uqlab: a framework for uncertainty quantification …...chair of risk, safety & uncertainty...

83
DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli and Bruno Sudret Chair of Risk, Safety & Uncertainty Quantification MascotNum2014 24.04.2014

Upload: others

Post on 13-Jul-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION

UQLab: a framework for UncertaintyQuantification in Matlab

Stefano Marelli and Bruno Sudret

Chair of Risk, Safety & Uncertainty Quantification

MascotNum201424.04.2014

Page 2: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Outline

1 Introduction

2 UQLab in action

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 1 / 33

Page 3: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Outline

1 IntroductionComputer SimulationsA global frameworkThe UQLab project

2 UQLab in action

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 1 / 33

Page 4: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Introduction

Computer simulations and uncertainty quantificationComputer simulations increasingly substitute expensive experimentalinvestigations

Massive increase in availability of computational resources andcomputational algorithmsLogarithmic decrease of cost/flop in High Performance ComputinginfrastructuresComputer models only provide a simplified representation of reality andare prone to intrinsic model errors and uncertainty.

“essentially, all models are wrong, but some are useful”,George E.P. Box, 1987

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 2 / 33

Page 5: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Introduction

Computer simulations and uncertainty quantificationComputer simulations increasingly substitute expensive experimentalinvestigations

Massive increase in availability of computational resources andcomputational algorithmsLogarithmic decrease of cost/flop in High Performance ComputinginfrastructuresComputer models only provide a simplified representation of reality andare prone to intrinsic model errors and uncertainty.

“essentially, all models are wrong, but some are useful”,George E.P. Box, 1987

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 2 / 33

Page 6: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Introduction

Computer simulations and uncertainty quantificationComputer simulations increasingly substitute expensive experimentalinvestigations

Massive increase in availability of computational resources andcomputational algorithmsLogarithmic decrease of cost/flop in High Performance ComputinginfrastructuresComputer models only provide a simplified representation of reality andare prone to intrinsic model errors and uncertainty.

“essentially, all models are wrong, but some are useful”,George E.P. Box, 1987

Uncertainty quantification aims at making the best use ofcomputer models by dealing rigorously with variability, lack of

knowledge, measurement- and model errors

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 2 / 33

Page 7: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Sources of uncertainty

Aleatory uncertaintyUncertainty in the occurrence of events,e.g. earthquakes, floods, tsunami, etc.Natural variability of physical quantities:e.g. radioactive decay, flood waveproperties, earthquake spectra etc.Not reducible

Epistemic uncertaintyLack of knowledge about the parameters of a system, e.g. measurementuncertainty, lack of dataIn principle reducible by acquiring additional information

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 3 / 33

Page 8: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Sources of uncertainty

Aleatory uncertaintyUncertainty in the occurrence of events,e.g. earthquakes, floods, tsunami, etc.Natural variability of physical quantities:e.g. radioactive decay, flood waveproperties, earthquake spectra etc.Not reducible

Epistemic uncertaintyLack of knowledge about the parameters of a system, e.g. measurementuncertainty, lack of dataIn principle reducible by acquiring additional information

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 3 / 33

Page 9: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Outline

1 IntroductionComputer SimulationsA global frameworkThe UQLab project

2 UQLab in action

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 3 / 33

Page 10: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Global framework for managing uncertainties

PhysicalModel

Model(s) of the system

Assessment criteria

Probabilistic InputModel

Quantification of

sources of uncertainty

Analysis

Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

IterationSensitivity analysis

IterationSensitivity analysis

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability andstochastic spectral methods. http://www.ibk.ethz.ch/su/publications/Reports/HDRSudret.pdf

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 4 / 33

Page 11: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Global framework for managing uncertainties

PhysicalModel

Model(s) of the system

Assessment criteria

Probabilistic InputModel

Quantification of

sources of uncertainty

Analysis

Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

IterationSensitivity analysis

IterationSensitivity analysis

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability andstochastic spectral methods. http://www.ibk.ethz.ch/su/publications/Reports/HDRSudret.pdf

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 4 / 33

Page 12: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Global framework for managing uncertainties

PhysicalModel

Model(s) of the system

Assessment criteria

Probabilistic InputModel

Quantification of

sources of uncertainty

Analysis

Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

IterationSensitivity analysis

IterationSensitivity analysis

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability andstochastic spectral methods. http://www.ibk.ethz.ch/su/publications/Reports/HDRSudret.pdf

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 4 / 33

Page 13: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Global framework for managing uncertainties

PhysicalModel

Model(s) of the system

Assessment criteria

Probabilistic InputModel

Quantification of

sources of uncertainty

Analysis

Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

IterationSensitivity analysis

IterationSensitivity analysis

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability andstochastic spectral methods. http://www.ibk.ethz.ch/su/publications/Reports/HDRSudret.pdf

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 4 / 33

Page 14: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

The physical model

Computational models of physical and engineering systemsSolution of differential equations (e.g. FEM, FD, PS, etc. )Multi-physics simulations (e.g. Comsol, etc. )

Functional approximations, surrogate modelsInterpolation methods (Kriging)Regression methods (Polynomial Chaos, Support vector regression)

Measurements/databasesExperimental data from literatureNew in-situ measurements

A physical model Y =M(X) is the (possibly abstract) mapthat connects a set of entities X (the inputs) to a set of

quantities of interest Y (the responses)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 5 / 33

Page 15: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

The physical model

Computational models of physical and engineering systemsSolution of differential equations (e.g. FEM, FD, PS, etc. )Multi-physics simulations (e.g. Comsol, etc. )

Functional approximations, surrogate modelsInterpolation methods (Kriging)Regression methods (Polynomial Chaos, Support vector regression)

Measurements/databasesExperimental data from literatureNew in-situ measurements

A physical model Y =M(X) is the (possibly abstract) mapthat connects a set of entities X (the inputs) to a set of

quantities of interest Y (the responses)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 5 / 33

Page 16: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

The probabilistic input model

Experimental data availableDescriptive Statistics: moments, histograms,kernel smoothingStatistical inference: fitting marginals, copula

Only prior/expert knowledgeMaximum entropy principle: maximizeinformation under constraintsPrior knowledge: e.g. physical constraints onsystem variables, literature

Scarce data + expert informationBayesian inference methods to combine expertjudgment and experimental information

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Clayton copula sampling

u1

u1

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 6 / 33

Page 17: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

The statistical analysisMany possibilities

Full response characterization(distribution analysis)Reliability analysis (rare events simulation)Analysis of the momentsSensitivity analysis/model reductionStochastic/parametric inversionModel calibrationDesign optimization

Examples

Monte Carlo SimulationApproximation methods(FORM/SORM)

Surrogate modelling (PolynomialChaos, Kriging)Sobol’ sensitivity indices

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 7 / 33

Page 18: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

The statistical analysisMany possibilities

Full response characterization(distribution analysis)Reliability analysis (rare events simulation)Analysis of the momentsSensitivity analysis/model reductionStochastic/parametric inversionModel calibrationDesign optimization

Examples

Monte Carlo SimulationApproximation methods(FORM/SORM)

Surrogate modelling (PolynomialChaos, Kriging)Sobol’ sensitivity indices

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 7 / 33

Page 19: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Summary

Uncertainty Quantification (UQ) propagates theuncertainty in model parameters to the model responseEvery UQ problem can be decomposed in input, modeland analysisThe framework introduced can be used as a guideline insetting up and solving any UQ problem

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 8 / 33

Page 20: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Outline

1 IntroductionComputer SimulationsA global frameworkThe UQLab project

2 UQLab in action

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 8 / 33

Page 21: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

The current situation in UQ software

Available software for Uncertainty QuantificationNon general: few combine all the available UQ techniquesToo complex for some communities: requires advanced ITknowledgePoorly extendable: is either closed source or very difficult toextend (documentation, complex build system, etc. )Lack of HPC interface: even if supporting it, often difficult to useIntrusive: black-box approach is not often encouragedNon-portable: lack of support for linux/windows/mac

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 9 / 33

Page 22: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

The UQLab Software Framework

UQLab: Uncertainty Quantification Lab

Focus on:GeneralityEase of useNon-intrusivenessHPCExtendibilityCollaboration

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 10 / 33

Page 23: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

The UQLab Software Framework

UQLab: Uncertainty Quantification Lab

Focus on:GeneralityEase of useNon-intrusivenessHPCExtendibilityCollaboration

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 10 / 33

Page 24: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Extendibility: an effort to collaborative development

Multi-level collaborative development

End Users: Field Engineers, Industrial Users, Students, etc.No extension of the existing codebase.Scientific Developers: Scientists, extending the scientific baseline of theframework (implementation of new algorithms)

Modular Content Management System

Builtin: Native or contributed, after review and optimization by coredevelopers.Contrib: Users/partner contributed extensions: must include workingdemos and detailed documentation. May be enabled/disabled.External: Locally handled by the developer. No restrictions.

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 11 / 33

Page 25: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Computer SimulationsA global frameworkThe UQLab project

Extendibility: an effort to collaborative development

Multi-level collaborative development

End Users: Field Engineers, Industrial Users, Students, etc.No extension of the existing codebase.Scientific Developers: Scientists, extending the scientific baseline of theframework (implementation of new algorithms)

Modular Content Management System

Builtin: Native or contributed, after review and optimization by coredevelopers.Contrib: Users/partner contributed extensions: must include workingdemos and detailed documentation. May be enabled/disabled.External: Locally handled by the developer. No restrictions.

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 11 / 33

Page 26: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Outline

1 Introduction

2 UQLab in actionCurrent status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 11 / 33

Page 27: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Current Features of UQLabRepresentation of

The physical modelFunctions, strings, function handlesPolynomial Chaos Expansions:

- Orthonormal polynomials- Full and sparse (Smolyak) quadrature-based projection- Standard and adaptive basis selection regression (OLS, Lars)

Gaussian process modelling (Kriging)- Simple, ordinary and universal Kriging- Arbitrary trends (function handles)- Maximum Likelihood and Cross-Validation objective functions- Local, global and mixed hyperparameter optimization- Plugin to DiceKriging (R)

The probabilistic input model (copula formalism)Standard marginals (support for custom)Elliptic copulaeGeneralized isoprobabilistic transformSampling strategies (MC, LHS, quasi-random sequences)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 12 / 33

Page 28: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Current Features of UQLab (cont’d)

UQLab featuresStatistical analysis

Reliability analysis- Simple Monte-Carlo reliability analysis with advanced sampling- Approximation methods: FORM and SORM (a la FERUM) with

revisited algorithms- Importance Sampling (FORM-based, or user specified)- FERUMLink plugin to FERUM

Global sensitivity analysis- Screening: Cotter measure, Morris method- Variance decomposition: Sobol’ indices- PCE-based Sobol’ indices- Plugin to R-based ”Sensitivity” package

High Performance Computing (HPC)HPC Dispatcher

Simple interface to common HPC facilitiesParallelization of core algorithms (e.g. model evaluations)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 13 / 33

Page 29: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Outline

1 Introduction

2 UQLab in actionCurrent status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 13 / 33

Page 30: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Metamodelling: polynomial chaos expansion I

DefinitionsGiven a probabilistic Hilbert space H endowed with a scalar product

〈g(x), h(x)〉 = E [g(x)h(x)] =∫

x∈Dx

g(x)h(x)fxdx

where fx is a short form for the joint pdf of the random vector X:

fx(x) :∫

x∈Dx

fx(x)dx = 1

Orthonormal polynomial basisLet Ψ be an orthonormal polynomial basis of the space H for the randomvector X such that:

〈Ψα(x),Ψβ(x)〉 = δαβ

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 14 / 33

Page 31: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Metamodelling: polynomial chaos expansion I

DefinitionsGiven a probabilistic Hilbert space H endowed with a scalar product

〈g(x), h(x)〉 = E [g(x)h(x)] =∫

x∈Dx

g(x)h(x)fxdx

where fx is a short form for the joint pdf of the random vector X:

fx(x) :∫

x∈Dx

fx(x)dx = 1

Orthonormal polynomial basisLet Ψ be an orthonormal polynomial basis of the space H for the randomvector X such that:

〈Ψα(x),Ψβ(x)〉 = δαβ

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 14 / 33

Page 32: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Metamodelling: polynomial chaos expansion II

Polynomial Chaos ExpansionGiven an input vector X ∈ RM and a model Y =M(X), then

M(X) ≈MPC (X) =∑α∈A

yαΨα(X)

is the truncated polynomial chaos expansion of M of degree p, i.e. Acontains all polynomials of maximal degree p.

Calculating the yα

Projection or regression methodsRelatively small Experimental Design (full model evaluations)Advanced adaptive techniques available (e.g., LARS)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 15 / 33

Page 33: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Metamodelling: polynomial chaos expansion II

Polynomial Chaos ExpansionGiven an input vector X ∈ RM and a model Y =M(X), then

M(X) ≈MPC (X) =∑α∈A

yαΨα(X)

is the truncated polynomial chaos expansion of M of degree p, i.e. Acontains all polynomials of maximal degree p.

Calculating the yα

Projection or regression methodsRelatively small Experimental Design (full model evaluations)Advanced adaptive techniques available (e.g., LARS)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 15 / 33

Page 34: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Metamodelling: polynomial chaos expansion III

AdvantagesNon-intrusive (black box exp. design)Because the Ψα are orthogonal, it is uniqueSparse for most physical modelsInteresting properties of the coefficients (postprocessing):

µY = y0σ2

Y =∑

α∈Aα 6=0

y2α

Surrogate model evaluation only takes a few matrix multiplicationsA posteriori error estimates → accuracy driven adaptivity

DisadvantagesBasis size can quickly explodeAccuracy depends on the experimental design

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 16 / 33

Page 35: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Metamodelling: polynomial chaos expansion III

AdvantagesNon-intrusive (black box exp. design)Because the Ψα are orthogonal, it is uniqueSparse for most physical modelsInteresting properties of the coefficients (postprocessing):

µY = y0σ2

Y =∑

α∈Aα 6=0

y2α

Surrogate model evaluation only takes a few matrix multiplicationsA posteriori error estimates → accuracy driven adaptivity

DisadvantagesBasis size can quickly explodeAccuracy depends on the experimental design

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 16 / 33

Page 36: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Stochastic diffusion problem Blatman & Sudret (2013)

1D diffusion problem on D = [0,L]:[E(x, ω)u′(x, ω)

]′ + f (x) = 0u(0) = 0

E(u′)(L) = F

u(x, ω) is the displacement field of a unit cross-section tension rodclamped at x = 0E(x, ω) is the (spatially variable) Young’s modulus of the rodf (x) is the uniform axial loadF is a pinpoint load at x = L

The diffusion coefficient E(x, ω) is a lognormal random field with exponentialcorrelation function:

E(x, ω) = eλE +ζE g(x,ω)

Cov[g(x)g(x′)

]= e−|x−x′|/l

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 17 / 33

Page 37: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Set-up of the UQ problem

The Gaussian field g(x) can be represented by its Karhunen-Loveexpansion truncated at M = 62 (1% error in the variance):

g(x, ω) =M∑

k=1

√lkφk(x)ξk(ω)

ξk(ω) are standard normal variablesThe diffusion equation is solved numerically with a Matlab FEMcode for each realization of the random vector Ξ = {ξ1...ξM}, with1000 FEM elementsPCE problem with 62 input variables, 1000 output variables(displacement at each node of the FE mesh)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 18 / 33

Page 38: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Set-up of the UQ problem

The Gaussian field g(x) can be represented by its Karhunen-Loveexpansion truncated at M = 62 (1% error in the variance):

g(x, ω) =M∑

k=1

√lkφk(x)ξk(ω)

ξk(ω) are standard normal variablesThe diffusion equation is solved numerically with a Matlab FEMcode for each realization of the random vector Ξ = {ξ1...ξM}, with1000 FEM elementsPCE problem with 62 input variables, 1000 output variables(displacement at each node of the FE mesh)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 18 / 33

Page 39: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Solution with UQLab

Realizations of E(x, ω):

from Blatman & Sudret, 2013

Parameter distributions:Name Type µ σ

{X1, ...,X62} Normal 0 1

Code:uqlab

for ii = 1:62Marg(ii ). Type = 'Gaussian ';Marg(ii ). Parameters =[0 1];endmyInput = uq_create_input (Marg );

Model .Type='mfile ';Model . Function = 'FEM1DDiffusion ';myModel = uq_create_model ( Model );

Meta.Type='uq_metamodel ';Meta. MetaType ='PCE ';Meta. Coeff . Degree =1:5;Meta. ExpDesign . NSamples =500;Meta. ExpDesign . Sampling ='LHS ';Meta. Input = myInput ;Meta. FullModel = myModel ;PCModel = uq_create_model (Meta );uq_calculate_metamodel ;

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 19 / 33

Page 40: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Solution with UQLab

Realizations of E(x, ω):

from Blatman & Sudret, 2013

Parameter distributions:Name Type µ σ

{X1, ...,X62} Normal 0 1

Code:uqlab

for ii = 1:62Marg(ii ). Type = 'Gaussian ';Marg(ii ). Parameters =[0 1];endmyInput = uq_create_input (Marg );

Model .Type='mfile ';Model . Function = 'FEM1DDiffusion ';myModel = uq_create_model ( Model );

Meta.Type='uq_metamodel ';Meta. MetaType ='PCE ';Meta. Coeff . Degree =1:5;Meta. ExpDesign . NSamples =500;Meta. ExpDesign . Sampling ='LHS ';Meta. Input = myInput ;Meta. FullModel = myModel ;PCModel = uq_create_model (Meta );uq_calculate_metamodel ;

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 19 / 33

Page 41: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Results

Confidence bounds on u(x, ω):

Confidence bounds created with kernelsmoothing of 1e5 samples from PCE

Code:XPC = uq_getSample (1 e5 );YPC = uq_evalModel (X);

% % V a l i d a t i o nXval = uq_getSample (100);uq_select_model ( myModel );Yval = uq_evalModel (Xval );

1 independent PCE for each FEMelement!!

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 20 / 33

Page 42: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Results

Confidence bounds on u(x, ω):

Confidence bounds created with kernelsmoothing of 1e5 samples from PCE

Code:XPC = uq_getSample (1 e5 );YPC = uq_evalModel (X);

% % V a l i d a t i o nXval = uq_getSample (100);uq_select_model ( myModel );Yval = uq_evalModel (Xval );

1 independent PCE for each FEMelement!!

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 20 / 33

Page 43: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Results

Confidence bounds on u(x, ω):

Confidence bounds created with kernelsmoothing of 1e5 samples from PCE

Code:XPC = uq_getSample (1 e5 );YPC = uq_evalModel (X);

% % V a l i d a t i o nXval = uq_getSample (100);uq_select_model ( myModel );Yval = uq_evalModel (Xval );

1 independent PCE for each FEMelement!!

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 20 / 33

Page 44: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 1: Remarks

This was a brute-force showcase exampleMany alternatives exist, e.g., Principal Component AnalysisCan be handled on a normal computer (ran on this laptop in approx38 minutes)Very easy to deploy after calculation

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 21 / 33

Page 45: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Outline

1 Introduction

2 UQLab in actionCurrent status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 21 / 33

Page 46: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Sensitivity analysis: Sobol’ indices

Variance decompositionThe total model variance D can be decomposed in a sum ofpartial-variances D1,2..M

D = Var(M(x)) =M∑

i=1Di +

∑1≤i≤j≤M

Dij + ...+ D12...M

Definition: Sobol’ and Total Sobol’ indices of order s

Sj1...js = Dj1...js/D

STi =∑Ji

Dj1...js/D, Ji = {{j1, ..., js} ⊃ {i}}

Sobol’, 1993: Sensitivity estimates for nonlinear mathematical models. Math. Modeling & Comp.Exp. 1, 407-414.

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 22 / 33

Page 47: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Sensitivity analysis: Sobol’ indices

Variance decompositionThe total model variance D can be decomposed in a sum ofpartial-variances D1,2..M

D = Var(M(x)) =M∑

i=1Di +

∑1≤i≤j≤M

Dij + ...+ D12...M

Definition: Sobol’ and Total Sobol’ indices of order s

Sj1...js = Dj1...js/D

STi =∑Ji

Dj1...js/D, Ji = {{j1, ..., js} ⊃ {i}}

Sobol’, 1993: Sensitivity estimates for nonlinear mathematical models. Math. Modeling & Comp.Exp. 1, 407-414.

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 22 / 33

Page 48: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Sobol’ Indices and PCE

Re-grouping PCE coefficients

MPC (X) =∑α∈A

yαΨα (X) =

y0 +M∑

i=1

∑α∈Ai

yαΨα (xi) +∑

α∈A1,2,...,M

yαΨα(x1, x2, ..., xM )

where Ai ⊂ A is a set of α such that Ψα is an orthonormal polynomialthat depends on the s variables xi1 , ..., xis

PCE based Sobol’ indices

SUi1,...,is = 1σ2,PC

Y

∑α∈Ii1,...,is

y2α =

∑α∈Ii1,...,is

y2α

/ ∑1≤|α|≤P

y2α

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 23 / 33

Page 49: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Sobol’ Indices and PCE

Re-grouping PCE coefficients

MPC (X) =∑α∈A

yαΨα (X) =

y0 +M∑

i=1

∑α∈Ai

yαΨα (xi) +∑

α∈A1,2,...,M

yαΨα(x1, x2, ..., xM )

where Ai ⊂ A is a set of α such that Ψα is an orthonormal polynomialthat depends on the s variables xi1 , ..., xis

PCE based Sobol’ indices

SUi1,...,is = 1σ2,PC

Y

∑α∈Ii1,...,is

y2α =

∑α∈Ii1,...,is

y2α

/ ∑1≤|α|≤P

y2α

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 23 / 33

Page 50: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 2: simple function with many dimensions

M = 86: realistic engineering applicationX ∼ U([1, 2])M , with X20 ∈ U([1, 3])Strongly non-linearContinuous and smooth functionEasy to predict sensitivity patternsWell-located peaks in the sensitivity

High-dimensional test function

y =3 −5M

M∑k=1

kxk +1M

M∑k=1

kx3k + ln

(1

3M

M∑k=1

k(

x2k + x4

k))

+ x1x22 − x5x3 + x2x4 + x50 + x50x2

54

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 24 / 33

Page 51: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 2: Reference results

Model responseTotal Sobol’ indicesSecond Order Sobol’indices

Analytical function

y =3 −5M

M∑k=1

kxk +1M

M∑k=1

kx3k + ln

(1

3M

M∑k=1

k(

x2k + x4

k))

+ x1x22 − x5x3 + x2x4 + x50 + x50x2

54

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 25 / 33

Page 52: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 2: Reference results

Model responseTotal Sobol’ indicesSecond Order Sobol’indices

Analytical function

y =3 −5M

M∑k=1

kxk +1M

M∑k=1

kx3k + ln

(1

3M

M∑k=1

k(

x2k + x4

k))

+ x1x22 − x5x3 + x2x4 + x50 + x50x2

54

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 25 / 33

Page 53: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 2: Reference results

Model responseTotal Sobol’ indicesSecond Order Sobol’indices

Analytical function

y =3 −5M

M∑k=1

kxk +1M

M∑k=1

kx3k + ln

(1

3M

M∑k=1

k(

x2k + x4

k))

+ x1x22 − x5x3 + x2x4 + x50 + x50x2

54

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 25 / 33

Page 54: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 2: Polynomial Chaos-based Sobol’ indicesMultidimensional function

Parameter distributions:Name Type a b{X1..,X19,X21..,X86} Uniform 1 2X20 Uniform 1 3

uqlabfor ii = 1:86Marg(ii ). Type = 'Uniform ';Marg(ii ). Parameters =[1 2];endMarg (20). Parameters =[2 3];myInput = uq_create_input (Marg );

Model .Type='mfile ';Model . Function = 'uq_multidim86 ';myModel = uq_create_model ( Model );

Meta.Type='uq_metamodel ';Meta. MetaType ='PCE ';Meta. Coeff . Degree =3:5;Meta. ExpDesign . NSamples =900;Meta. ExpDesign . Sampling ='Sobol ';Meta. Input = myInput ;Meta. FullModel = myModel ;PCModel = uq_create_model (Meta );uq_calculate_metamodel ;

Analysis .Type='uq_sensitivity ';Analysis . Method ='Sobol ';uq_create_analysis ( Analysis );uq_runAnalysis ;

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 26 / 33

Page 55: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 2: Polynomial Chaos-based Sobol’ indicesMultidimensional function

Parameter distributions:Name Type a b{X1..,X19,X21..,X86} Uniform 1 2X20 Uniform 1 3

uqlabfor ii = 1:86Marg(ii ). Type = 'Uniform ';Marg(ii ). Parameters =[1 2];endMarg (20). Parameters =[2 3];myInput = uq_create_input (Marg );

Model .Type='mfile ';Model . Function = 'uq_multidim86 ';myModel = uq_create_model ( Model );

Meta.Type='uq_metamodel ';Meta. MetaType ='PCE ';Meta. Coeff . Degree =3:5;Meta. ExpDesign . NSamples =900;Meta. ExpDesign . Sampling ='Sobol ';Meta. Input = myInput ;Meta. FullModel = myModel ;PCModel = uq_create_model (Meta );uq_calculate_metamodel ;

Analysis .Type='uq_sensitivity ';Analysis . Method ='Sobol ';uq_create_analysis ( Analysis );uq_runAnalysis ;

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 26 / 33

Page 56: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 2: Sensitivity results

Total Sobol’ indices

PCE-based Sobol’ indices(1200 model runs)

MCS-based Sobol’ indices(1,76 Mio model runs)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 27 / 33

Page 57: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 2: Sensitivity results

Second order Sobol’ indices

PCE-based second order Sobol’ indices(1200 model runs)

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 27 / 33

Page 58: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Outline

1 Introduction

2 UQLab in actionCurrent status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 27 / 33

Page 59: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Reliability analysis

Definition:Structural reliability analysis is the process of calculating theprobability of failure of a structure with respect to some failure criterionon one or more quantities of interest.

Setting up a structural reliability problemStep 1: Define the model and the quantities of interestStep 2: Define the input parameters and their uncertaintiesStep 3: Define a failure criterion and calculate the failure probability

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 28 / 33

Page 60: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Reliability analysis

Definition:Structural reliability analysis is the process of calculating theprobability of failure of a structure with respect to some failure criterionon one or more quantities of interest.

Setting up a structural reliability problemStep 1: Define the model and the quantities of interestStep 2: Define the input parameters and their uncertaintiesStep 3: Define a failure criterion and calculate the failure probability

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 28 / 33

Page 61: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 3: Problem set-up and UQLab solution

Truss structure:

Parameter distributions:Name Type µ σ/µ

E1, E2 (Pa) Lognorm 2.1× 1011 10%A1 (m2) Lognorm 2.0× 10−3 10%A2 (m2) Lognorm 1.0× 10−3 10%P1 - P6 (N) Gumbel 5.0× 104 15%

Pf (V1 > 0.13m) = 1.18 × 10−4

code:uqlabMarg (1). Name = 'E1 ';Marg (1). Type = 'Lognormal ';Marg (1). Moments =[2.1 e11 2.1 e10 ];Marg (2). Name = 'E2 ';...myInput = uq_create_input (Marg );

Model .Type='mfile ';Model . Function = 'uq_truss ';myModel = uq_create_model ( Model );

Analysis .Type='uq_reliability ';Analysis . limit_state = 0.13;Analysis . Method = 'IS ';Analysis . MaxSamples = 1e4;uq_create_analysis ( Analysis );

uq_runAnalysis ;

Pf (V1 > 0.13m) = 1.17 × 10−4

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 29 / 33

Page 62: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 3: Problem set-up and UQLab solution

Truss structure:

Parameter distributions:Name Type µ σ/µ

E1, E2 (Pa) Lognorm 2.1× 1011 10%A1 (m2) Lognorm 2.0× 10−3 10%A2 (m2) Lognorm 1.0× 10−3 10%P1 - P6 (N) Gumbel 5.0× 104 15%

Pf (V1 > 0.13m) = 1.18 × 10−4

code:uqlabMarg (1). Name = 'E1 ';Marg (1). Type = 'Lognormal ';Marg (1). Moments =[2.1 e11 2.1 e10 ];Marg (2). Name = 'E2 ';...myInput = uq_create_input (Marg );

Model .Type='mfile ';Model . Function = 'uq_truss ';myModel = uq_create_model ( Model );

Analysis .Type='uq_reliability ';Analysis . limit_state = 0.13;Analysis . Method = 'IS ';Analysis . MaxSamples = 1e4;uq_create_analysis ( Analysis );

uq_runAnalysis ;

Pf (V1 > 0.13m) = 1.17 × 10−4

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 29 / 33

Page 63: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 3: Problem set-up and UQLab solution

Truss structure:

Parameter distributions:Name Type µ σ/µ

E1, E2 (Pa) Lognorm 2.1× 1011 10%A1 (m2) Lognorm 2.0× 10−3 10%A2 (m2) Lognorm 1.0× 10−3 10%P1 - P6 (N) Gumbel 5.0× 104 15%

Pf (V1 > 0.13m) = 1.18 × 10−4

code:uqlabMarg (1). Name = 'E1 ';Marg (1). Type = 'Lognormal ';Marg (1). Moments =[2.1 e11 2.1 e10 ];Marg (2). Name = 'E2 ';...myInput = uq_create_input (Marg );

Model .Type='mfile ';Model . Function = 'uq_truss ';myModel = uq_create_model ( Model );

Analysis .Type='uq_reliability ';Analysis . limit_state = 0.13;Analysis . Method = 'IS ';Analysis . MaxSamples = 1e4;uq_create_analysis ( Analysis );

uq_runAnalysis ;

Pf (V1 > 0.13m) = 1.17 × 10−4

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 29 / 33

Page 64: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 3: Problem set-up and UQLab solution

Truss structure:

Parameter distributions:Name Type µ σ/µ

E1, E2 (Pa) Lognorm 2.1× 1011 10%A1 (m2) Lognorm 2.0× 10−3 10%A2 (m2) Lognorm 1.0× 10−3 10%P1 - P6 (N) Gumbel 5.0× 104 15%

Pf (V1 > 0.13m) = 1.18 × 10−4

code:uqlabMarg (1). Name = 'E1 ';Marg (1). Type = 'Lognormal ';Marg (1). Moments =[2.1 e11 2.1 e10 ];Marg (2). Name = 'E2 ';...myInput = uq_create_input (Marg );

Model .Type='mfile ';Model . Function = 'uq_truss ';myModel = uq_create_model ( Model );

Analysis .Type='uq_reliability ';Analysis . limit_state = 0.13;Analysis . Method = 'IS ';Analysis . MaxSamples = 1e4;uq_create_analysis ( Analysis );

uq_runAnalysis ;

Pf (V1 > 0.13m) = 1.17 × 10−4

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 29 / 33

Page 65: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 3: Adding HPC, PCE and Sobol’ indices...

Sensitivity analysis:HPC Scalability: code:

HPCopts .nCPU = 4;HPCopts . Profile ='credentials .txt ';uq_create_dispatcher ( HPCopts );

Metaopts .Type = 'uq_metamodel ';Metaopts . MetaType = 'PCE ';Metaopts . ExpDesign . NSamples = 200;Metaopts . Input = myInput ;Metaopts . FullModel = myModel ;PCmodel = uq_create_model ( Metaopts );uq_calculate_metamodel ;

Analysis .Type='uq_sensitivity ';Analysis . Method = 'Sobol ';uq_create_analysis ( Analysis );uq_runAnalysis ;

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 30 / 33

Page 66: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 3: Adding HPC, PCE and Sobol’ indices...

Sensitivity analysis:

HPC Scalability:

code:HPCopts .nCPU = 4;HPCopts . Profile ='credentials .txt ';uq_create_dispatcher ( HPCopts );

Metaopts .Type = 'uq_metamodel ';Metaopts . MetaType = 'PCE ';Metaopts . ExpDesign . NSamples = 200;Metaopts . Input = myInput ;Metaopts . FullModel = myModel ;PCmodel = uq_create_model ( Metaopts );uq_calculate_metamodel ;

Analysis .Type='uq_sensitivity ';Analysis . Method = 'Sobol ';uq_create_analysis ( Analysis );uq_runAnalysis ;

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 30 / 33

Page 67: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Current status of UQLabExample 1: PCE of a stochastic diffusion problemExample 2: Sensitivity analysis in high dimensionExample 3: Reliability analysis of a truss structure

Example 3: Adding HPC, PCE and Sobol’ indices...

Sensitivity analysis:

HPC Scalability:

code:HPCopts .nCPU = 4;HPCopts . Profile ='credentials .txt ';uq_create_dispatcher ( HPCopts );

Metaopts .Type = 'uq_metamodel ';Metaopts . MetaType = 'PCE ';Metaopts . ExpDesign . NSamples = 200;Metaopts . Input = myInput ;Metaopts . FullModel = myModel ;PCmodel = uq_create_model ( Metaopts );uq_calculate_metamodel ;

Analysis .Type='uq_sensitivity ';Analysis . Method = 'Sobol ';uq_create_analysis ( Analysis );uq_runAnalysis ;

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 30 / 33

Page 68: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Outline

1 Introduction

2 UQLab in action

3 Summary and Outlook

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 30 / 33

Page 69: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Planned features

What’s nextReliability based design optimizationAdvanced/alternative metamodelling tools (support vector machines,vector polynomial chaos, etc.)Bayesian methods (e.g. MCMC) for inversion and model calibrationPlugins to many available commercial modelling platforms (e.g.Abaqus)Higher degree of parallelization at many levelsUser friendly graphical user interface

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 31 / 33

Page 70: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Summary

The UQLab projectThe UQLab development has started and is well under wayMany new features are being implemented, but many are ready foruseThe introduction of HPC in many steps of UQ problems is possible

OutlookComplete the documentation at all levelsSet a release scheduleWe are in closed alpha testing, soon to move to closed beta testingWe are collecting feedback from collaborations and teaching

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 32 / 33

Page 71: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Summary

The UQLab projectThe UQLab development has started and is well under wayMany new features are being implemented, but many are ready foruseThe introduction of HPC in many steps of UQ problems is possible

OutlookComplete the documentation at all levelsSet a release scheduleWe are in closed alpha testing, soon to move to closed beta testingWe are collecting feedback from collaborations and teaching

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 32 / 33

Page 72: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Thank you for your attention!!

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 32 / 33

Page 73: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

IntroductionUQLab in action

Summary and Outlook

Some referencesUQLab at the Chair of Risk, Safety and Uncertainty Quantification at ETH Zurich:

http://www.ibk.ethz.ch/su/research/uqlabBlatman, G. and Sudret, B. (2011). Adaptive sparse polynomial chaos expansion based on Least

Angle Regression. J. Comput. Phys., 230, 2345-2367.Blatman, G. and Sudret, B. (2013). Sparse polynomial chaos expansions of vector-valued

response quantities. Proc. 11th Int. Conf. Struct. Safety and Reliability (ICOSSAR 2013),New York, USA.

Bourinet, J.-M., Mattrand, C., and Dubourg, V. (2009). A review of recent features andimprovements added to FERUM software. Proc. 10th Int. Conf. Struct. Safety andReliability (ICOSSAR 2009), Osaka, Japan.

Lebrun, R. and Dutfoy, A. (2009). A generalization of the Nataf transformation to distributionswith elliptical copula. Probabilistic Engineering Mechanics, Volume 24, Issue 2, April 2009,Pages 172-178.

Lemaire, M. (2010). Structural reliability (Vol. 84). John Wiley & Sons.Roustant, O., Ginsbourger, D., and Deville, Y. (2009). The DiceKriging package: kriging-based

metamodeling and optimization for computer experiments. Book of abstract of the R UserConference.

Sobol’, I. (1993). Sensitivity estimates for nonlinear mathematical models. Math. Modeling &Comp. Exp. 1, 407-414.

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models -Contributions to structural reliability and stochastic spectral methods. Habilitation a dirigerdes recherches, Universite Blaise-Pascal, Clermont-Ferrand, France, 2007.

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 33 / 33

Page 74: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Appendix

Backup Slides

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 34 / 33

Page 75: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Statistical Analysis: Distribution analysisQuestion?Given a computer model M and a probabilisticmodel of its input parameters X ∼ fX , what arethe characteristics of the output distribution of Y =M(X)?

range / shape (uni-/multi-modal?)quantiles (median, inter-quartile, 99%-quantile, etc.)

MethodsMonte Carlo simulation + kernel smoothing (if large sample set available)Surrogate-based methods: polynomial chaos expansions, Kriging

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 35 / 33

Page 76: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Model calibration

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 36 / 33

Page 77: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Model calibration

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 36 / 33

Page 78: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Model calibrationQuestion?Given a computer model M and a set of experimental results, what arethe best-fitting input parameters?

account for measurement uncertainty“best-fitting” parameters and residual model erroraccuracy of the fitting through the epistemic uncertainty of thefitted parameters

Stochastic inverse problemsintrinsic variability (aleatory uncertainty) in the input parameterscomputed from sets of similar experiments

MethodsBayesian calibration using prior information on the rangeMarkov chain Monte Carlo simulationStochastic inverse methods

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 37 / 33

Page 79: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Analysis of the Macchione model

6 uncertainparameters:

G ∈ [5.7 11.4]α ∈ [1 4]β ∈ [ 1

18π13π]

Ys0 ∈ [0.2 0.99]s ∈ [2.2 2.8]wcs ∈ [0.4 0.8]

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 38 / 33

Page 80: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Sensitivity analysis

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 39 / 33

Page 81: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Accuracy

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 40 / 33

Page 82: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Accuracy

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 41 / 33

Page 83: UQLab: a framework for Uncertainty Quantification …...CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION UQLab: a framework for Uncertainty Quantification in Matlab Stefano Marelli

Statistical Analysis methodsDam breach modelling

Convergence

Marelli - Sudret (RSUQ, ETH Zurich) UQLab: a framework for Uncertainty Quantification 24.04.2014 42 / 33