use of remote-sensing reflectance to constrain a data

35
1 Use of remote-sensing reflectance to constrain a data assimilating marine biogeochemical model of the Great Barrier Reef. Emlyn M. Jones 1 , Mark E. Baird 1 , Mathieu Mongin 1 , John Parslow 1 , Jenny Skerratt 1 , Nugzar Margvelashvili 1 , Richard J. Matear 1 , Karen Wild-Allen 1 , Barbara Robson 2 , Farhan Rizwi 1 , Peter 5 Oke 1 , Edward King 1 , Thomas Schroeder 3 , Andy Steven 3 and John Taylor 4 1 CSIRO Oceans and Atmosphere, Hobart, Australia, 7000 2 CSIRO Land and Water, Canberra, Australia, 2601 3 CSIRO Oceans and Atmosphere, Brisbane, Australia, 4102 10 4 CSIRO Data61, Canberra, Australia, 2601 Correspondence to: Emlyn M. Jones ([email protected]) Key words: Great Barrier Reef, Data Assimilation, Remote Sensing, observed OC3M, Reflectances, Biogeochemical (BGC) Model, Chlorophyll 15 Abstract: Skillful marine biogeochemical (BGC) models are required to understand a range of coastal and global phenomena such as changes in nitrogen and carbon cycles. The refinement of BGC models through the assimilation of variables calculated from observed in-water inherent optical properties (IOPs), such as phytoplankton absorption, is problematic. Empirically-derived relationships between IOPs and variables such as 20 Chlorophyll-a concentration (Chl-a), Total Suspended Solids (TSS) and Color Dissolved Organic Matter (CDOM) have been shown to have errors that can exceed 100% of the observed quantity. These errors are greatest in shallow coastal regions, such as the Great Barrier Reef (GBR), due the additional signal from bottom reflectance. Rather than assimilate quantities calculated using error-prone IOP algorithms, this study demonstrates 25 the advantages of assimilating quantities calculated directly from the less error-prone satellite remote-sensing reflectance. The assimilation of a directly-observed quantity, in this case remote-sensing reflectance, is analogous to the assimilation of temperature brightness in Numerical Weather Prediction (NWP), or along-track sea-surface height in hydrodynamic models. To assimilate the observed reflectance, we use an in-water optical model to 30 produce an equivalent simulated remote-sensing reflectance, and calculate the mis-match between the observed and simulated quantities to constrain the BGC model with a Deterministic Ensemble Kalman Filter (DEnKF). Using the assumption that simulated surface Chl-a is equivalent to remotely-sensed OC3M estimate of Chl-a resulted in a forecast error of approximately 75%. Alternatively, assimilation of remote-sensing reflectance resulted in a 35 forecast error of less than 40%. Thus, in the coastal waters of the GBR, assimilating remote- sensing reflectance halved the forecast errors. When the analysis and forecast fields from

Upload: others

Post on 01-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Use of remote-sensing reflectance to constrain a data

1

Useofremote-sensingreflectancetoconstrainadataassimilatingmarinebiogeochemicalmodeloftheGreatBarrierReef.EmlynM.Jones1,MarkE.Baird1,MathieuMongin1,JohnParslow1,JennySkerratt1,NugzarMargvelashvili1,RichardJ.Matear1,KarenWild-Allen1,BarbaraRobson2,FarhanRizwi1,Peter5Oke1,EdwardKing1,ThomasSchroeder3,AndySteven3andJohnTaylor41CSIROOceansandAtmosphere,Hobart,Australia,7000

2CSIROLandandWater,Canberra,Australia,2601

3CSIROOceansandAtmosphere,Brisbane,Australia,410210

4CSIROData61,Canberra,Australia,2601

Correspondenceto:EmlynM.Jones([email protected])

Keywords:GreatBarrierReef,DataAssimilation,RemoteSensing,observedOC3M,Reflectances,Biogeochemical(BGC)Model,Chlorophyll15Abstract:Skillfulmarinebiogeochemical(BGC)modelsarerequiredtounderstandarangeofcoastalandglobalphenomenasuchaschangesinnitrogenandcarboncycles.TherefinementofBGCmodelsthroughtheassimilationofvariablescalculatedfromobservedin-waterinherentopticalproperties(IOPs),suchasphytoplanktonabsorption,isproblematic.Empirically-derivedrelationshipsbetweenIOPsandvariablessuchas20Chlorophyll-aconcentration(Chl-a),TotalSuspendedSolids(TSS)andColorDissolvedOrganicMatter(CDOM)havebeenshowntohaveerrorsthatcanexceed100%oftheobservedquantity.Theseerrorsaregreatestinshallowcoastalregions,suchastheGreatBarrierReef(GBR),duetheadditionalsignalfrombottomreflectance.Ratherthanassimilatequantitiescalculatedusingerror-proneIOPalgorithms,thisstudydemonstrates25theadvantagesofassimilatingquantitiescalculateddirectlyfromthelesserror-pronesatelliteremote-sensingreflectance.Theassimilationofadirectly-observedquantity,inthiscaseremote-sensingreflectance,isanalogoustotheassimilationoftemperaturebrightnessinNumericalWeatherPrediction(NWP),oralong-tracksea-surfaceheightinhydrodynamicmodels.Toassimilatetheobservedreflectance,weuseanin-wateropticalmodelto30produceanequivalentsimulatedremote-sensingreflectance,andcalculatethemis-matchbetweentheobservedandsimulatedquantitiestoconstraintheBGCmodelwithaDeterministicEnsembleKalmanFilter(DEnKF).UsingtheassumptionthatsimulatedsurfaceChl-aisequivalenttoremotely-sensedOC3MestimateofChl-aresultedinaforecasterrorofapproximately75%.Alternatively,assimilationofremote-sensingreflectanceresultedina35forecasterroroflessthan40%.Thus,inthecoastalwatersoftheGBR,assimilatingremote-sensingreflectancehalvedtheforecasterrors.Whentheanalysisandforecastfieldsfrom

Page 2: Use of remote-sensing reflectance to constrain a data

2

theassimilationsystemarecomparedwiththenon-assimilatingmodel,anindependentcomparisontoin-situobservationsofChl-a,TSS,anddissolvedinorganicnutrients(NO3,NH4andDIP)showthaterrorsarereducedbyupto90%.Inallcases,theassimilationsystemimprovestheresultcomparedtothenon-assimilatingmodel.Thisapproachallowsfortheincorporationofvastquantitiesofremote-sensingobservationsthathaveinthepastbeen5discardedduetoshallowwaterand/orartefactsintroducedbyterrestrially-derivedTSSandCDOM,orthelackofacalibratedregionalIOPalgorithm.

1Introduction:

Aquaticbiogeochemical(BGC)modelshavebeenusedtounderstandarangeofcoastaland10globalphenomenasuchoceanacidification(Monginetal.,2016),nutrientpollution(Skerrattetal.,2013)andcarboncycles,andarecentraltoourpredictionsofglobalclimate(SarmientoandGruber,2006).Atthecoastal/regionalscale,non-linearbiogeochemicalprocessesdrivenbyplanktonicinteractions,aswellasnon-linearcirculationfeaturessuchasmesoscaleeddies,limitthetimescaleoverwhichbiogeochemicalpropertiesare15deterministicallypredictable(Baird,2010).Forthepurposesofprediction,itisthereforenecessarytoassimilateobservationstocorrectformodelerrorsandnon-linearprocesses.Theassimilationofremote-sensingdataintomarinebiogeochemicalmodelshasbeenproblematicduetodifferencesbetweenthevariablesrepresentedinmodelsandthe20variablesthatareroutinelyobserved(Bairdetal.,2016b).Insituobservationsofphytoplanktonpigmentsandmacro-nutrientsaresparseinspaceandtimeduetotheprohibitiveexpenseofcollectingthem.Opticalsensorsonglidersandfloatsprovidehighresolutioninsituobservationsthatareusedtoestimatepigmentandnutrientconcentrations.Nonetheless,theseobservationsinlargepartsoftheoceanremainsparse.25ThemostspatiallycomprehensivedatasetavailableforBGCassimilationisfromoceancolorremotesensing.Itiswellknownthatoceancoloralgorithms,suchasobservedOC3M(ModerateResolutionImagingSpectroradiometer,MODIS,three-bandChl-aalgorithm)thatareoptimizedfor30globalapplicationssufferfromerrorsduetoavarietyofoptically-activeconstituentsincoastalandshelfwaters(Odermattetal.,2012).Furthermore,ithasalsobeennotedthatevengloballythereisanon-uniformdistributionoferror,andsubstantialbias,intheOC3M-derivedchlorophyll-aconcentration(Chl-a).Satellite-derivedoceancolorproductssuchasChl-aareafunctionofobservedsurfacereflectances.Asubstantialeffortisinvestedin35empiricalstudiesthatconvertreflectancetoobservablequantitiessuchasChl-a),TotalSuspendedSolidconcentration(TSS),phytoplanktonfunctionaltypes(PFTs),andColoredDissolvedOrganicMatter(CDOM)(Odermattetal.,2012).Eachoftheseempiricalrelationshipshavedifferingerrormagnitudesstemmingnotonlyfromadifferenceinkind,butalsorepresentationerrors.40Numericalweatherprediction(NWP)overcomeserrorsduetoadifferenceinkindthroughusingthemodeltosimulatedirectlyobservedquantities,suchastemperaturebrightness,inpreferencetoderivingotherquantitiesfrombrightnessmeasurementsandusingthosederivedquantitiesformodeldataassimilation.ThusNWPcommonlyassimilatesbrightness45

Page 3: Use of remote-sensing reflectance to constrain a data

3

temperatureinpreferencetotemperatureitself(Deeetal.,2011).Thegoalofthisstudyisapplythisapproachtomarinebiogeochemicalmodelling,assimilatingremote-sensingreflectanceratherthanquantitiescalculatedusingerror-proneIOPalgorithms.TheGreatBarrierReef(GBR)islocatedalongthenortheastcoastlineofAustraliaandis5characterizedbyfringingreefsalongthecontinentalslopethatcreateasemi-connectedinshorelagoonthatspansover3000kmofcoastline(Figure1).TheGBRecosystem,describedasoneofthesevennaturalwondersoftheworld,isunderincreasingpressurefromlocalandglobalanthropogenicstressors(De'athetal.,2012).DecreasingwaterclarityduetonutrientandsedimentpollutionisconsideredaseriousthreattotheGBRecosystem10(Thompsonetal.,2014),withmajorconcernsbeingtheimpactoflowerbenthiclightlevelsoncoralandseagrasscommunities(Collieretal.,2012;Bairdetal.,2016a).ThemanagementofhumanimpactsontheGBRreliesonaccurateestimatesofthebiogeochemicalstateofthecoastalocean.Managementauthoritiesuse,amongother15measures,awaterqualityindexthatcombinesestimatesofconcentrationsofsuspendedsediment,chlorophyll,particulatenitrogenandparticulatephosphorus,aswellasSecchidepth(Schaffelkeetal.,2011).ObservationsofthesequantitiescomefromtensofsitesaroundGBR,whicharealsousedintheskillassessmentofthemodelandassimilationsystem.Nonetheless,witha3000kmcoastline,insituobservationsaresparseand20intermittent.Ultimately,themostaccurate,andbest-resolved,estimateofthebiogeochemicalstateofGBRwillbeobtainedthroughthesynthesisofallinsituandremotely-sensedobservationswithadditionalinformationfrommodelsimulationsusingadataassimilatingsystem.Inthispaper,wemovetowardsthisgoalthroughassimilationofsatellite-derivedremote-sensingreflectance,whilebuildingconfidenceintheapproach25throughwithholdinginsituobservationsforindependentmodelassessment.Thepaperisstructuredinthefollowingmanner,inSection2(Methods)thedataforassimilationandskillassessmentispresented,alongwithadescriptionofthemodelandassimilationmethodsused.Section3containstheresultsfromthecontrol(noassimilation)runofthemodel,andsubsequentdataassimilationexperiments.InSection4wediscussthe30approachusedandimplicationsofthefindingmoregenerally.AndweconcludewithmajorfindingsinSection5.

2Methods:

2.1GBRobservations35

TheIntegratedMarineObservingSystem(IMOS)hasdeployedfluorometersonmoorings,glidersandatYongalaandNorthStradbrokeNationalReferenceStations(NRS).Inthispaperweusethemonthlyobservationsofdissolvedinorganicnutrients(NO3,NH4andDIP)attheNRSsites(Lynchetal.,2014),andIMOSglidertransectsshowthecross-shelfprofile40ofwatercolumnproperties,includingtemperature,salinity,andchlorophyll.TheselocationsareshowninFigure1.

Page 4: Use of remote-sensing reflectance to constrain a data

4

TheAustralianInstituteofMarineScience(AIMS)ReefRescuenetwork(Figure1,yellowcircles)contains14sitesininshoreregionsandGBRlagoon,andsamplenutrientsandChl-aextractions3timesayear(Thompsonetal.,2011;RolfeandGreg,2015).ThemooringsweredeployedattheReefRescuesitesfrom2009to2014andincludedaSea-Birdwaterqualitymonitors(WQM)thatmeasurechlorophyllfluorescenceandturbidity(NTU).A5comparisonofthe2011-2014controlrunsimulationagainsttheReefRescueobservations,andotherobservations,isavailableat:https://research.csiro.au/ereefs/models.

2.2MODISobservations

Theobservedremote-sensingreflectanceisobtainedfromusingMODIS-Aquaandan10atmosphericcorrectiondevelopedfortheregion.TheatmosphericcorrectionappliedanArtificialNeuralNetwork(ANN)approachtrainedbyaradiativetransfermodeltoinvertthetopofatmosphere(TOA)signalmeasuredbyMODIS-Aqua.TheANNalgorithmwasadaptedtoanapproachpreviouslydevelopedfortheMEdiumResolutionImagingSpectrometer(MERIS)sensorbutonthebasisofadifferentlearningalgorithm(Schroederetal.,2007).15AlgorithmperformanceisdescribedindetailinGoyensetal.(2013)andKingetal.(2014).SeaDAS-providedLevel-2flagswereusedtoqualitycontroltheobservedremote-sensingreflectanceandtoexcludeerroneousandout-of-rangepixels.Wefilteredthedataforlandandseveresunglintaffectedpixels,cloudcontaminationincludingcloudshadowsand20rejectedpixelswithobservingandsolarzenithanglesabove52°and70°,respectively.Forthecomparisonwithmodeloutput,theobservedremote-sensingreflectanceatthecentreofthe4kmgridcellisobtainedthroughinterpolationfromthe1kmobservations.

2.3TheeReefsmodellingsystem25

WeusedtheeReefscoupledhydrodynamic,sedimentandbiogeochemicalmodellingsystem(Schilleretal2014).Thehydrodynamicmodelisafullythree-dimensionalfinite-differencebaroclinicmodelbasedonthethreedimensionalequationsofmomentum,continuityandconservationofheatandsalt,employingthehydrostaticandBoussinesq30assumptions(Herzfeld2006;HerzfeldandGillibrand2015).Thesedimenttransportmodeladdsamultilayersedimentbedtothehydrodynamicmodelgridandsimulatessinking,depositionandresuspensionofmultiplesize-classesofsuspendedsediment.

(Margvelashvili2008).Thecomplexbiogeochemicalmodelsimulatesoptical,nutrient,plankton,benthicorganisms(seagrassmacroalgaeandcoral),detritus,chemicaland35sedimentdynamicsacrossthewholeGBRregion,spanningestuarinesystemstooligotrophicoffshorereefs(Bairdetal.,2016b).Thebiogeochemicalmodelconsidersfourgroupsofmicroalgae(smallandlargephytoplankton,Trichodesmiumandmicrophytobenthos),2zooplanktongroups,threemacrophytestypes(seagrasstypescorrespondingtoZosteraandHalophila,macroalgae)andcoralcommunities.40Photosyntheticgrowthisdeterminedbyconcentrationsofdissolvednutrients(nitrogenandphosphate)andphotosyntheticallyactiveradiation.Microalgaecontaintwopigments(chl-aandanassessorypigment),andhavevariablecarbon:pigmentratiosdeterminedusinga

Page 5: Use of remote-sensing reflectance to constrain a data

5

photoadaptationmodel(describedinBairdetal.,2013).Overall,themodelcontains23optically-activeconstituents(AppendixA).Themodelisforcedwithfreshwaterinputsat21riversalongtheGBRandtheFlyRiverinsouthwestPapuaNewGuinea.Riverflowsinputintothemodelareobtainedfromthe5DERM(DepartmentofEnvironmentandResourceManagement)gaugingnetwork.Algorithmicrelationshipsareusedtoaccountfornutrientandsedimentinputsfromriversintothemodel(statisticalrelationshipsbetweenriverflowandnutrientconcentrations(Furnas2003,Furnasetal2011).NutrientconcentrationsflowinginfromtheoceanboundarieswereobtainedfromtheCSIROAtlasofRegionalSeas(CARS)2009climatology10(Ridgwayetal.,2002).

2.4Calculationofremote-sensingreflectancefrombiogeochemicalstate

Themodelcontains23optically-activeconstituents(AppendixA).Tocalculatetheremote-sensingreflectanceatthesurface,weneedtoconsiderthelightreturningfrommultiple15depths,andfromthebottom.Ratherthanusingacomputationally-expensiveradiativetransfermodel,weapproximatesurfacereflectancebasedonanoptical-depthweightedscheme(Bairdetal.,2016b).Theratioofthebackscatteringcoefficienttothesumofbackscatteringandabsorptioncoefficientsforthewholewatercolumnatwavelength,λ,is:20𝐮𝛌 =

𝐰𝛌,𝐳(𝐛𝐛,𝛌,𝐳(𝐚𝛌,𝐳(+𝐛𝐛,𝛌,𝐳(

𝐝𝐳′𝐳𝟎 Eq1

wherewλ,z’isaweightingrepresentingthecomponentoftheremote-sensingreflectanceduetotheabsorptionandscatteringatdepthz’,andzisthebottomdepth.25Theweightingfractionisgivenby:𝐰𝛌,𝐳 =

𝟏𝐳𝟏0𝐳𝟎

𝐞𝐱𝐩 −𝟐𝐊𝛌,𝐳( 𝐝𝐳′𝐳𝟏𝐳𝟎

Eq2

whereKλistheverticalattenuationcoefficientatwavelengthλandthefactorof2accounts30forthepathlengthofbothdownwellingandupwellinglight.Theverticalattenuationcoefficientiscalculatedfromthesumoftheabsorptionandscatteringpropertiesofeachoftheoptically-activeconstituents,andthezenithangle(foreachoftheserelationships,andmoreinformation,seeBairdetal.,2016).35Theintegralofwλ,z’toinfinitedepthis1.Inareaswherelightreachesthebottom,theintegralofwλ,z’tothebottomislessthanone,andbenthicreflectanceisimportant.Thesub-surfaceremote-sensingreflectance,rrs,isgivenby:40𝐫𝐫𝐬 = 𝐠𝟎𝐮𝛌 + 𝐠𝟏𝐮𝛌𝟐 Eq3whereg0=0.0895andg1=0.1247arecoefficientsforthenadir-viewinoceanicwatersthatvarywithwavelengthandotheropticalproperties(Moreletal.,2012),butcanbe

Page 6: Use of remote-sensing reflectance to constrain a data

6

approximatedasconstants(Leeetal.,2002).Theconstantsresultinachangeofunitsfromtheunitlessutoaperunitofsolidangle,sr-1,quantity,rrs.Theabove-surfaceremote-sensingreflectanceisgivenby(Leeetal.,2002):5𝐑𝐫𝐬,𝛌 =

𝟎.𝟓𝟐𝐫𝐫𝐬,𝛌𝟏0𝟏.𝟕𝐫𝐫𝐬

Eq4

Thus,theabove-surfaceremote-sensingreflectanceiscalculatedfromtheinherentopticalpropertiesoftheoptically-activeconstituentsinthebiogeochemicalmodel.

2.5DataAssimilationSystem10

TheDataAssimilation(DA)algorithmusedinthisstudyistheDeterministicEnsembleKalmanFilter(DEnKF;SakovandOke,2008).Thefullbiogeochemicalstatevariablelistcontainsover1302Dand3Dvariables,andincludingalloftheseintheassimilationsystemisimpracticalduetomemoryconstraints,butwealsoacknowledgethatformanyvariables15theobservationswillbeuninformative,andthereforenotgoodcandidatestoincludeintheassimilationstatevector.WethereforelimitthevariablesthatareupdatedwithinthesystemtoaselectsubsetthataredetailedinSection2.4.2.

2.5.1DataAssimilationAlgorithm20

TheDEnKFisbasedontheKalmanfilteranalysisequation,ofwhichvariousflavourshavehadgeneralsuccessinstateestimationinothermarineBGCdataassimilationproblems(e.g.Huetal.,2012,Ciavattaetal.,2016).ThederivationoftheDEnKFisgiveninSakovandOke(2008)andisamodificationtothetraditionalKalmanfilterequation:25𝐱𝐚 = 𝐱𝐟 + 𝐊(𝐘 − 𝐇𝐱𝐟) Eq5Wherexisthemodelstate,Yisthevectorofobservations,Histheobservationoperator,andthesuperscriptsofaandfdenotetheanalysisandforecastfieldsrespectively.Inthis30study,weonlyuseasubsetofthestatevariablesintheDEnKFupdate,thosevariablesnotincludedinthestatevectorsdenotedinTable1arenotalteredbythestateupdate.TheForecastInnovations(FI)aredefinedby:𝑭𝑰 = (𝒀 − 𝑯𝒙𝒇) Eq635TheKalmangainmatrix,K,isgivenby:𝑲 = 𝒍𝑷𝒇𝑯𝑻 𝑯𝑷𝒇𝑯𝑻 + 𝑹 0𝟏

Eq740Wherelisthelocalizationoperator,andRisobservationerrorcovariancematrix.Thebackgrounderrorcovariancematrix,P,isgivenby:

Page 7: Use of remote-sensing reflectance to constrain a data

7

𝑷𝒇 = 𝟏𝒎0𝟏

(𝑿𝒊𝒇 − 𝒙𝒇)(𝑿𝒊

𝒇 − 𝒙𝒇)𝑻𝒎𝒊R𝟏 = 𝟏

𝒎0𝟏𝑨𝑨𝑻 Eq8

wheremistheensemblesize,andidenotestheithmemberoftheensemble.GiventhatweareusingaflavoroftheensembleKalmanfilter,thebackgrounderrorcovarianceisapproximatedbya36memberdynamicensemblewhereby𝑿T

Uistheithensemblemember,5andxistheensemblemean.Toavoidnegativevaluesandnormalizethestate,welog-transformthestatebeforeformingthestatevector.Thebackgrounderrorcovariancematrixisneveractuallycomputed,ratheraseriesofanomalyfieldsareconstructedanddenotedbyA.WethenconstructtheKalmangainmatrixintheobservationsubspaceasperSakovandOke(2008)10𝑨 = [𝑨𝟏 …𝑨𝒎] Eq9wheretheithanomalyfieldisgivenby:𝑨𝒊 = 𝑿𝒊

𝒇 − 𝒙𝒇 Eq1015wherexisthetheensemblemeanandisupdatedviaEq5,eachanomalyfieldisupdatedby:𝑨𝒂 = 𝑨𝒇 − 𝟏

𝟐𝑲𝑯𝑨𝒇 Eq1120

Thefullanalyzedensembleisthengivenby:𝑿𝒂 = 𝑨𝒂 + [𝒙𝒂, … , 𝒙𝒂] Eq1225Theassimilationsystemiteratesthroughtimeusingafivedayforecastlength.Theassimilationsystemiscycledbycalculatingtheanalysisfieldsattimet,usingtheforecastfromthepreviouscycle,Xf(t),andobservationsY(t)attime(t+/-3hrs).ThenumericalmodeisinitializedusingtheanalysisfieldsXa(t)andthenextfivedayforecastismade.Thisforecastatt+5days,Xf(t+5),isthenusedinthenextassimilationcycle.30TheDEnKFrequirestheensembletobeperturbedinsuchawaythatiscapturesthemainsourceoferror.Theseperturbationsareintroducedinawaythatcapturesourpriorunderstandingofthethedominanterrors.InthissystemweexpectthaterrorswillstemfromuncertaintyintheInitialConditions(ICs)aspermostassimilationsystem.Additional35sourcesoferrorcanstemfromuncertaintyassociatedwithBGCprocessparameters,whichhasbeendiscussedatlengthinParslowetal.(2013),andriverboundaryconditions(BCs).Inthecontextofthisstudy,wehaveintroducedperturbationstotheensemblebysamplinginitialconditionsrandomlyforafouryearrunoftheBGCmodel:40𝑿(𝒕 = 𝟎)𝒊~𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑿(𝒕 = 𝟎) , 𝑿(𝒕 = 𝑻) 𝒇𝒐𝒓𝒊 = 𝟐…𝒎 Eq13WhereX(t=0)iistheinitialconditionforthemodelstatefortheithmembersampledfora45uniformdistributionwithnoreplacement.WhereX(t=0)i=1istheensemblemean.Sensitivity

Page 8: Use of remote-sensing reflectance to constrain a data

8

experimentshaveshownthemodelissensitivetoperturbationinthequadraticzooplanktonmortalityrateforlarge(mQ,ZS)andsmallzooplankton(mQ,ZL)withunitsofd-1(mgNm-3)-1.Theseareconsideredsystemparameters,andareassuchuncertain.Tothisendwehaveperturbedtheensemble,bysamplingspaceandtimeinvariantparametersfrom:5𝒎𝒒,𝒁𝑳,𝒊~𝑳𝑵 𝟎. 𝟎𝟏𝟐, 𝟏 𝒇𝒐𝒓𝒊 = 𝟐…𝒎 Eq14𝒎𝒒,𝒁𝑺,𝒊~𝑳𝑵 𝟎. 𝟎𝟎𝟕, 𝟏 𝒇𝒐𝒓𝒊 = 𝟐…𝒎 Eq15WhereLNisalog-normaldistribution.Therivernutrientandsedimentloadswerealtered10byatimeinvariantscalingfactor(𝜃)toallrivers:𝜽𝑵𝑶𝟑,𝒊~𝑵 𝟏, 𝟎. 𝟑 𝒇𝒐𝒓𝒊 = 𝟐…𝒎 Eq16𝜽𝑵𝑯𝟒,𝒊~𝑵 𝟏, 𝟎. 𝟑 𝒇𝒐𝒓𝒊 = 𝟐…𝒎 Eq17𝜽𝑫𝑰𝑷,𝒊~𝑵 𝟏, 𝟎. 𝟑 𝒇𝒐𝒓𝒊 = 𝟐…𝒎 Eq1815𝜽𝑭𝒊𝒏𝒆𝑺𝒆𝒅,𝒊~𝑵 𝟏, 𝟎. 𝟑 𝒇𝒐𝒓𝒊 = 𝟐…𝒎 Eq19WhereNisanormaldistributiontruncatedat0.Eachensemblememberhastheirload(Qi)scaledaccordingto:20𝑸𝒊 = 𝜽𝒊𝑸𝒄𝒐𝒏𝒕𝒓𝒐𝒍 Eq20where𝑄pqrstqu istheloadenteringthecontrolrun.

2.5.2Assimilationsystemexperimentsandconfiguration

25Inallexperimentswehavegeneratedasetofsuper-observations(Cummingsetal,2005;Okeetal.,2008)bycombiningtheobservedatmospherically-correctedremote-sensingreflectance(Schroederetal.,2008)at443,488and551nmintoasingleobservationusingtheOC3Malgorithm:30𝑶𝑪𝟑𝑴 =𝟏𝟎(𝒂𝟎+𝒂𝟏.𝑩+𝒂𝟐.𝑩𝟐+𝒂𝟑.𝑩𝟑+𝒂𝟒.𝑩𝟒) Eq21Wherea0,a1,…a4areasetofempiricallydeterminedcoefficients(e.g.NOMADversion2,http://seabass.gsfc.nasa.gov/wiki/article.cgi?article=NOMAD)andBis:35𝑩 = 𝒍𝒐𝒈𝟏𝟎(

𝑹𝒓𝒔,𝝀𝟏𝑹𝒓𝒔,𝝀𝟐

) Eq22

𝑅t},~�and𝑅t},~�aredeterminedbytheabsolutemagnitudeoftheremote-sensingreflectance,and𝑅t},~�iseitherthebandcentredon443nmor488nmand𝑅t},~�isthebandcentredon551nm.WeapplytheOC3Malgorithm(Eq.21)toboththeobservedand40simulatedremote-sensingreflectances.ThuswhenwecomparetheobservedandsimulatedOC3M,wearecomparingtwofieldsthatcontainthesameerrorcharacteristics.TheuseoftheobservedOC3Msuperobservationfieldisadvantageousfortworeason:1.)givenoursystemislimitedbymemory,wecanuse3timesmorespatiallocationsifwe

Page 9: Use of remote-sensing reflectance to constrain a data

9

assimilatethesuper-observationOC3M,asopposedtoworkingwiththeindividualspectralbands;and2.)ptherelationshipbetweenindividualstatevariablesandremote-sensingreflectancesisattimesnon-linear,thusviolatingtheoneoftheunderlyingassumptionsoftheDEnKF.Incontrast,therelationshipbetweensimulatedandobservedOC3Mislinear.Additionally,therearestrongcross-correlationsbetweenthebands.Forexample,the5reflectanceat443nmisstronglycorrelatedwiththereflectanceat488nm.Therefore,theobservationsofadjacentbandsarenolongerindependentanditislikelythattheassumptionthattheoffdiagonalelementsoftheobservationerrorcovariancematrix(R),needstobereconsidered.Usingonesuper-observationseliminatesthepossibilityofcross-correlation.10Fourexperimentswerethenundertakentodeterminetheforecastskilloffourdifferentassimilationsystemconfigurationsusingasubsetofstatevariablesintheassimilationstatevector,andcorrespondingdiagonalelementsoftheobservationerrorcovariancematrix(R).Weonlyallowtheobservationstoupdatethevariablescontainedintheassimilationstate15vector.Theanalysedassimilationstatevectoristheninsertedintothefullmodelstatevector.InEXP1,wemaketheassumptionthattheobservedOC3MisequivalenttothesimulatedsurfaceChl-aandusethisastheinputintotheobservationoperator.InEXP2-4weassume20thatthesimulatedOC3MisequivalenttotheobservedOC3Manditisusedasinputintotheobservationoperator.Theassimilationsystempreservesthestoichiometryofthesmallandlargephytoplanktonasfollows.Inthebiogeochemicalmodel,eachphytoplanktoncell(small,large,benthicor25Trichodesmium)isrepresentedbyaquantityofstructuralmaterial,B,andreservesofnitrogen,RN,reservesofphosphorus,RP,reservesofenergy,RI,andanintracellularchlorophyll-aconcentration,ci.Ourintentionintheassimilationistochangethenumberofcells,asquantifiedbyB,notthephysiologicalstatusofthecell,asrepresentedbyRN,RP,RI,andci.Sincethereservesarequantifiedasthetotalofthesereservesacrosstheentire30population,eachofthereservesischangedbythesameproportionasthebiomass.Thus,forexample,thenitrogenreserveofanindividualcell,RN/B,isunchanged.Oncetheanalyzedquantityofciisdetermined(e.g.PhyL_Chl-aandPhyS_Chl-a),thequantitiesofRN,RP,RIandBareupdatedsuchthattherespectiveratiospriortoassimilationarepreserved.35

3Results:

3.1ControlRun

Themodellingsystemhasbeendesignedtorepresentthespatially-resolvedwaterqualitydynamics(phytoplankton,nutrients,turbidityandoxygen)oftheGBRWorldHeritageArea40forinformedmanagement.Anumberofindicatorshavebeenusedtoassesstheskillofthemodel,includingRMSerrors,Pearson’scorrelationcoefficients,Wilmott’sskillindicators(Wilmottetal.,1985;https://research.csiro.au/ereefs/models).

Page 10: Use of remote-sensing reflectance to constrain a data

10

Thesimulatedstatevariableconcentrationsresembleboththeregionalclimatologyforoffshore-reef,lagoon-reefandnear-shorezonesandwaterqualityobservationsundercontrastingseasons/loadsandfloodevents[notshownhere,butdetailedathttps://research.csiro.au/ereefs/models,withoptical(Bairdetal.,2016b)andcarbon5chemistry(Monginetal.,2016)skillassessmentpublishedelsewhere].Asmentionedabove,themodelsimulatesremote-sensingreflectance.Itisthereforepossibletoincorporatethesereflectancesintostandard,well-recognizedremote-sensingproducts.Figure2presentsasnapshotofsimulatedsurfaceChl-aandthesimulatedOC3M,aswellasremotely-sensedproducts(regionalANN-observedOC3MandNASA-observedOC3M).10ThetwopanelsontherightsideofFigure2representthesimulated(top)andremotely-sensed(bottom)OC3MestimateofChl-a.Bothcombineindividualbandremote-sensingreflectanceintoproxiesforChl-ausingtheOC3Malgorithm.OC3MpoorlyrepresentssurfaceChl-aclosetothecoastwhereCDOMabsorptiondominates).Bycomparingthetwo15panels,wecanconcludethatthemodelrepresentsaccuratelythegeneraldistributionofChl-athroughouttheregion,withhighvaluesalongthecoastandaboveeachreefsystems,andlowconcentrationsoffshore.ThesimulatedsurfaceChl-ainsidethecoastalbandishigherthanintheremotely-sensedobservation.20ThetwopanelsontheleftofFigure2representsimulatedsurfaceChl-a(top)andOC3Mbasedontheregionally-optimizedremote-sensingreflectance(ANN-observedOC3M).SimilartoNASA-observedOC3M,butlookinginsidethecoastalbandthistime,thegeneralgradientofconcentrationsaresimilarinboththesimulatedOC3M(Figure2,topright)andtheremotely-sensingestimate(Figure2,bottomleft),butthemodelslightlyoverestimates25OC3M.

3.2Assimilationsystemconfigurationexperiments

30Tochoosethebestconfigurationfortheassimilationofremote-sensingreflectanceintoacoastalbiogeochemicalmodel,fourexperimentswereundertakenusingavarietyofstatevariablesinthestatevector(X,Table1),andbyalteringthediagonalelementsoftheobservationerrorcovariancematrix(R,Eq7).Theforecastinnovations(Eq6)forthefourassimilationsystemconfigurationexperimentsdescribedbelowareshowninFigure3:35

EXP1(greenlines,Figure3):Theerror-proneassumptionthattotalsurfaceChl-aisequivalenttoobservedOC3Mismadeandisusedtocalculatetheforecastinnovations,whicharethenusedtoupdatesmallandlargephytoplanktonChl-a.An80%errorintheANN-observedOC3MisprescribedonthediagonalelementsofR.40EXP2(redline,Figure3):SimulatedOC3M(calculatedfromsimulatedremote-sensingreflectanceatseveralwavelengths,asdescribedbyBairdetal.,2016b)isusedtocalculatetheforecastinnovations.ThestatevariableandobservationerrorsarethesameasEXP1.EXP3(blackline,Figure3):ThesameconfigurationasEXP2,withareducedobservederrorimposedonthediagonaloftheobservationerrorcovariancematrix.45

Page 11: Use of remote-sensing reflectance to constrain a data

11

EXP4(blueline,Figure3):Additionalvariablesareincludedintheassimilationstatevector,whichnowcomprisesofsmallandlargephytoplankton,ammonia,nitrateandtotalsuspendedsolidsconcentrations.TheobservationerroristhesameasEXP3.

Theforecastinnovation(Eq6)statisticsfromeachexperiment(Figure3)provideinsightinto5theassimilationsystemperformance.Anoptimalassimilationsystemshouldresultinmeanforecastinnovations(mismatchesbetweenobservationsandthemodel)ofcloseto0,andlowmeanabsoluteinnovations.TheassimilationsystemwheretheobservationoperatorassumedthattherewasadirectrelationshipbetweensimulatedsurfaceChl-aandANN-observedOC3M(EXP1,Figure3greenline),performedverypoorlyandwasdiscontinued10after9cycles;themodelattimesbecamenumericallystiff,requiringtheadaptiveODEintegratortotakeprogressivelysmallersteps.TheinnovationstatisticsforEXP1suggestedthemodelwasconstantlyover-predictingChl-awiththemeanabsoluteinnovationexceeding0.7morethan50%ofthetime.CalculatingtheforecastinnovationswithsimulatedOC3MandANN-observedOC3MratherthansimulatedsurfaceChl-aand15observedANN-observedOC3Mimprovedinnovationstatisticsdramatically(EXP2-EXP4,Figure3).TheconfigurationusedforEXP4(Figure3,blueline)gavethebestperformance.AllsubsequentresultspresentedinthisstudyusetheEXP4assimilationsystemconfiguration,andweonlyrefertotheANN-observedOC3M.

3.3Assimilationsystemforecasterrorsinpreferredsystem(EXP4configuration).20

Theassimilationsystemwasrunwitha5-dayforecastcycle.Usingtheforecastatt+5daysandcomparingthetemporalmeanoftheRootMeanSquareDifference(RMSD)andPercentageErroragainstobservationsprovidesinsightintothevalueoftheassimilationsystem,whencomparedwithanon-assimilatingsystem.Bycomparingtheforecastfields25againstobservations,weareprovidinganindependentestimateofforecastskill,astheseobservationsatt+5dayshavenotyetbeenassimilatedbytheDAsystem.Additionally,bycomparingtheforecastagainstthepersistedanalysisfieldfromthepreviousanalysiscycle,itcanbedeterminedifthedynamicmodelisaddingskilltotheforecast.

30AcomparisonofsimulatedOC3MandobservedOC3Mforthenon-assimilatingcontrolrungivesadomainwidemedianerror(range)of0.32(0.27–0.48)mgm-3(Figure4).Thisisapproximatelyequivalenttoadomain-widemedianpercentageerror(range)of100%(80%-130%)(Figure4).Thedataassimilationsystemreducestheforecasterrorsandpercentageerrorstoamedianvalue(range)of0.23(0.20–0.30)mgm-3and55%(43%-63%)35respectively.Theanalysiserrorsareagainreducedwhenobservationsareassimilated,withmedianandpercentageerrors(range)of0.19(0.14–0.23)mgm-3and39%(37%-42%)respectively.Whentheanalysisfieldfromthepreviousassimilationcycleispersistedforward,theerrors(andpercentageerrors)slightlyexceedthatoftheforecastfieldwithvaluesof0.26(0.21–0.29)mgm-3and52%(44%-65%)respectively.However,itisnot40expectedthattheseerrorstatisticsarespatiallyuniformgiventhelargepercentageofareathatisdominatedbydeepoceanicwaters.Tounderstandthespatialvariabilityoftheforecasterrorstatistics,thewholedomainisdividedintothreeregionsrepresentingshallowcoastalwaters(depth<30m),lagoonandshelfwaters(30m<depth<500m),anddeepoceanicwaters(depth>500m).45

Page 12: Use of remote-sensing reflectance to constrain a data

12

Inshallowcoastalareas,thenon-assimilatingcontrolrunhasamedianerror(range)of1.35(1.1–2.45)mgm-3,whichcorrespondstoapercentageerror(range)of130(105–180)%.Thedistributionofcontrolrunerrorsinthecoastalzoneispositivelyskewed,withthemeanvalueofthedistributionsittingsomewayfromthemedian.Theassimilationsystemmarginallyreducesthemedianforecasterrorwhencomparedwiththecontrolrun,though5mostnotably,itreducesthemedianpercentageerrorandassociatedvariability.Theforecastalsobeatspersistenceinthisregion.Thereisamarkedimprovementforlagoonandshelfwaterswiththeassimilationsystemreducingthemedianerrorfrom0.34to0.25mgm-3,whichcorrespondstoareductioninpercentageerrorfrom96%to48%.Intheoceanicregionsofthedomain,theassimilationsystemreducestheerrorfrom0.16to0.1010mgm-3,correspondingtoapercentageerrorreductionfrom91%to45%.Inallcasestheforecastfieldsbeatpersistence.AsummaryoftheresultscanbefoundinTable2andTable3.

3.3.1Forecast,IncrementandAnalysisFields15

ThesumofthesurfaceTrichodesmiumChl-a,SmallPhytoplankton(PhyS)Chl-aandLargePhytoplankton(PhyL)Chl-abiomassdifferssubstantiallyfromthesimulatedOC3MasshowninFigure5.Theassimilationsystemupdatesallofthestatevariablesincludedintheassimilationstatevector.SimulatedOC3Misadiagnosticvariablethatisafunctionofallthe20optically-activedynamicstatevariablesasdescribedinSection2.TodemonstratetheimpactonthedynamicvariablesofPhySandPhyL,resultsfromtheforecaststep,andtheassimilationupdate,arepresentedinFigure5,Figure6andFigure7.

ThesimulatedOC3Mforecastfieldforcycle22(12thSeptember2013)displayselevated25OC3MintheshallownearshoreenvironmentthroughoutthewholeofGBRregionandsouthernshelfofPapuaNewGuinea(PNG)(Figure5).AdditionalfeaturesareelevatedOC3Minthevicinityofthecentralandsouthernfringingreefs,andaplumeoriginatingfromtheeasternregionofPNG.OffshoreoceanicwatersgenerallyhavelowOC3Mof0.2mgm-3orless.Thereissomeevidenceofmesoscalebloomsinthenorthernandsouthern30sectionsofthedomain.ObservedOC3MisoverlaidonFigure5(left).Wherethereisadifferenceincolour,thesimulatedOC3MdiffersfromtheobservedOC3M.

TheforecastsurfacelayerfieldsforPhySandPhyLappearsubstantiallydifferenttothesimulatedOC3Mfield(Figure5).TherearesubstantialdifferencesnearthecoastwhereTSS35andCDOMareknowntocauseartefactsinOC3M.Whiletherearepatchybloomsofsmallphytoplanktonatvariouslocationswithinthedomain,rarelydoesthePhySChl-aexceed0.5mgm-3.TheexceptiontothisintheinnercentralcoastalregionoftheGBRandinthevicinityoftheFlyRiverplumeonthesouthcoastofPNG.Similarly,thePhyLChl-aremainsverylowforlargeareasofthedomain,howeverinregionswithadditionalnutrientsupply40(e.g.inupwellingregions,mesoscaleeddiesandsomerivermouths)bloomsdooccur.WhentheobservedOC3Misassimilated,incrementfieldsarecalculatedusingEquation5andarepresentedinFigure6forsimulatedOC3M,PhySChl-aandPhyLChl-a.TheinnovationsareoverlaidontheincrementfieldforOC3Mtogiveanindicationofhowwell45wearefittingtheobservations.InareaswherethemodelisoverpredictingOC3M,the

Page 13: Use of remote-sensing reflectance to constrain a data

13

incrementswillbenegative.InareaswherethemodelisunderpredictingtheOC3M,theincrementswillbepositive.Theincrementsandinnovationsherearepresentedasafractionalchangewithrespecttothebackground(forecast)field.Forthisparticularanalysiscycle,itappearsthatthemodelisunderestimatinginshoreOC3M5byupto10-30%andoverestimatingOC3Mbyupwardsof50%offshore(Figure6,left).Byusingthebackgroundensemblecorrelationstructure,theincrementsappliedtoPhySbiomassaretoincreaseitsconcentrationintheinnerlagoonbyupto20%,butsubstantiallyincreasethePhySbiomassoffshoreofthecentralouterreefsbymorethan50%(Figure6,centre).Itshouldbenotedthattheincrementsbeingappliedtothebackgroundfields10containmesoandsub-mesoscaleinformation.Significantly,featuressuchasupwellingfilaments,eddiesandplumesaremaintainedthroughtheassimilationprocedure,demonstratingthattheyareallowedtodynamicallyevolveintheassimilationsystem.TheincrementsappliedtoPhyLbiomass(Figure6,right).differsubstantiallytothoseofPhySbiomass(Figure6,centre).Forlargeareasofthedomain,theassimilationsystemdecreases15thePhyLbiomassbyupto50%,whereastherearesomeareasthatitincreases.Theseareascorrespondtoregionswhereabloommaybeoccurring.Theincrementappliedtothecentralregionofthedomain,offshoreoftheouterreefs,islinearandcoherentandlikelyaresultofshiftingadynamicfeaturesuchasanupwelling-inducedbloomtobettermatchobservations.20 WhentheincrementscontainedinFigure6areappliedtotheforecastfields,theresultinganalysisfieldforsimulatedOC3MbetterfitstheobservedOC3M,withasubstantiallyreducederrorinshoreandinthevicinityoftheouterreefs(Figure7).ThedifferencebetweensimulatedandobservedOC3Missmallinthedeeperoffshoreregionsandshallow25sectionsofthelagoon.ThegreatesterrorinOC3Moccursinthecentrallagoonandtheouterreefswherespatialvariabilityishighest.ThecorrespondinganalysisfieldsforsmallphytoplanktonandlargephytoplanktonarecontainedinFigure6.Thereareelevatedconcentrationsofsmallphytoplanktonbiomassinthenearshoreregionnearrivermouthsandtheouterfringingreefs.Thelargephytoplanktonbiomassisconcentratedintheregion30ofBroadSound,theFlyRiverplume,andthePapuaNewGuineaupwelling.Eachofthesefeatureswaspredictedbytheforecast,aslittlebiomassisaddedorsubtractedbytheassimilationupdate.However,thereissubstantialremovaloflargephytoplanktonbiomassfromthenorthernandcentraloffshoreregions.Thisleavesverylittlelargephytoplanktonbiomasspresentinsubstantialareasofthedomainduringthisparticularanalysiscycle.35

3.3.2Independentassimilationsystemassessment:Glider

Thecontrolandassimilatingrunswerecomparedwithanoceangliderthatwasdeployedon26May2013,andrecoveredonthefourthofAugust2013.Theglidertracklargelyfollowedtheshelfbreakandheadedinasouth-easterlydirection.Tomakeacomparisonbetween40gliderobservationsandthemodel,wetakeasubsampleofgliderobservationscentredatthetimeofmodeloutput,withatimewindowoftwohours.Foreachgliderobservationthatfallswithinthistimeperiod,wefindacorresponding3-Dcellfromthemodelandextracttheequivalentmodelsolution.No3-Dinterpolationisperformedasthenon-interpolatedsolutionwillyieldinsightintotheunresolvedsubgridscalevariability.The45

Page 14: Use of remote-sensing reflectance to constrain a data

14

unresolvedsubgridscalevariabilityisthenaccountedforintherepresentationerrorofthedataassimilationsystem.

Apersistentfeatureseeingintheobservedrecord(Figure8)istherelativelylowChl-aintheupper100mofwatercolumn.Formuchoftherecord,thereisapersistentdeep5chlorophyllmax(DCM)thatiscentredatbetween80and120mdepth.Rarelydoconcentrationsintheupper80mexceed0.5mg/m³.Whenthecontrolrunisexamined,Chl-ainthetop80mregularlyexceeds1mg/m³,DCMswhentheyexist,arelocatedbetween30and60mdeep.AdetailedanalysisofthecontrolrundemonstratesthemodelisabletoreliablyproducedDCMs,however,inthisparticularlocationintimeandspace,themodel10doesnotgenerateoneconsistentwiththeobservations.Theassimilationsystemimprovesthecontrolwhencomparedtotheglider,howeveritcannotplacetheDCMinthecorrectlocationbecausetheremotesensingobservationsprovidenoinformationaboutsuchadeepfeature.Theremotesensingobservationsdoremovethebiasintheupper80mwithconcentrationsintheassimilatingrunningrangingbetween0.1-0.3mg/m³.15Acomparisonbetweenindividualprofilesfromthegliderandequivalentsamplingofthemodelshowssubstantialunresolvedvariability.Figure9Ashowsthatatabout70mtheobservedChl-aasmeasuredbythefluorometerrangesbetween0.14and0.25mg/m³,withameanvalueof0.18mg/m³.Thesegliderprofilesfallwithintwoadjacentmodelcells.The20controlrungaveindistinguishablesolutionsinthesetwocells,whereastheassimilatingrunwasdifferentby0.3mg/m³betweenthesetwocells.Therangeinunresolvedvariabilityisthereforeapproximately50%ofthemeanvalue.Similarpatternsareseenacrossmostprofiles,asubsampleofwhicharegiveninFigures9b-f.Themagnitudeoftheunresolvedvariabilityrangesfrom5to40%.InallcasestheassimilationofobservedOC3Mhas25reducedtheerrorinthesimulatedChl-awhenassessedagainstindependentgliderdata.TheRMSDwhencalculatingforeachlayerofthemodel,andaggregatedintimeforallgliderobservations,isshowninFigure10.Above80m,thereisasubstantialreductioninRMSDbetweenthecontrolandassimilatingruns.TheassimilatingrunhasanRMSDofbetween300.10and0.17mgm-3comparedwith0.30to0.41mgm-3inthecontrolrun.Below80m,theRMSDprofileisverysimilarbetweenthecontrolandassimilatingrun.TheobservedOC3Mconstrainstheupper80m,anddoesnotdegradethesolutionbelow80m.

3.3.3Independentassimilationsystemassessment:In-situbottlesamples

35TheAIMSReefRescue(RR)mooringsweredeployedat14sitesintheshallowinshoreregionsoftheGreatBarrierReefLagoon(Figure1).ThecontrolruntypicallyhadRMSDsofbetween0.4and0.6mg/m3ofinsituChl-a(Figure11),withtheexceptionbeingGeoffreyBay,whichisknowntobeproblematicduetothepoorspatialresolutioninthisarea.InmostcasestheassimilatingrunreducedtheRMSDofinsituChl-aby10to0%.40

TheTSSRMSDvarieswidelyacrossalltheRRsites(Figure11),drivenbythestrongvariationinmagnitudeofthespring–neaptidalforcing.Thecombinationofperturbedforcing,andtheinclusionoftheTSSconstituentsinthestatevectorintheassimilatingmodel,hasgeneratedrealistictimevaryingcorrelationsbetweentheobservedOC3MandinshoreTSS.45Thesecross-correlationsallowforthecorrectionofsimulatedTSSfromOC3Mobservations.

Page 15: Use of remote-sensing reflectance to constrain a data

15

TheTSSRMSDatallsitesfortheassimilatingrunislessthan5to20%thatofthecontrolrun.WithintheGBRregion,therearetwoIMOSNRSsites(YongalaandNorthStradbroke,NS,Figure1).ThedissolvedinorganicnutrientsofNO3,NH4andDIParetakenmonthly.At5Yongala,watersamplesaretakenatthesurface(0m),10m,20mandbottom(26m).AtNS,samplesaretakenatthesurface(0m),10m,20m,30m,40mand50m.Itshouldbenotedthatthereareonly3to4samplesperdepthateachsiteduringthesimulationperiod..AtYongala,typicalRMSDsforNO3rangefrom5to12mg/m³.TheimprovementatNSisconfinedtoshallowlayersabove20m.Below20mtheassimilationsystemdegrades10thesolutionby5to15%.

WiththeexceptionofthesurfacesamplesatYongala,theassimilationsystemimprovedthepredictionofNH4atalldepthsforeachsite.Mostnotablywasthe70to90%reductioninRMSDatthedeeperlocationsatYongala.ThereweremarginalimprovementstoDIP,which15displayeda0to30%reductioninRMSDacrossallsites.

4Discussion

Intheoptically-complexwatersoftheGBR,theuseofobservedremote-sensingreflectancetoconstraintheBGCmodelsubstantiallyreducestheerrorsinOC3MandinsituChl-a,TSSandnutrients.Thishasbeenachievedbyexplicitlyassimilatinglike-for-likevariables.The20dataassimilationisconstrainedbythemis-matchbetweensimulatedandobservedOC3M.Ourapproachofsimulatingtheobservationistheoppositetotheconversionofobservedremote-sensingreflectancesintomodelledvariables,e.g.theassimilationofphytoplanktonfunctionaltypes,TSS,CDOMandChl-a.Theconversionofreflectancesintoderivedvariables(e.g.Chl-a,PFTs)haveassociatederrorsthatareaslargeas200%issomelocations,andcan25bebiasedbyupto70%.Theseerrorsattimesaredifficulttocharacteriseinthedataassimilationsystems,andtheanalysisfieldscontainerrorsthatarelargerthantheforecastorfreerunmodelfields.Oursystemavoidstheseerrors.OneofthemostsignificantsourcesoferrorsinalgorithmssuchasOC3Misthatthey30produceasinglevalueforeachhorizontalpixel,generallyconsideredtoberepresentativeofthefirstopticaldepthofthewatercolumn.Ifthisistobecomparedtoasinglevalueinbiogeochemicalmodel,thenitmustbeassumedthatthewatercolumniswell-mixedtotheopticaldepth,andthatthereisanequalopticaldepthofeachofthewavebandsusedinthealgorithm.Bothoftheseconditionsarerarelymetincoastalwaters.Matchingremote-35sensingreflectancerequiresnoassumptionsaboutthestructureofthewatercolumn,oroftheverticaldistributionoftheoptically-activeconstituents,becausebothobservedandmodelledquantitiesaretwodimensionalfields.Inordertovisualisetheimpactoftheassimilationsystemonthepredictionofwaterclarity,40wecomparetheobservedtruecolour(Figure13)withthesimulatedtruecolourofthecontrolrun(Figure14,topleft)andtheassimilatedrun(Figure14,topright).Simulatedtruecolourimagesaregeneratedfromtheremote-sensingreflectanceatthered,greenandbluewavelengthscalculatedusingtheopticalmodelandthethreedimensionalfieldsofmodel-predicted23optically-activeconstituents.45

Page 16: Use of remote-sensing reflectance to constrain a data

16

Theobservedtruecolourimageonthe12Sep2013showsbrown/yellowfeaturesassociatedwithhighsuspendedsedimentconcentrations.Astheseconcentrationsbecomemorediluted,andmixedwithphytoplankton,thewaterappearsmoregreenishblue.Offshorereefs,withclearwaterabovewhitesubstrates,appearaslightbluefeatures,with5theintensitydependingonthereefdepth.Qualitatively,thecontrolrun(Figure14,topleft)doesareasonablygoodjobofreproducingtheobservedtruecolour.Thequantificationofthismismatchcanalsobedoneonindividualcolorbands(Bairdetal.,2016b).Qualitatively,thecontrolrundoesnothaveenoughsuspendedsolidsinthesurfacewaterinthemouthofBroadSound(22.2°S,149.5°E),andhastoohighphytoplanktonconcentrationsoffshore,10especiallyinafeaturecentredat23°S,151.5°E.Theassimilatedrun,whilenotthatdifferenttothecontrolrun,correctssomeoftheseerrors.Toapproximatelyquantifyimpactsoftheassimilationofwaterclarity,itispossibleconsiderthecolouroftheadded(andsubtracted)constituentsintheassimilationprocedure.To15avoidconfusionwiththephrases‘falsely-coloured’or‘negative’,whichhavedistinctmeaningsinvisualisationscience,buttostillprovideaphrasefortruecolourerror,weusetheterm“off-colour”,anddistinguishbetweenoff-colourthatrequirescorrectionthroughaddition(Figure14,bottomleft)andsubtraction(Figure14,bottomright).Theassimilationprocedureaddedyellowcolours(suspendedsediment)withinBroadSoundandgreen20colours(phytoplankton)inthemouth.Offshoretheassimilationremovedgreen,particularly,asnotedaboveat23°S,151.5°E.Byremovinggreenitmadethewatermoreblue(Figure14,topright).Thegeneralmethodologypresentedinthisstudyissimilartothatusedinnumerical25weatherprediction(NWP).Theapproachtakenhereistoavoidtheuseofanempirical/statisticalinversemodel,anduseaphysics-basedforwardmodeltopredictremote-sensingreflectancecentredattheMODISbandwidths.Wethenpost-processthesesimulatedremote-sensingreflectancesintoasimulatedOC3M.ThesimulatedOC3MisdirectlycomparabletotheobservedOC3Mwithbothcontainingsourcesoferrorderived30frombottomreflectance,andturbidcoastalwaters.WehavetakenthefinalstepofconvertingthesimulatedremotesensingreflectancesintosimulatedOC3Masitremovesanumberofnon-linaritesassociatedwithworkingonrawreflectances,andtheassociatedcorrelatedobservationerrors.Additionally,itreducesthesizeofobservationvectorbyafactorofthree,allowingforagreaternumberofspatialpointstobeassimilated.Byavoiding35theuseofaninverseempiricalstatisticalmodel,wearepresentingaBGCDAapproachthathadbeenadoptedbytheNWPcommunitydecadesago(Deeetal.,2015).ByavoidingtheuseofIOP/AOPbasedempirical/statisticalproducts,thisapproachcantakeadvantagenon-ocean-colorspecificmissionssuchasHimawari8.ThespectralresolutioncanbealteredtosimulatereflectancesattheHimawari8truecolourbands.IftheHimawari408datacanbeassimilateditwillprovideastepchangeinthedataavailableforareassuchastheGBR,duetothehighspatialresolution(nominally500m)andtemporalresolution(every30minutes).Thisdatadensityfarexceedsthatavailablefromorbitingsatellites,andwillprovidecoveragesimilartotheproductsbeingassimilatedinNWPsystems.

45Theunderlyingconfigurationofthedataassimilationpresentedinthisstudyrequiresthedominanterrorsub-spacetobespannedbytheensemble.Pragmaticchoiceshavebeen

Page 17: Use of remote-sensing reflectance to constrain a data

17

madetoallowthesystemtorunontheavailablecomputeresources.Tothisendwehaveperturbed2sensitivemodelparameters,andriverloadsofnutrientsandsediments.Thedistributionsthathavebeensampledtoperturbthezooplanktonmortalityratesand𝜃T alongwiththeirrespectiveshapeparameterscouldbeconsideredasubjectivechoice.ThereissubstantialscopeheretorecasttheproblemwithaBayesianHierarchicalModelling5(BHM)framework(asinParslowetal.,2013;andDowdetal.,2014),wherebythepriordistributionareassignedtouncertainparameters,andathoroughmeta-analysisoftheliteraturecouldbeusedtoconstructinformativedistributions.Theobservationscouldthenbeusedtoconstructnotonlyaposterioroverthestate,butafulljointposterioroverthestateandparameters.Furthermore,wehavenotalloweduncertaintyinthephysicsto10propagateintotheBGCsolution.Werecognisethisisashortcomingofthestudy,however,giventhecomputationalconstraints,wearenotinapositiontoexpandtheensembletoincludephysicsperturbations(whichwouldrequireanensemblethatisuptoanorderofmagnitudelarger).Asmorecomputingpowerbecomesavailable,ensemblesizescouldbeincreased,stochasticparameterisationsintroduced(Garnieretal.,2016),andDAmethods15withlessparametricassumptions(e.g.Parslowetal.,2013),couldbeadopted. TherehasbeentworecentdiscussionpapersreleasedthatdetailthepathwaytowardsoperationalisingBGCforecastingsystems(Gehlenetal.,2015;andFordetal.,2016),analogoustothecurrentNWPandhydrodynamicpredictionssystemthatroutinelyrunat20numerousoperationalcentres.Ithasbeenacknowledgedthatsatelliteremotesensingwillplayakeyroleinsuchsystems,thereappearstobetwodivergentpathwaystoachievethisvision.Fordetal.,(2016)advocatefortheassimilationofempiricalstatisticalproductssuchasChl-a,diffuseattenuationcoefficientsandPhytoplanktonFunctionalTypes(PFTs),withthealternativebeingtheassimilationofAOPssuchremote-sensingreflectances(or25subsequentfunctionalderivatives).Forcomplexcoastalregionsthataredominatedbycase2waters,theassimilationofremote-sensingreflectancesavoidsthecostlyrequirementofcalibratingaempirical/statisticalalgorithmthatisregionally-specific.Weadvocateathirdapproach–theassimilationofremote-sensedreflectance.

5Conclusion30

Inthisstudywehaveusedaspectrally-resolvedopticalmodelcoupledtoaBGCmodeltosimulatetheremote-sensingreflectancescentredattheMODISoceancolourbands.Thenon-linearobservationoperatorintheassimilationsystemsubsequentlyconvertedremote-sensingreflectanceintoasimulatedOC3MapproximationofChl-a.ObservedOC3Misthenassimilatedintothemodel,whichreducesthedomain-wideforecasterrorsinChl-afrom35100%to55%whencomparedtothenon-assimilatingmodel.Byusingafunctionalderivationoftheremote-sensingreflectances(OC3M),wehalvetheforecasterrorcomparedtosimplyassumingtheOC3MisdirectlyrelatedtothemodelpredictionofsurfacetotalChl-a.Acomparisonagainstin-situobservationsofNO3,NH4,DIPandTSSshowstheassimilatingmodelreducestheMAPEfrom90%tolessthan20%atmost40stations.ByusingaforwardmodelthatincludesamajorityoferrorsourcespresentintheobservedOC3M,wehaveshownthattheassimilationofremotely-sensedproductsinopticallycomplexcase2waterscanbeachieved,andaddssubstantialpredictiveskillwhencomparedtothenon-assimilatingmodel.Furthermore,thisapproachcanbegeneralizedto

Page 18: Use of remote-sensing reflectance to constrain a data

18

nonocean–colourspecificmissionsliberatingavastquantityofdatathatcannotbeusedusingtraditionalBGCassimilationsystems.

Acknowledgements

ThemodelsimulationsweredevelopedaspartoftheeReefsproject,apublic-privatecollaborationbetweenAustralia'sleadingoperationalandscientificresearchagencies,5government,andcorporateAustralia(research.csiro.au/ereefs).Atmospherically-correctedMODISproductsweresourcedfromNASAandtheIntegratedMarineObservingSystem(IMOS)-IMOSissupportedbytheAustralianGovernmentthroughtheNationalCollaborativeResearchInfrastructureStrategy(NCRIS)andtheSuperScienceInitiative.Simulationsandtheprocessingoftheremotesensingdatawasundertakenwiththe10assistanceofresourcesfromtheNationalComputationalInfrastructure(NCI),whichissupportedbytheAustralianGovernmentviaNCRIS.WethankthemanycolleaguesinvolvedindevelopingtheeReefsmodel,particularlyMikeHerzfeld,JohnAndrewartha,PhilipGillibrand,CedricRobillotandRichardBrinkman.MarkBairdwasadditionallyfundedbytheCSIROWealthfromOceansFlagship,theGasIndustrySocial&EnvironmentalResearch15Alliance(GISERA),CSSFSPandtheCSIROCoastalCarbonCluster.RiverflowdataandinformationusedtospecifyrivernutrientandsedimentloadswereprovidedbytheGovernmentofQueensland.

References

20Ariathurai,R.&Krone,R.B.1976.Finiteelementmodelforcohesivesedimenttransport.JournaloftheHydraulicsDivision,ASCE,104,HY2,323–328.Baird,M.E.(2010)Limitstopredictioninasize-resolvedpelagicecosystemmodel.J.PlanktonRes.32,1131-1146.25Baird,M.E.,M.P.Adams,R.C.Babcock,K.Oubelkheir,M.Mongin,K.A.Wild-Allen,J.Skerratt,B.J.Robson,K.Petrou,P.J.Ralph,K.R.O'Brien,A.B.Carter,J.C.Jarvis,M.A.Rasheed(2016a)Abiophysicalrepresentationofseagrassgrowthforapplicationinacomplexshallow-waterbiogeochemicalmodelEcol.Mod.325:13-27.30Baird,M.E.,N.Cherukuru,E.Jones,N.Margvelashvili,M.Mongin,K.Oubelkheir,P.J.Ralph,F.Rizwi,B.J.Robson,T.Schroeder,J.Skerratt,A.D.L.StevenandK.A.Wild-Allen(2016b)Remote-sensingreflectanceandtruecolourproducedbyacoupledhydrodynamic,optical,sediment,biogeochemicalmodeloftheGreatBarrierReef,Australia:comparisonwith35satellitedata.Env.Model.Software78:79-96.

Page 19: Use of remote-sensing reflectance to constrain a data

19

Baird,M.E.,P.J.Ralph,K.Wild-Allen,F.RizwiandA.D.L.Steven(2013).Adynamicmodelofthecellularcarbontochlorophyllratioappliedtoabatchcultureandacontinentalshelfecosystem.Limnol.Oceanogr.58,1215-1226.

Ciavatta,S.,Kay,S.,Saux-Picart,S.,Butenschön,M.andAllen,J.I.,2016.DecadalreanalysisofbiogeochemicalindicatorsandfluxesintheNorthWestEuropeanshelf-sea5ecosystem.JournalofGeophysicalResearch:Oceans.121,1824-1845

Collier,C.J.,Waycott,M.,McKenzie,L.J.,2012.LightthresholdsderivedfromseagrasslossinthecoastalzoneofthenorthernGreatBarrierReef,Australia.Ecol.Indic.23,211-219.Cummings,J.A.,2005.Operationalmultivariateoceandataassimilation.QuarterlyJournalof10theRoyalMeteorologicalSociety,131(613),pp.3583-3604.De'ath,G.K.E.Fabricius,H.SweatmanandM.Puotinen(2012)The27-yeardeclineofcoralcoverontheGreatBarrierReefanditscauses.PNAS109,17995-17999.15Dee,D.P.etal.(2011)TheERA-Interimreanalysis:configurationandperformanceofthedataassimilationsystem.Q.J.R.Meteorol.Soc.137:553–597.Dowd,M.,Jones,E.andParslow,J.,2014.Astatisticaloverviewandperspectivesondataassimilationformarinebiogeochemicalmodels.Environmetrics,25(4),pp.203-213.20Egbert,G.D.andErofeeva,S.Y.,2002.Efficientinversemodelingofbarotropicoceantides.JournalofAtmosphericandOceanicTechnology,19(2),pp.183-204.25Furnas,M.2003.Catchmentsandcorals:terrestrialrunofftotheGreatBarrierReef.AustralianInstituteofMarineScience,Queensland.,334p.Garnier,F.,Brankart,J.M.,Brasseur,P.andCosme,E.,2016.Stochasticparameterizationsofbiogeochemicaluncertaintiesina1/4°NEMO/PISCESmodelforprobabilisticcomparisons30withoceancolordata.JournalofMarineSystems,155,pp.59-72.Gaspari,G.andCohn,S.E.,1999.Constructionofcorrelationfunctionsintwoandthreedimensions.QuarterlyJournaloftheRoyalMeteorologicalSociety,125(554),pp.723-757.35Gehlen,M.,Barciela,R.,Bertino,L.,Brasseur,P.,Butenschön,M.,Chai,F.,Crise,A.,Drillet,Y.,Ford,D.,Lavoie,D.andLehodey,P.,2015.Buildingthecapacityforforecastingmarinebiogeochemistryandecosystems:recentadvancesandfuturedevelopments.JournalofOperationalOceanography,8(sup1),pp.s168-s187.

Page 20: Use of remote-sensing reflectance to constrain a data

20

Gillibrand,P.A.andHerzfeld,M.,2016.Amass-conservingadvectionschemeforofflinesimulationofscalartransportincoastaloceanmodels.OceanModelling,101,pp.1-16.Goyens,C.,Jamet,C.,Schroeder,T.,2013.Evaluationoffouratmosphericcorrection5algorithmsforMODIS-Aquaimagesovercontrastedcoastalwaters.Rem.Sens.Env.131,63-75.Gregg,W.W.,2008.AssimilationofSeaWiFSoceanchlorophylldataintoathree-dimensionalglobaloceanmodel.JournalofMarineSystems,69(3),pp.205-225.10Herzfeld,M.2006,Analternativecoordinatesystemforsolvingfinitedifferenceoceanmodels.,OceanModelling,14,174-196.Hu,J.,Fennel,K.,Mattern,J.P.andWilkin,J.,2012.DataassimilationwithalocalEnsemble15KalmanFilterappliedtoathree-dimensionalbiologicalmodeloftheMiddleAtlanticBight.JournalofMarineSystems,94,pp.145-156.King,E.A.,Schroeder,T.,Brando,V.E.,Suber,K.,2014.Apre-operationalSystemforSatelliteMonitoringoftheGreatBarrierReefMarineWaterQuality.Tech.rep.,CSIRO20Report,pp56.LynchTP,MorelloEB,EvansK,RichardsonAJ,RochesterW,etal.(2014)IMOSNationalReferenceStations:AContinental-WidePhysical,ChemicalandBiologicalCoastalObservingSystem.PLoSONE9(12):e113652.doi:10.1371/journal.pone.0113652.25Madsen,O.S.,1994.Spectralwave-currentbottomboundarylayerflows,inCoastalEngineering1994Proceedings,24thInternationalConferenceCoastalEngineeringResearchCouncil/ASCE,pp.384-398.30Margvelashvili,N.,Saint-Cast,F.,Condie,S.,2008.NumericalmodellingofthesuspendedsedimenttransportinTorresStrait.ContinentalShelfResearch28,2241-2256.

Mattern,J.P.,Fennel,K.andDowd,M.,2014.Periodictime-dependentparametersimprovingforecastingabilitiesofbiologicaloceanmodels.GeophysicalResearch35Letters,41(19),pp.6848-6854

Mongin,M.,M.E.Baird,B.Tilbrook,R.J.Matear,A.Lenton,M.Herzfeld,K.A.Wild-Allen,J.Skerratt,N.Margvelashvili,B.J.Robson,C.M.Duarte,M.S.M.Gustafsson,P.J.Ralph,A.D.

Page 21: Use of remote-sensing reflectance to constrain a data

21

L.Steven(2016).TheexposureoftheGreatBarrierReeftooceanacidification.NatureCommunications7,10732.MorelloEB,PlagányiÉE,BabcockRC,SweatmanH,HillaryR,PuntAE(2014)Modeltomanageandreducecrown-of-thornsstarfishoutbreaks.Mar.Ecol.Prog.Ser.512:167-1835Oke,P.R.,Brassington,G.B.,Griffin,D.A.andSchiller,A.,2008.TheBluelinkoceandataassimilationsystem(BODAS).OceanModelling,21(1),pp.46-70.Odermatt,D.,Gitelson,A.,Brando,V.E.andSchaepman,M.,2012.Reviewofconstituent10retrievalinopticallydeepandcomplexwatersfromsatelliteimagery.Remotesensingofenvironment,118,pp.116-126.Oke,P.R.andSakov,P.,2008.Representationerrorofoceanicobservationsfordataassimilation.JournalofAtmosphericandOceanicTechnology,25(6),pp.1004-1017.15Parslow,J.S.,Cressie,N.,Campbell,E.,Jones.E.M.,andMurray,L.2013.Bayesianlearningandpredictabilityinastochasticnonlineardynamicalmodel.EcologicalApplications23:4,679-69820RidgwayK.R.,J.R.Dunn,andJ.L.Wilkin2002Oceaninterpolationbyfour-dimensionalleastsquares-ApplicationtothewatersaroundAustralia.J.Atmos.Ocean.Tech.,19,1357-1375.Robson,B.J.,Baird,M.andWild-Allen,K.,2013.Aphysiologicalmodelforthemarinecyanobacteria,Trichodesmium.InMODSIM2013,20thInternationalCongressonModelling25andSimulation.ModellingandSimulationSocietyofAustraliaandNewZealand,ISBN(pp.978-0).Rolfe,J.andGregg,D.,2015.FactorsaffectingadoptionofimprovedmanagementpracticesinthepastoralindustryinGreatBarrierReefcatchments.Journalofenvironmental30management,157,pp.182-193.Sakov,P.andOke,P.R.,2008.AdeterministicformulationoftheensembleKalmanfilter:analternativetoensemblesquarerootfilters.TellusA,60(2),pp.361-371.35SchaffelkeB,CarletonJ,DoyleJ,FurnasM,GunnK,SkuzaM,WrightM,ZagorskisI(2011)ReefRescueMarineMonitoringProgram.FinalReportofAIMSActivities2010/11-InshoreWaterQualityMonitoring.ReportfortheGreatBarrierReefMarineParkAuthority.AustralianInstituteofMarineScience,Townsville.(83p.)40

Page 22: Use of remote-sensing reflectance to constrain a data

22

Sarmiento,J.LandN.Gruber(2006)OceanBiogeochemicalDynamics.PrincetonUniversityPress.ISBN:9780691017075.528pp.Schiller,A.,Herzfeld,M.,Brinkman,R.,Stuart,G.,Jan.2014.Monitoring,predictingandmanagingoneofthesevennaturalwondersoftheworld.Bull.Am.Meteor.Soc.23-30.5Schroeder,T.,Behnert,I.,Schaale,M.,Fischer,J.,Doerer,R.,2007.AtmosphericcorrectionalgorithmforMERISaboveCase-2water.J.Int.RemoteSens.28,1469-1486.Skerratt,J.,Wild-Allen,K.,Rizwi,F.,Whitehead,J.andCoughanowr,C.,2013.Useofahigh10resolution3Dfullycoupledhydrodynamic,sedimentandbiogeochemicalmodeltounderstandestuarinenutrientdynamicsundervariouswaterqualityscenarios.Ocean&coastalmanagement,83,pp.52-66.Thompson,A.,Costello,P.,Davidson,J.,Logan,M.,Schaffelke,B.,Uthicke,S.andTakahashi,15M.,2011.Reefrescuemarinemonitoringprogram.ReportofAIMSActivities–Inshorecoralreefmonitoring,p.128.Thompson,A.,Schroeder,T.,Brando,V.E.,Schaffelke,B.,2014.Coralcommunityresponsestodecliningwaterquality:WhitsundayIslands,GreatBarrierReef,Australia.CoralReefs33,20923-938.Willmott,C.J.,AcklesonSG,DavisRE,FeddemaJJ,KlinkKM,LegatesDR,ODonnellJ,RoweCM.1985.Statisticsfortheevaluationofmodelperformance.JournalofGeophysicalResearch90:8995-9005.25

AppendixA:DetaileddescriptionoftheeReefsmodellingsystem

TheeReefsmodellingsystemisasuiteofcoupledhydrodynamic,sediment,opticalandbiogeochemicalmodelsspecificallytailoredtotheGreatBarrierReef.Thehydrodynamicmodelisathree-dimensional,finite-difference,baroclinicmodelbasedonthethree-30dimensionalequationsofmomentum,continuityandconservationofheatandsalt,employingthehydrostaticandBoussinesqassumptions(Herzfeldetal.,2006,Schilleretal.,2015).Theequationsofmotionarediscretizedonafinite-differencestencilcorrespondingtotheArakawaCgrid.Intheverticalz-coordinatescheme,thereare47fixedz-levels.Theatmosphericforcingproducts(wind,pressure,rainandheatfluxes)aresuppliedbyBureau35ofMeteorology(BOM)reanalysisproducts.Atidalsignalwassuperimposedonthelow-frequencysealeveloscillationprovidedbyBRAN2.3(Okeetal.,2008)ontheregionalgridopenboundary.Thistidalsignalwasintroducedviaalocalfluxadjustment.TheOTIStidalmodel(EgbertandErofeeva,2002)wasusedtogeneratethetidalsignalfromamplitudeandphaseinformationfor8constituents.Thelocalgridopenboundarywasforcedwith40temperature,salinityandvelocity(withlocalfluxadjustment)derivedfromtheregional

Page 23: Use of remote-sensing reflectance to constrain a data

23

grid.Amassconservingflux-basedadvectionschemeisusedtotransportsedimentandbiogeochemicaltracers.Thesedimenttransportmodeladdsamultilayersedimentbedtothehydrodynamicmodelgridandsimulatessinking,depositionandresuspensionofmultiplysize-classesof5suspendedsediment(Margvelashvilietal.,2008).Themodelsolvesadvection-diffusionequationsofthemassconservationofsuspendedandbottomsedimentsandisparticularlysuitableforrepresentingfinesedimentdynamics,includingresuspensionandtransportofbiogeochemicalparticles.Themodelisinitialisedwiththeobserveddistributionofgravel,sandandmudintheseabedoftheshelfregion.Sedimentparticlessettleontheseabeddue10togravityandresuspendintothewatercolumnwheneverthebottomshearstress,exertedbywavesandcurrents,exceedsthecriticalshearstressoferosion.TheresuspensionanddepositionfluxesareparameterisedwiththeAriathuraiandKrone(1976)formula.Thebottomfrictionundercombinedwavesandcurrentsisestimatedthroughthenonlinearbottomboundarylayermodel(Madsen,1994).15

Sedimentsinbenthiclayersundergoverticalmixingduetobioturbation,representedbylocaldiffusion.Thecorrespondingdiffusioncoefficientscaleswiththesedimentdepthsothatthebioturbationceasestooperatebeneaththebiologicallyactivelayer.Theresistanceofsedimentstoresuspensionalsovarieswiththesedimentdepthtoreflectthe20consolidatednatureofdeepsediments.Thenumericalgridforsedimentvariablesinthewatercolumncoincideswiththenumericalgridforthehydrodynamicmodel.Withinthebottomsediments,themodelutilisesatime-varyingsediment-thickness-adaptedgrid,wherethethicknessofsedimentlayersvarieswithtimetoaccommodatethedepositedsediment.Horizontalresolutionwithinsedimentsfollowstheresolutionofthewater25columngrid.Thebiogeochemicalmodelisorganisedinto3zones:pelagic,epibenthicandsediment.Theepibenthiczoneoverlapswiththelowestpelagiclayerandthetopsedimentlayer,sharingthesamedissolvedandsuspendedparticulatematerialfields.Dissolvedandparticulate30biogeochemicaltracersareadvectedanddiffusedthroughoutthemodeldomain.Additionally,biogeochemicalparticulatesubstancessinkandareresuspendedinthesamewayassedimentparticles.Biogeochemicalprocessesareorganizedintopelagicprocessesofphytoplanktonandzooplanktongrowthandmortality,remineralisationofparticulateandorganicmaterial,andfluxesofdissolvedoxygen,nitrogen,phosphorusandcarbon35(includingnitrogenfixation,phosphorusadsorptionanddesorption,surfacegasexchanges,respirationandphorosythensis,andfluxestoandfrombioticpools);epibenthicprocessesofgrowthandmortalityofmacroalgae,seagrassandcorals,andsedimentbasedprocessesofphytoplanktonmortality,microphytobenthosgrowth,detritalremineralisationandfluxesofdissolvedsubstances(Fig.2).40

Thebiogeochemicalmodelincludesfourgroupsofmicroalgae(smallandlargephytoplankton,Trichodesmiumandmicrophytobenthos)andthreemacrophytestypes(seagrasstypescorrespondingtoZosteraandHalophila,macroalgaeandcoralcommunities).Photosyntheticgrowthisdeterminedbyconcentrationsofdissolved45nutrients(nitrogenandphosphate)andphotosyntheticallyactiveradiation.Autotrophstakeupdissolvedammonium,nitrate,phosphateandinorganiccarbon,andinthecaseof

Page 24: Use of remote-sensing reflectance to constrain a data

24

Trichodesmium,fixatmosphericnitrogen(Robsonetal.,2014).Microalgaeincorporatecarbon(C),nitrogen(N)andphosphorus(P)attheRedfieldratio(106C:16N:1P,Redfield1963)whilemacrophytesdosoattheAtkinsonratio(550C:30N:1P,Atkinson1983).Microalgaecontaintwopigments(chlorophyll-aandanaccessorypigment),andhavevariablecarbon:pigmentratiosdeterminedusingaphotoadaptationmodel(describedin5Bairdetal.,2013).Micro-zooplanktongrazeonsmallphytoplanktonandmeso-zooplanktongrazeonlargephytoplanktonandmicrozooplankton,atratesdeterminedbyparticleencounterratesandmaximumingestionrates.Ofthegrazedmaterialthatisnotincorporatedintozooplankton10biomass,halfisreleasedasdissolvedandparticulatecarbon,nitrogenandphosphate,withtheremainderformingdetritus.Additionaldetritusaccumulatesbymortality.Detritusanddissolvedorganicsubstancesareremineralisedintoinorganiccarbon,nitrogenandphosphatewithlabiledetritustransformedmostrapidly(days),refractorydetritusslower(months)anddissolvedorganicmaterialtransformedoverthelongesttimescales(years).15Theproduction(byphotosynthesis)andconsumption(byrespirationandremineralisation)ofdissolvedoxygenisalsoincludedinthemodelanddependingonprevailingconcentrations,facilitatesorinhibitstheoxidationofammoniatonitrateanditssubsequentdenitrification(inthesediment)todi-nitrogengaswhichisthenlostfromthesystem.FulldetailsofequationsusedinthebiogeochemicalmodelaregivenbyBairdetal.(2016b)and20detailsofparametervaluesandimplementationfortheGreatBarrierReefaregivenbyHerzfeldetal.2016Themodelisforcedusingflowandconcentrationsofdissolvedandparticulateconstituentsfrom21riversalongtheQueenslandcoast(northtosouth:Normanby,Daintree,Barron,25combinedMulgrave+Russell,Johnstone,Tully,Herbert,Haughton,Burdekin,Don,O'Connell,Pioneer,Fitzroy,Burnett,Mary,Calliope,Boyne,Caboolture,Pine,combinedBrisbane+Bremer,andcombinedLogan+Albert)andtheFlyRiverinPapuaNewGuinea(Herzfeldetal.,2015).Todetermineriverconcentrations,sedimentandnutrientobservationswerestatisticallyevaluatedover10years(Furnas2003).Separateanalysiswas30undertakenforwet-(theFly,andthenorthernmost6riversinQueensland)anddry-(remainder)catchmentrivers.Volume-averagedwetseasonexportcoefficientsbasedonthisobserveddatasetwerederivedforwet-anddry-catchmentrivertypes,andmeanflow-weightedconcentrationsdetermined.Theseconstantconcentrationsaremultipliedbyhigherfrequency(daily)observeddischargedatatocalculatethefluxofconstituentsatthe35rivermouths.

TheeReefsBGCandsedimentmodelhas3openoceanboundaries.NutrientconcentrationsflowinginfromtheboundarieswereobtainedfromtheCSIROAtlasofRegionalSeas(CARS)2009climatology(Ridgwayetal.,2003)andempiricalnutrient-40temperaturerelationships.TheinitialconditionsarespecifiedbyageneralisedempiricalrelationshipandscalednutrientprofilesonthemodeldensityprofilespecifyingtopandbottomwatercolumnvaluesfromCARSoceanatlas.SurfaceNO3isusuallylow(<3mgm-

3).Indeeperwatersnutrientconcentrationsincreasefrom0to1500mdepthandthenremainconstantdowntotheoceanfloor(4000mdepth,500mgm-3).Theinitialconditions45formostothertracerswerenotspatiallyresolved,sinceobservationsfortheouterreefandCoralSeaarelimitedtemporallyandspatially.

Page 25: Use of remote-sensing reflectance to constrain a data

25

Tables:Table1:Thesubsetofstatevariablesincludedinthestatevectorandcorrespondingobservationerrorstandarddeviationsusedforfourassimilationsystemconfigurations.Theboldvariablesinthestatevectorareusedintheinput5totheobservationoperator.Itshouldbenotedthanthestatevariablesaretransformedbytakingthenaturallogarithmofthevariables.Theobservationerroristhenappliedtothelog-transformedstatevector.

AssimilationStateVector(X) ObservationError(R)

EXP1 Log(SurfaceTotalChl-a,PhySChl-a,PhyLChl-a) 0.8EXP2 Log(SimulatedOC3M,PhySChl-a,PhyLChl-a) 0.8EXP3 Log(SimulatedOC3M,PhySChl-a,PhyLChl-a) 0.4EXP4 Log(SimulatedOC3M,PhySChl-a,PhyLChl-a,NO3,NH4,TSS) 0.4Table2:ForecasterrorstatisticsforEXP4byregion(inshore,lagoon,offshore)fortheControl(C),Forecast(F),Analysis(A)andPersistence(P)fields.10

RegionField C F A P C F A P C F A P C F A PMedian 0.32 0.23 0.19 0.26 1.35 1.29 1.12 1.46 0.34 0.25 0.19 0.25 0.16 0.1 0.06 0.11Mean 0.37 0.24 0.2 0.27 1.92 1.37 1.25 1.46 0.38 0.24 0.2 0.25 0.16 0.1 0.06 0.1125%Quartile 0.27 0.2 0.14 0.21 1.1 0.95 0.92 0.94 0.29 0.16 0.14 0.21 0.14 0.08 0.04 0.775%Quartile 0.48 0.3 0.23 0.29 2.45 1.87 1.64 1.08 0.43 0.29 0.22 0.29 0.19 0.13 0.08 0.12

WholeofDomain Coastal LagoonandShelf Oceanic

Table3:ForecastPercentageerrorsforEXP4byregion(inshore,lagoon,offshore)fortheControl(C),Forecast(F),Analysis(A)andPersistence(P)fields.

RegionField C F A P C F A P C F A P C F A PMedian 100 53 39 53 130 95 90 105 95 47 38 52 93 48 31 48Mean 107 54 38 55 180 97 90 107 102 51 37 56 96 50 31 5125%Quartile 81 41 35 42 105 105 95 74 75 43 36 41 71 44 35 3975%Quartile 131 61 41 62 181 85 81 145 118 62 42 62 126 55 30 62

WholeofDomain Coastal LagoonandShelf Oceanic

15 Figures:20

Page 26: Use of remote-sensing reflectance to constrain a data

26

Figure1:AmapoftheGreatBarrierReefregion,withthecolorbardenotingthewaterdepth,markersdenotethepopulationcentres(redtriangles),IMOSNRSsites(yellowtriangles),ReefRescueWQMs(yellowcircles)andpointsofinterestreferredtointhetext(redcircles),withthe5glidertrack(whitelineadjacenttoLizardIsland).Thein-situsamplinglocationsandgliderobservationsareusedtoassessthedataassimilationsystemperformance,usingtheEXP4configuration.

Page 27: Use of remote-sensing reflectance to constrain a data

27

Figure2:SimulatedsurfaceChl-a(mgm-3)ofthenon-assimilatingcontrolrun(topleft)andthesimulatedOC3M(topright)derivedfromthesimulatedremote-sensingreflectanceforthe14/7/2013.TheobservedOC3MwithANN-derivedobservedremote-sensingreflectance(bottomleft)andNASA-derivedobservedremote-sensingreflectance(bottomright).5

Page 28: Use of remote-sensing reflectance to constrain a data

28

Figure3:Comparisonofinnovationstatisticsforthefourassimilationexperimentsundertaken,where0indicatesperfectagreementbetweenmodelandobservations.Thetoppanelplotsthemeaninnovationforeachassimilationcycle.Thelowerpanelplotsthemeanabsoluteinnovationagainstassimilationcycle.Thefollowingcolourscorrespondto:green(EXP1),red(EXP2),black5(EXP3)andblue(EXP4).Thevariablesinthelegendcorrespondtotheobservationerror(R)andtheassimilationstatevector(X).

Page 29: Use of remote-sensing reflectance to constrain a data

29

Figure4:BoxandwhiskerplotsofRMSD(toprow)andMAPE(bottomrow)ofthemis-matchbetweensimulatedOC3MandANN-observedOC3M.Eachpanelcontainsthecontrolrun(C)andEXP4showingforecast(F),persistence(P)andanalysis(A).Presentedarestatisticsforthewholedomain(leftcolumn),andforspecificdepthranges(threerightmostcolumns).5

Figure5:Simulated(forecast)OC3M(left)forcycle22(12thSeptember2013)withobservationsoverlaid,surfaceSmallPhytoplankton(PhyS)Chl-a(centre)andsurfaceLargePhytoplankton(PhyL)Chl-a(right).

Page 30: Use of remote-sensing reflectance to constrain a data

30

Figure6:IncrementsthatareaddedtotheforecastfieldsgeneratedbytheassimilationsystemforsimulatedOC3Mwithinnovationsoverlaid(left),andtheprognosticvariablesofsurfacesmallphytoplanktonChl-a(centre)andsurfacelargephytoplanktonChl-a(right).

5

Figure7:TheresultinganalysisfieldsforsimulatedOC3MandwithheldANNOC3Mobservationsoverlaid(left),andtheanalysisfieldsfortheprognosticvariablesofsmallphytoplankton(centre)andlargephytoplankton(right)forthe12thSeptember,2013.

Page 31: Use of remote-sensing reflectance to constrain a data

31

Figure8:ComparisonagainstindependentIMOSgliderobservations,withtheobservedsectionofChl-aderivedfromtheonboardfluorescencesensor.Thecomparisonisundertakeninmodelspace,wherebyallgliderdatathatfallwithina1hourwindoweithersideofwhenthereisa3Dmodeloutputavailableisextracted,andequivalentsimulatedChl-aareextractedfromthemodel.Thegliderandmodeldataisthenspatiallyaggregatedandinterpolatedontothevertical5modelgrid.Theresultingsectionfortheglider(top),andthesimulatedglidersectionsfromthenon-assimilatingmodel(centre)andassimilatingmodel(bottom).

Figure9:Comparisonofdepth-resolvedChl-aagainstsixindividualgliderprofilesusingthemethoddescribedinthecaptionofFigure8.Gliderobservationsareblack,thenon-assimilatingcontrolrunprofilesareblue,andtheassimilating10runprofilesarered.

26/05/13 05/06/13 15/06/13 25/06/13 05/07/13 15/07/13 25/07/13 04/08/13−200

−150

−100

−50

0

Dept

h (m

)

Observed

26/05/13 05/06/13 15/06/13 25/06/13 05/07/13 15/07/13 25/07/13 04/08/13−200

−150

−100

−50

0

Dept

h (m

)

Control

26/05/13 05/06/13 15/06/13 25/06/13 05/07/13 15/07/13 25/07/13 04/08/13−200

−150

−100

−50

0

Dept

h (m

)

Assimilating

Chl−

a (m

g m−3

)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5−450

−400

−350

−300

−250

−200

−150

−100

−50

0Date = 26/05/13

Dep

th (m

)

Chl−a (mg m−3)0 0.1 0.2 0.3 0.4 0.5 0.6

−900

−800

−700

−600

−500

−400

−300

−200

−100

0Date = 19/06/13

Dep

th (m

)

Chl−a (mg m−3)0 0.1 0.2 0.3 0.4 0.5 0.6

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0Date = 26/06/13

Dep

th (m

)

Chl−a (mg m−3)

0 0.2 0.4 0.6 0.8 1−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0Date = 03/07/13

Dep

th (m

)

Chl−a (mg m−3)0 0.1 0.2 0.3 0.4

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0Date = 02/08/13

Dep

th (m

)

Chl−a (mg m−3)0 0.1 0.2 0.3 0.4 0.5 0.6

−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0Date = 05/08/13

Dep

th (m

)

Chl−a (mg m−3)

a. b. c.

d. e. f.

Page 32: Use of remote-sensing reflectance to constrain a data

32

Figure10:AprofileofthetemporalmeanChl-aRMSDbetweenthegliderobservationspresentedinFigure8andthenon-assimilating(blue)andassimilating(red)runs.

Figure11:AcomparisonofChl-aandTSSRMSDsbetweenthein-situAIMSReefRescuemooringsforthenon-5assimilating(blue)andassimilating(red)modelruns,theReefRescuesitesaredenotedbytheyellowcirclesinFigure1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

RMSD Chl−a (mg m−3)

Dep

th (m

)

ControlAssimilating

Snap_5m Fitz_5m High_5m Russell_5m Dunk859_5m Pelorus_5m Pandora_5m GeoffreyBay336_5mDoubleCone_5m Daydream_5m Pine_5m Barren_5m Pelican_5m Humpy_5m0

0.5

1

1.5

Chl−a

RM

SD (m

g m−3

)

ControlAssimilating

Snap_5m Fitz_5m High_5m Russell_5m Dunk859_5m Pelorus_5m Pandora_5m GeoffreyBay336_5mDoubleCone_5m Daydream_5m Pine_5m Barren_5m Pelican_5m Humpy_5m0

0.005

0.01

0.015

0.02

0.025

TSS

RM

SD (m

g m−3

)

ControlAssimilating

Page 33: Use of remote-sensing reflectance to constrain a data

33

Figure12:AcomparisonofRMSDofsimulatednutrientswithin-situbottlesamplesforthenon-assimilating(blue)andassimilating(red)modelruns.ObservationsareobtainedattheQueenslandIMOSsite(yellowtrianglesinFigure1)atYongala(Y)andNorthStradbroke(NS)Island.Y_0aretheYongalasurfacesamples,whileY_26arethesamplestakenfrom26mdepth.5

Figure13:Observedtrue-colourimageonthe12Sep2013obtainedfrom1kmresolution,atmospherically-correctedANNremote-sensingreflectance.TheRGBwavelengthsusedwere667,551and488nmandprocessedusingtheMODIS

Y_0 Y_10 Y_20 Y_26 NS_0 NS_10 NS_20 NS_30 NS_40 NS_500

10

20

30

40

NO3

RMSD

(mg

m−3

)

Y_0 Y_10 Y_20 Y_26 NS_0 NS_10 NS_20 NS_30 NS_40 NS_500

5

10

NH4

RMSD

(mg

m−3

)

Y_0 Y_10 Y_20 Y_26 NS_0 NS_10 NS_20 NS_30 NS_40 NS_500

2

4

6

DIP

RMSD

(mg

m−3

)

Control Assimilating

Page 34: Use of remote-sensing reflectance to constrain a data

34

truecolouralgorithm(Gumleyetetal.,2010;Bairdetal.,2016).Thewhitepixelsareclouds,greyisland.Simulatedtruecolourimagesarenotfalsely-coloured,thusdonotrequireacolourmap,norarethey2Dastheyhaveadepthoffield,beingbasedonreflectancefrommultipledepthsandthebottom(Bairdetal.,2016a).Thussimulatedtruecolourcanbeconsideredaphotographoftheopticalstateofthedifferentmodelruns,and,likeobservedtruecolour,apowerfulandintuitivevisualisationtoolforwaterclarityinbiogeochemicalmodels.5

Figure14:Thesimulatedtrue-colourimageonthe12Sep2013ofthecontrolrun(topleft)andassimilationrun(topright).Thedifferencebetweentheremote-sensingreflectanceinthecontrolandassimilatedrunswasusedtoquantifythecolour(referredtoasoff-colour)added(i.e.greatersurfaceexpression,bottomleft)andsubtracted(i.e.lesssurface10expression,bottomright)duetotheupdatingofoptically-activeconstituentsintheassimilationrun(seeFig.13formoredetails).Notethattheoff-colourimageshaveasmallerbrighteningfactorastheMODIStruecolourstretchsaturatesthefeaturesthatareofmostinterest.

Page 35: Use of remote-sensing reflectance to constrain a data

35

Figure15:TheeReefsmodellingsystemwithoptically-activecomponentsidentifiedwithbeigecolouringandanasterisk,withthenumberofasterisksdenotingthenumberofdifferentoptically-activeelementswiththiscomponent.Thus,eachofthefourmicroalgaemicroalgaehavetwopigmenttypes,oneabsorbinglikedivinylchlorophyll-a,andthe5otherlikephotosyntheticcarotenoids;therearetwoseagrasstypes,coralshavebothskeletonsandzooxanthellae;threetypesofdetritusabsorbandscatter,andthesedimentmodelcontainsasuspendedfractionandfour(mixed)sedimentcompositions.Additionally,pureseawaterbothabsorbsandscatterslight.