◦C kg/m3 kJ/kg · ◦C m2/s

    Structural and heat-resistant materials

    Plexiglass 30 0.2 1200 1.5 1.1Polyethylene 30 0.33 960 2.1 1.64Polypropylene 30 0.16 1150 1.9 0.73Polystrene 30 0.14 1000 1.3 1.1Polyvinylchloride 30 0.09 1700 1.1 0.48Rubber, hard 30 0.15 1200 2.0 0.62Silicon carbide 30 490 3150 0.68 2290Stone:

    Granite 1.73–3.98 2640 0.82 8–18Limestone 100–300 1.26–1.33 2500 0.90 5.6–5.9Marble 2.07–2.94 2500–2700 0.80 10–13.6Sandstone 40 1.83 2160–2300 0.71 11.2–11.9

    Structural concretelow density 30 0.21 670light weight 30 0.65 1570medium weight 30 0.75 1840normal weight 30 2.32 2260

    Teflon 30 0.35 2200 1.05 1.5Titanium dioxide 30 8.4 4150 0.7 29Wood (across the grain):

    Balsa, 8.8 lb/ft3 30 0.055 140Cypress 30 0.097 460Fir 23 0.11 420 2.72 0.96Maple or oak 30 0.166 540 2.4 1.28Yellow pine 23 0.147 640 2.8 0.82White pine 30 0.112 430

    Insulating materials

    Asbestos:Loosely packed −45 0.149

    0 0.154 470–570 0.816 3.3–4100 0.161

    Asbestos-cement 20 0.74boardsSheets 51 0.166Felt, 40 laminations/in 38 0.057

    150 0.069260 0.083

    20 laminations/in 38 0.078150 0.095260 0.112

    Corrugated, 4 plies/in 38 0.08793 0.100

    150 0.119Asbestos cement — 2.08

    Balsam wood, 2.2 lb/ft3 32 0.04 35Cardboard, corrugated — 0.064

    Celotex 32 0.048Cork, regranulated 32 0.045 45–120 1.88 2–5.3

    Ground 32 0.043 150Corkboard, 10 lb/ft3 30 0.043 160

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.655 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    A P P E N D I X A Tables 655

    Table A-3 Properties of nonmetals† (Continued).

    Temperature k ρ c α × 107Substance ◦C W/m · ◦C kg/m3 kJ/kg · ◦C m2/s

    Insulating materials

    Diamond, Type IIa,insulator 30 2300 3500 0.509 12,900

    Diatomaceous earth(Sil-o-cel) 0 0.061 320

    Felt, hair 30 0.036 130–200Wool 30 0.052 330

    Fiber, insulating board 20 0.048 240Glass fiber,

    duct liner 30 0.038 32 0.84 14.1Glass fiber,

    loose blown 30 0.043 16 0.84 32Glass wool, 1.5 lb/ft3 23 0.038 24 0.7 22.6Ice 0 2.22 910 1.93 12.6Insulex, dry 32 0.064

    0.144Kapok 30 0.035Magnesia, 85% 38 0.067 270

    93 0.071150 0.074204 0.080

    Paper (avg.) 30 0.12 900 1.2 1.1Polyisocyanurate sheet 30 0.023Polystyrene, extruded 30 0.028Polyurethane foam 30 0.017Rock wool, 10 lb/ft3 32 0.040 160

    Loosely packed 150 0.067 64260 0.087

    Sawdust 23 0.059Silica aerogel 32 0.024 140Styrofoam 32 0.033Urethane, cerllular 30 0.025Wood shavings 23 0.059

    †Adapted to SI units from A. I. Brown and S. M. Marco, Introduction to Heat Transfer, 3rd ed. New York: McGraw-Hill, 1958.Other properties from various sources.

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.656 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    656 A P P E N D I X A Tables

    Table A-4 Properties of saturated liquids.†

    ρ cp k

    T,◦C kg/m3 kJ/kg · ◦C ν, m2/s W/m · ◦C α, m2/s Pr β, K−1

    Ammonia, NH3

    −50 703.69 4.463 0.435×10−6 0.547 1.742×10−7 2.60−40 691.68 4.467 0.406 0.547 1.775 2.28−30 679.34 4.476 0.387 0.549 1.801 2.15−20 666.69 4.509 0.381 0.547 1.819 2.09−10 653.55 4.564 0.378 0.543 1.825 2.07

    0 640.10 4.635 0.373 0.540 1.819 2.0510 626.16 4.714 0.368 0.531 1.801 2.0420 611.75 4.798 0.359 0.521 1.775 2.02 2.45 × 10−330 596.37 4.890 0.349 0.507 1.742 2.0140 580.99 4.999 0.340 0.493 1.701 2.0050 564.33 5.116 0.330 0.476 1.654 1.99

    Carbon dioxide, CO2

    −50 1,156.34 1.84 0.119×10−6 0.0855 0.4021×10−7 2.96−40 1,117.77 1.88 0.118 0.1011 0.4810 2.46−30 1,076.76 1.97 0.117 0.1116 0.5272 2.22−20 1,032.39 2.05 0.115 0.1151 0.5445 2.12−10 983.38 2.18 0.113 0.1099 0.5133 2.20

    0 926.99 2.47 0.108 0.1045 0.4578 2.3810 860.03 3.14 0.101 0.0971 0.3608 2.8020 772.57 5.0 0.091 0.0872 0.2219 4.10 14.00 × 10−330 597.81 36.4 0.080 0.0703 0.0279 28.7

    Sulfur dioxide, SO2

    −50 1,560.84 1.3595 0.484×10−6 0.242 1.141×10−7 4.24−40 1,536.81 1.3607 0.424 0.235 1.130 3.74−30 1,520.64 1.3616 0.371 0.230 1.117 3.31−20 1,488.60 1.3624 0.324 0.225 1.107 2.93−10 1,463.61 1.3628 0.288 0.218 1.097 2.62

    0 1,438.46 1.3636 0.257 0.211 1.081 2.3810 1,412.51 1.3645 0.232 0.204 1.066 2.1820 1,386.40 1.3653 0.210 0.199 1.050 2.00 1.94 × 10−330 1,359.33 1.3662 0.190 0.192 1.035 1.8340 1,329.22 1.3674 0.173 0.185 1.019 1.7050 1,299.10 1.3683 0.162 0.177 0.999 1.61

    Dichlorodifluoromethane (Freon-12), CCl2F2

    −50 1,546.75 0.8750 0.310×10−6 0.067 0.501×10−7 6.2 2.63 × 10−3−40 1,518.71 0.8847 0.279 0.069 0.514 5.4−30 1,489.56 0.8956 0.253 0.069 0.526 4.8−20 1,460.57 0.9073 0.235 0.071 0.539 4.4−10 1,429.49 0.9203 0.221 0.073 0.550 4.0

    0 1,397.45 0.9345 0.214×10−6 0.073 0.557×10−7 3.810 1,364.30 0.9496 0.203 0.073 0.560 3.620 1,330.18 0.9659 0.198 0.073 0.560 3.530 1,295.10 0.9835 0.194 0.071 0.560 3.540 1,257.13 1.0019 0.191 0.069 0.555 3.550 1,215.96 1.0216 0.190 0.067 0.545 3.5

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.657 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    A P P E N D I X A Tables 657

    Table A-4 Properties of saturated liquids† (Continued).

    ρ cp k

    T,◦C kg/m3 kJ/kg · ◦C ν, m2/s W/m · ◦C α, m2/s Pr β, K−1

    Glycerin, C3H5(OH)3

    0 1,276.03 2.261 0.00831 0.282 0.983×10−7 84.7×10310 1,270.11 2.319 0.00300 0.284 0.965 31.020 1,264.02 2.386 0.00118 0.286 0.947 12.5 0.50 × 10−330 1,258.09 2.445 0.00050 0.286 0.929 5.3840 1,252.01 2.512 0.00022 0.286 0.914 2.4550 1,244.96 2.583 0.00015 0.287 0.893 1.63

    Ethylene glycol, C2H4(OH)2

    0 1,130.75 2.294 7.53×10−6 0.242 0.934×10−7 61520 1,116.65 2.382 19.18 0.249 0.939 204 0.65 × 10−340 1,101.43 2.474 8.69 0.256 0.939 9360 1,087.66 2.562 4.75 0.260 0.932 5180 1,077.56 2.650 2.98 0.261 0.921 32.4

    100 1,058.50 2.742 2.03 0.263 0.908 22.4

    Engine oil (unused)

    0 899.12 1.796 0.00428 0.147 0.911×10−7 47,10020 888.23 1.880 0.00090 0.145 0.872 10,400 0.70 × 10−340 876.05 1.964 0.00024 0.144 0.834 2,87060 864.04 2.047 0.839×10−4 0.140 0.800 1,05080 852.02 2.131 0.375 0.138 0.769 490

    100 840.01 2.219 0.203 0.137 0.738 276120 828.96 2.307 0.124 0.135 0.710 175140 816.94 2.395 0.080 0.133 0.686 116160 805.89 2.483 0.056 0.132 0.663 84

    Mercury, Hg

    0 13,628.22 0.1403 0.124×10−6 8.20 42.99×10−7 0.028820 13,579.04 0.1394 0.114 8.69 46.06 0.0249 1.82 × 10−450 13,505.84 0.1386 0.104 9.40 50.22 0.0207

    100 13,384.58 0.1373 0.0928 10.51 57.16 0.0162150 13,264.28 0.1365 0.0853 11.49 63.54 0.0134

    200 13,144.94 0.1570 0.0802 12.34 69.08 0.0116250 13,025.60 0.1357 0.0765 13.07 74.06 0.0103315.5 12,847 0.134 0.0673 14.02 81.5 0.0083

    †Adapted to SI units from E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer, 2nd ed. New York: McGraw-Hill, 1959.

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.658 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    658 A P P E N D I X A Tables

    Table A-5 Properties of air at atmospheric pressure.†

    The values of µ, k, cp , and Pr are not strongly pressure-dependentand may be used over a fairly wide range of pressures

    ρ cp µ × 105 ν × 106 k α × 104T,K kg/m3 kJ/kg · ◦C kg/m· s m2/s W/m · ◦C m2/s Pr

    100 3.6010 1.0266 0.6924 1.923 0.009246 0.02501 0.770150 2.3675 1.0099 1.0283 4.343 0.013735 0.05745 0.753200 1.7684 1.0061 1.3289 7.490 0.01809 0.10165 0.739250 1.4128 1.0053 1.5990 11.31 0.02227 0.15675 0.722300 1.1774 1.0057 1.8462 15.69 0.02624 0.22160 0.708350 0.9980 1.0090 2.075 20.76 0.03003 0.2983 0.697400 0.8826 1.0140 2.286 25.90 0.03365 0.3760 0.689450 0.7833 1.0207 2.484 31.71 0.03707 0.4222 0.683500 0.7048 1.0295 2.671 37.90 0.04038 0.5564 0.680550 0.6423 1.0392 2.848 44.34 0.04360 0.6532 0.680600 0.5879 1.0551 3.018 51.34 0.04659 0.7512 0.680650 0.5430 1.0635 3.177 58.51 0.04953 0.8578 0.682700 0.5030 1.0752 3.332 66.25 0.05230 0.9672 0.684750 0.4709 1.0856 3.481 73.91 0.05509 1.0774 0.686800 0.4405 1.0978 3.625 82.29 0.05779 1.1951 0.689850 0.4149 1.1095 3.765 90.75 0.06028 1.3097 0.692900 0.3925 1.1212 3.899 99.3 0.06279 1.4271 0.696950 0.3716 1.1321 4.023 108.2 0.06525 1.5510 0.699

    1000 0.3524 1.1417 4.152 117.8 0.06752 1.6779 0.7021100 0.3204 1.160 4.44 138.6 0.0732 1.969 0.7041200 0.2947 1.179 4.69 159.1 0.0782 2.251 0.7071300 0.2707 1.197 4.93 182.1 0.0837 2.583 0.7051400 0.2515 1.214 5.17 205.5 0.0891 2.920 0.7051500 0.2355 1.230 5.40 229.1 0.0946 3.262 0.7051600 0.2211 1.248 5.63 254.5 0.100 3.609 0.7051700 0.2082 1.267 5.85 280.5 0.105 3.977 0.7051800 0.1970 1.287 6.07 308.1 0.111 4.379 0.7041900 0.1858 1.309 6.29 338.5 0.117 4.811 0.7042000 0.1762 1.338 6.50 369.0 0.124 5.260 0.7022100 0.1682 1.372 6.72 399.6 0.131 5.715 0.7002200 0.1602 1.419 6.93 432.6 0.139 6.120 0.7072300 0.1538 1.482 7.14 464.0 0.149 6.540 0.7102400 0.1458 1.574 7.35 504.0 0.161 7.020 0.7182500 0.1394 1.688 7.57 543.5 0.175 7.441 0.730

    †From Natl. Bur. Stand. (U.S.) Circ. 564, 1955.

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.659 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    A P P E N D I X A Tables 659

    Table A-6 Properties of gases at atmospheric pressure.†

    Values of µ, k, cp , and Pr are not strongly pressure-dependent for He, H2, O2, and N2and may be used over a fairly wide range of pressures

    ρ cp k

    T, K kg/m3 kJ/kg · ◦C µ, kg/m · s v, m2/s W/m · ◦C α, m2/s Pr

    Helium

    144 0.3379 5.200 125.5×10−7 37.11×10−6 0.0928 0.5275×10−4 0.70200 0.2435 5.200 156.6 64.38 0.1177 0.9288 0.694255 0.1906 5.200 181.7 95.50 0.1357 1.3675 0.70366 0.13280 5.200 230.5 173.6 0.1691 2.449 0.71477 0.10204 5.200 275.0 269.3 0.197 3.716 0.72589 0.08282 5.200 311.3 375.8 0.225 5.215 0.72700 0.07032 5.200 347.5 494.2 0.251 6.661 0.72800 0.06023 5.200 381.7 634.1 0.275 8.774 0.72

    Hydrogen

    150 0.16371 12.602 5.595×10−6 34.18×10−6 0.0981 0.475×10−4 0.718200 0.12270 13.540 6.813 55.53 0.1282 0.772 0.719250 0.09819 14.059 7.919 80.64 0.1561 1.130 0.713300 0.08185 14.314 8.963 109.5 0.182 1.554 0.706350 0.07016 14.436 9.954 141.9 0.206 2.031 0.697400 0.06135 14.491 10.864 177.1 0.228 2.568 0.690450 0.05462 14.499 11.779 215.6 0.251 3.164 0.682500 0.04918 14.507 12.636 257.0 0.272 3.817 0.675550 0.04469 14.532 13.475 301.6 0.292 4.516 0.668600 0.04085 14.537 14.285 349.7 0.315 5.306 0.664700 0.03492 14.574 15.89 455.1 0.351 6.903 0.659800 0.03060 14.675 17.40 569 0.384 8.563 0.664900 0.02723 14.821 18.78 690 0.412 10.217 0.676

    Oxygen

    150 2.6190 0.9178 11.490×10−6 4.387×10−6 0.01367 0.05688×10−4 0.773200 1.9559 0.9131 14.850 7.593 0.01824 0.10214 0.745250 1.5618 0.9157 17.87 11.45 0.02259 0.15794 0.725300 1.3007 0.9203 20.63 15.86 0.02676 0.22353 0.709350 1.1133 0.9291 23.16 20.80 0.03070 0.2968 0.702400 0.9755 0.9420 25.54 26.18 0.03461 0.3768 0.695450 0.8682 0.9567 27.77 31.99 0.03828 0.4609 0.694500 0.7801 0.9722 29.91 38.34 0.04173 0.5502 0.697550 0.7096 0.9881 31.97 45.05 0.04517 0.641 0.700

    Nitrogen

    200 1.7108 1.0429 12.947×10−6 7.568×10−6 0.01824 0.10224×10−4 0.747300 1.1421 1.0408 17.84 15.63 0.02620 0.22044 0.713400 0.8538 1.0459 21.98 25.74 0.03335 0.3734 0.691500 0.6824 1.0555 25.70 37.66 0.03984 0.5530 0.684600 0.5687 1.0756 29.11 51.19 0.04580 0.7486 0.686700 0.4934 1.0969 32.13 65.13 0.05123 0.9466 0.691800 0.4277 1.1225 34.84 81.46 0.05609 1.1685 0.700900 0.3796 1.1464 37.49 91.06 0.06070 1.3946 0.711

    1000 0.3412 1.1677 40.00 117.2 0.06475 1.6250 0.7241100 0.3108 1.1857 42.28 136.0 0.06850 1.8571 0.7361200 0.2851 1.2037 44.50 156.1 0.07184 2.0932 0.748

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.660 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    660 A P P E N D I X A Tables

    Table A-6 Properties of gases at atmospheric pressure† (Continued).

    Values of µ, k, cp , and Pr are not strongly pressure-dependent for He, H2, O2, and N2and may be used over a fairly wide range of pressures

    ρ cp k

    T, K kg/m3 kJ/kg · ◦C µ, kg/m · s v, m2/s W/m · ◦C α, m2/s Pr

    Carbon dioxide

    220 2.4733 0.783 11.105×10−6 4.490×10−6 0.010805 0.05920×10−4 0.818250 2.1657 0.804 12.590 5.813 0.012884 0.07401 0.793300 1.7973 0.871 14.958 8.321 0.016572 0.10588 0.770350 1.5362 0.900 17.205 11.19 0.02047 0.14808 0.755400 1.3424 0.942 19.32 14.39 0.02461 0.19463 0.738450 1.1918 0.980 21.34 17.90 0.02897 0.24813 0.721500 1.0732 1.013 23.26 21.67 0.03352 0.3084 0.702550 0.9739 1.047 25.08 25.74 0.03821 0.3750 0.685600 0.8938 1.076 26.83 30.02 0.04311 0.4483 0.668

    Ammonia, NH3

    273 0.7929 2.177 9.353×10−6 1.18×10−5 0.0220 0.1308×10−4 0.90323 0.6487 2.177 11.035 1.70 0.0270 0.1920 0.88373 0.5590 2.236 12.886 2.30 0.0327 0.2619 0.87423 0.4934 2.315 14.672 2.97 0.0391 0.3432 0.87473 0.4405 2.395 16.49 3.74 0.0467 0.4421 0.84

    Water vapor

    380 0.5863 2.060 12.71×10−6 2.16×10−5 0.0246 0.2036×10−4 1.060400 0.5542 2.014 13.44 2.42 0.0261 0.2338 1.040450 0.4902 1.980 15.25 3.11 0.0299 0.307 1.010500 0.4405 1.985 17.04 3.86 0.0339 0.387 0.996550 0.4005 1.997 18.84 4.70 0.0379 0.475 0.991600 0.3652 2.026 20.67 5.66 0.0422 0.573 0.986650 0.3380 2.056 22.47 6.64 0.0464 0.666 0.995700 0.3140 2.085 24.26 7.72 0.0505 0.772 1.000750 0.2931 2.119 26.04 8.88 0.0549 0.883 1.005800 0.2739 2.152 27.86 10.20 0.0592 1.001 1.010850 0.2579 2.186 29.69 11.52 0.0637 1.130 1.019

    †Adapted to SI units from E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer, 2nd ed. New York: McGraw-Hill, 1959.

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.661 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    A P P E N D I X A Tables 661

    Table A-7 Physical properties of some common low-melting-point metals.†

    NormalMelting boiling Density, Viscosity Heat Thermalpoint point Temperature ρ × 10−3 µ × 103 capacity conductivity Prandtl

    Metal ◦C ◦C ◦C kg/m3 kg/m · s kJ/kg · ◦C W/m · ◦C number

    Bismuth 271 1477 316 10.01 1.62 0.144 16.4 0.014760 9.47 0.79 0.165 15.6 0.0084

    Lead 327 1737 371 10.5 2.40 0.159 16.1 0.024704 10.1 1.37 0.155 14.9 0.016

    Lithium 179 1317 204 0.51 0.60 4.19 38.1 0.065982 0.44 0.42 4.19

    Mercury −39 357 10 13.6 1.59 0.138 8.1 0.027316 12.8 0.86 0.134 14.0 0.0084

    Potassium 63.8 760 149 0.81 0.37 0.796 45.0 0.0066704 0.67 0.14 0.754 33.1 0.0031

    Sodium 97.8 883 204 0.90 0.43 1.34 80.3 0.0072704 0.78 0.18 1.26 59.7 0.0038

    Sodium-potassium:22% Na 19 826 93.3 0.848 0.49 0.946 24.4 0.019

    760 0.69 0.146 0.88356% Na −11 784 93.3 0.89 0.58 1.13 25.6 0.026

    760 0.74 0.16 1.04 28.9 0.058Lead-bismuth,

    44.5% Pb 125 1670 288 10.3 1.76 0.147 10.7 0.024649 9.84 1.15

    †Adapted to SI units from J. G. Knudsen and D. L. Katz, Fluid Dynamics and Heat Transfer, New York: McGraw-Hill, 1958.

    Table A-8 Diffusion coefficients of gases and vapors in air at 25◦C and 1 atm.†

    Substance D, cm2/s Sc = νD

    Substance D, cm2/s Sc = νD

    Ammonia 0.28 0.78 Formic Acid 0.159 0.97Carbon dioxide 0.164 0.94 Acetic acid 0.133 1.16Hydrogen 0.410 0.22 Aniline 0.073 2.14Oxygen 0.206 0.75 Benzene 0.088 1.76Water 0.256 0.60 Toluene 0.084 1.84Ethyl ether 0.093 1.66 Ethyl benzene 0.077 2.01Methanol 0.159 0.97 Propyl benzene 0.059 2.62Ethyl alcohol 0.119 1.30

    †From J. H. Perry (ed.), Chemical Engineers’ Handbook, 4th ed. New York: McGraw-Hill, 1963.

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.662 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    662 A P P E N D I X A Tables

    Table A-9 Properties of water (saturated liquid).†

    Note: GrxPr =(

    gβρ2cp

    µk

    )x3 �T

    cp ρ µ kgβρ2cp

    µk◦F ◦C kJ/kg · ◦C kg/m3 kg/m · s W/m · ◦C Pr 1/m3 · ◦C

    32 0 4.225 999.8 1.79×10−3 0.566 13.2540 4.44 4.208 999.8 1.55 0.575 11.35 1.91 × 10950 10 4.195 999.2 1.31 0.585 9.40 6.34 × 10960 15.56 4.186 998.6 1.12 0.595 7.88 1.08 × 101070 21.11 4.179 997.4 9.8×10−4 0.604 6.78 1.46 × 101080 26.67 4.179 995.8 8.6 0.614 5.85 1.91 × 101090 32.22 4.174 994.9 7.65 0.623 5.12 2.48 × 1010

    100 37.78 4.174 993.0 6.82 0.630 4.53 3.3 × 1010110 43.33 4.174 990.6 6.16 0.637 4.04 4.19 × 1010120 48.89 4.174 988.8 5.62 0.644 3.64 4.89 × 1010130 54.44 4.179 985.7 5.13 0.649 3.30 5.66 × 1010140 60 4.179 983.3 4.71 0.654 3.01 6.48 × 1010150 65.55 4.183 980.3 4.3 0.659 2.73 7.62 × 1010160 71.11 4.186 977.3 4.01 0.665 2.53 8.84 × 1010170 76.67 4.191 973.7 3.72 0.668 2.33 9.85 × 1010180 82.22 4.195 970.2 3.47 0.673 2.16 1.09 × 1011190 87.78 4.199 966.7 3.27 0.675 2.03200 93.33 4.204 963.2 3.06 0.678 1.90220 104.4 4.216 955.1 2.67 0.684 1.66240 115.6 4.229 946.7 2.44 0.685 1.51260 126.7 4.250 937.2 2.19 0.685 1.36280 137.8 4.271 928.1 1.98 0.685 1.24300 148.9 4.296 918.0 1.86 0.684 1.17350 176.7 4.371 890.4 1.57 0.677 1.02400 204.4 4.467 859.4 1.36 0.665 1.00450 232.2 4.585 825.7 1.20 0.646 0.85500 260 4.731 785.2 1.07 0.616 0.83550 287.7 5.024 735.5 9.51×10−5600 315.6 5.703 678.7 8.68

    †Adapted to SI units from A. I. Brown and S. M. Marco, Introduction to Heat Transfer, 3rd ed. New York: McGraw-Hill, 1958.

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.663 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    A P P E N D I X A Tables 663

    Table A-10 Normal total emissivity of various surfaces.†

    Surface T , ◦F Emissivity �

    Metals and their oxides

    Aluminum:Highly polished plate, 98.3% pure 440–1070 0.039–0.057Commercial sheet 212 0.09Heavily oxidized 299–940 0.20–0.31Al-surfaced roofing 100 0.216

    Brass:Highly polished:

    73.2% Cu, 26.7% Zn 476–674 0.028–0.03162.4% Cu, 36.8% Zn, 0.4% Pb, 0.3% Al 494–710 0.033–0.03782.9% Cu, 17.0% Zn 530 0.030

    Hard-rolled, polished, but direction of polishing visible 70 0.038Dull plate 120–660 0.22Chromium (see nickel alloys for Ni-Cr steels), polished 100–2000 0.08–0.36

    Copper:Polished 242 0.023

    212 0.052Plate, heated long time, covered with thick oxide layer 77 0.78

    Gold, pure, highly polished 440–1160 0.018–0.035Iron and steel (not including stainless):

    Steel, polished 212 0.066Iron, polished 800–1880 0.14–0.38Cast iron, newly turned 72 0.44

    turned and heated 1620–1810 0.60–0.70Mild steel 450–1950 0.20–0.32

    Iron and steel (oxidized surfaces):Iron plate, pickled, then rusted red 68 0.61Iron, dark-gray surface 212 0.31Rough ingot iron 1700–2040 0.87–0.95Sheet steel with strong, rough oxide layer 75 0.80

    Lead:Unoxidized, 99.96% pure 240–440 0.057–0.075Gray oxidized 75 0.28Oxidized at 300◦F 390 0.63

    Magnesium, magnesium oxide 530–1520 0.55–0.20Molybdenum:

    Filament 1340–4700 0.096–0.202Massive, polished 212 0.071

    Monel metal, oxidized at 1110◦F 390–1110 0.41–0.46Nickel:

    Polished 212 0.072Nickel oxide 1200–2290 0.59–0.86

    Nickel alloys:Copper nickel, polished 212 0.059Nichrome wire, bright 120–1830 0.65–0.79Nichrome wire, oxidized 120–930 0.95–0.98

    Platinum, polished plate, pure 440–1160 0.054–0.104Silver:

    Polished, pure 440–1160 0.020–0.032Polished 100–700 0.022–0.031

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.664 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    664 A P P E N D I X A Tables

    Table A-10 Normal total emissivity of various surfaces† (Continued).

    Surface T, ◦F Emissivity �

    Metals and their oxides

    Stainless steels:Polished 212 0.074Type 301; B 450–1725 0.54–0.63

    Tin, bright tinned iron 76 0.043 and0.064

    Tungsten, filament 6000 0.39Zinc, galvanized sheet iron, fairly bright 82 0.23

    Refractories, building materials, paints, and miscellaneous

    Alumina (85–99.5%, Al2O3, 0–12% SiO2, 0–1% Ge2O3);effect of mean grain size, microns (µm):10 µm 0.30–0.1850 µm 0.39–0.28100 µm 0.50–0.40

    Asbestos, board 74 0.96Brick:

    Red, rough, but no gross irregularities 70 0.93Fireclay 1832 0.75

    Carbon:T-carbon (Gebrüder Siemens) 0.9% ash, started with 260–1160 0.81–0.79

    emissivity of 0.72 at 260◦F but on heating changed tovalues given

    Filament 1900–2560 0.526Rough plate 212–608 0.77Lampblack, rough deposit 212–932 0.84–0.78

    Concrete tiles 1832 0.63Enamel, white fused, on iron 66 0.90Glass:

    Smooth 72 0.94Pyrex, lead, and soda 500–1000 0.95–0.85

    Paints, lacquers, varnishes:Snow-white enamel varnish on rough iron plate 73 0.906Black shiny lacquer, sprayed on iron 76 0.875Black shiny shellac on tinned iron sheet 70 0.821Black matte shellac 170–295 0.91Black or white lacquer 100–200 0.80–0.95Flat black lacquer 100–200 0.96–0.98Aluminum paints and lacquers:

    10% Al, 22% lacquer body, on rough or smooth 212 0.52surfaceOther Al paints, varying age and Al content 212 0.27–0.67

    Porcelain, glazed 72 0.92Quartz, rough, fused 70 0.93Roofing paper 69 0.91Rubber, hard, glossy plate 74 0.94Water 32–212 9.95–0.963

    †Courtesy of H. C. Hottel, from W. H. McAdams, Heat Transmissions, 3rd ed. New York: McGraw-Hill, 1954.

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.665 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    A P P E N D I X A Tables 665

    Table A-11 Steel-pipe dimensions.

    Nominal Metal Inside cross-pipe Wall sectional sectional

    size, in OD, in Schedule no. Thickness, in ID, in area, in2 area, ft2

    18 0.405 40 0.068 0.269 0.072 0.00040

    80 0.095 0.215 0.093 0.0002514 0.540 40 0.088 0.364 0.125 0.00072

    80 0.119 0.302 0.157 0.0005038 0.675 40 0.091 0.493 0.167 0.00133

    80 0.126 0.423 0.217 0.0009812 0.840 40 0.109 0.622 0.250 0.00211

    80 0.147 0.546 0.320 0.0016334 1.050 40 0.113 0.824 0.333 0.00371

    80 0.154 0.742 0.433 0.003001 1.315 40 0.133 1.049 0.494 0.00600

    80 0.179 0.957 0.639 0.004991 12 1.900 40 0.145 1.610 0.799 0.01414

    80 0.200 1.500 1.068 0.01225160 0.281 1.338 1.429 0.00976

    2 2.375 40 0.154 2.067 1.075 0.0233080 0.218 1.939 1.477 0.02050

    3 3.500 40 0.216 3.068 2.228 0.0513080 0.300 2.900 3.016 0.04587

    4 4.500 40 0.237 4.026 3.173 0.0884080 0.337 3.826 4.407 0.7986

    5 5.563 40 0.258 5.047 4.304 0.139080 0.375 4.813 6.122 0.1263

    120 0.500 4.563 7.953 0.1136160 0.625 4.313 9.696 0.1015

    6 6.625 40 0.280 6.065 5.584 0.200680 0.432 5.761 8.405 0.1810

    10 10.75 40 0.365 10.020 11.90 0.547580 0.500 9.750 16.10 0.5185

  • Hol29362_appA 11/7/2008 14:57

    # 101675 Cust: McGraw-Hill Au: Holman Pg. No.666 K/PMS 293

    Title: Heat Transfer 10/e Server: Short / Normal / Long

    DESIGN SERVICES OF

    S4CARLISLEPublishing Services

    666 A P P E N D I X A Tables

    Table A-12 Conversion factors. (See also inside cover.)

    Length: Energy:12 in = 1 ft 1 ft · lbf = 1.356 J2.54 cm = 1 in 1 kWh = 3413 Btu1 µm = 10−6 m = 10−4 cm 1 hp · h = 2545 Btu

    Mass: 1 Btu = 252 cal1 kg = 2.205 lbm 1 Btu = 778 ft · lbf1 slug = 32.16 lbm Pressure:454 g = 1 lbm 1 atm = 14.696 lbf /in2 = 2116 lbf /ft2

    Force: 1 atm = 1.01325 × 105 Pa1 dyn = 2.248 × 10−6 lbf 1 in Hg = 70.73 lbf /ft21 lbf = 4.448 N Viscosity:105 dyn = 1 N 1 centipoise = 2.42 lbm/h · ft

    1 lbf · s/ft2 = 32.16 lbm/s · ftThermal conductivity:

    1 cal/s · cm · ◦C = 242 Btu/h · ft · ◦F1 W/cm · ◦C = 57.79 Btu/h · ft · ◦F

    Useful conversion to SI units

    Length: Volume:1 in = 0.0254 m 1 in3 = 1.63871 × 10−5 m31 ft = 0.3048 m 1 ft3 = 0.0283168 m31 mi = 1.60934 km 1 gal = 231 in3 = 0.0037854 m3

    Area: Mass:1 in2 = 645.16 mm2 1 lbm= 0.45359237 kg1 ft2 = 0.092903 m2 Density:1 mi2 = 2.58999 km2 1 lbm/in3 = 2.76799 × 104 kg/m3

    Pressure: 1 lbm/ft3 = 16.0185 × 104 kg/m31 N/m2 = 1 Pa Force:1 atm = 1.01325 × 105 Pa 1 dyn = 10−5 N1 lbf /in2 = 6894.76 Pa 1 lbf = 4.44822 N

    Energy:1 erg = 10−7 J1 Btu = 1055.04 J1 ft · lbf = 1.35582 J1 cal (15◦C) = 4.1855 J

    Power:1 hp = 745.7 W1 Btu/h = 0.293 W

    Heat flux:1 Btu/h · ft2 = 3.15372 W/m21 Btu/h · ft = 0.96128 W/m

    Thermal conductivity:1 Btu/h · ft · ◦F = 1.7307 W/m · ◦C

    Heat-transfer coefficient:1 Btu/h · ft2 · ◦F = 5.6782 W/m2 · ◦C