upwelling in the ocean and its consequences

6
Editorial Upwelling in the ocean and its consequences The ocean currents run mainly in horizontal direction and have no vertical component, or only a very small one. There are two reasons for this behaviour. First, the ocean water forms a relatively thin layer on the earth. The aspect ratio i. e. depth to width is about 1 :lOOO. The oceans are about 5 km deep, but more than 5000 km wide between the continents. Also in the shelf seas, the ratio is about the same with 0.1 km depth and 100 km width. Secondly, the ocean water is normally stratified and shows increasing densities with the depth because of the downward de- creasing temperature. That means energy is used to dis- place water in the vertical direction. In any case, the verti- cal component must be very small as compared to the horizontal component of the ocean currents because there is no place for them. Nevertheless, the consequences of these small vertical components cannot be neglected be- cause there exist great vertical gradients in the stratified ocean water concerning temperature, salinity as well as concentration of nutrients and gases. Even a small vertical component of the current brings water with different characteristics from one level to the other. The upward movement is called upwelling, and the downward move- ment downwelling. Upwelling is especially conspicuous because it influences the surface layer of the ocean in many respects. The deeper layers are always relatively cold. Therefore, upwell- ing is combined with fog and dust formation in the water- near layers of the atmosphere and thus influences the heat exchange between ocean and atmosphere. 0. HOFLICH, Ham- burg, considers these meteorological consequences in his contribution ,,Die meteorologischen Wirkungen kalter Auftriebsgebiete”. Upwelling water is not only relatively cold, but also rich in nutrients. The plants and animals, which live mainly in the upper layer (about O-50 m), sink after death to the deep and when this material is regenerated it enriches the subsurface water with nutrients. The permanent supply of these nutrients to the surface layer due to upwelling leads to an enormous primary organic production. R. C. DUG- DALE, Seattle, discusses these processes in his article “Chemical oceanography and primary productivity in up- welling regions” in this issue. Enrichment of nutrients has consequences regarding the activity of phytoplankton, zooplankton and finally fish. G. I. MURPHY, Honolulu, describes this for the most effective upwelling region in the world ocean in his article “Fisheries in upwelling regions with special refer- ence to Peruvian waters”. The small coastal waters off Peru contribute 15 % to the total world fishery showing an annual yield of about 10 million tons of fish, mainly anchovis. In some respects, the consequences of upwelling are easier to understand than the complicated physical pro- cesses. Two classes of upwelling phenomena can be distin- guished: open ocean and coastal upwellings. The first class is of considerably larger scale and pertains such vertical motions as those caused by the wind, by influences of the main oceanic thermocline and by the equatorial ocean currents. K. HIDAKA, Tokyo, explains in his contribution “Physical oceanography of upwelling” the theory of the stationary conditions in both classes. The coastal upwell- ing is more regionally limited than the oceanic upwelling, but its stronger vertical motion is associated with greater climatic and biological impact. Vertical velocities in coastal upwelling are in the order of 10m3 cm/set, but in mid- ocean upwelling of about lO* cm/set, that means a vertical lift of the layers of about 1 m/day and 10 cm/day, respectively. The understanding of the dynamics of coastal upwelling is difficult. Nonstationary processes are involved as has been shown by recent observations in the main regions of coastal upwelling in Californian and Peruvian waters as well as off Somalia in summer and off Southwest Africa and Northwest Africa. In the latter regions this has first been shown during the German North Atlantic Expedition 1937 and 1938 with the old research vessel Meteor and up to 1972 with the last cruise of the new Meteor and the research vessel Planet during a special upwelling expedition which took place within the frame of an international in- vestigation CINECA (Cooperative Investigations of the Northeastern Central Atlantic) sponsored by international organisations, the FAO (Food and Agriculture Organisa- tion) and the ICES (International Council for Exploration of the Sea). The background problems and hints on solving them - especially for the Northwest African waters - is described by M. TOMCZAK, jr., Kiel, in his contribution “Problems of physical oceanography in coastal upwelling investigations”. The last studies with two research vessels (Meteor and P/met) and with an aircraft for surveying the radiation

Upload: guenter-dietrich

Post on 26-Aug-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Upwelling in the ocean and its consequences

Editorial

Upwelling in the ocean and its consequences

The ocean currents run mainly in horizontal direction and

have no vertical component, or only a very small one. There

are two reasons for this behaviour. First, the ocean water

forms a relatively thin layer on the earth. The aspect ratio

i. e. depth to width is about 1 :lOOO. The oceans are about

5 km deep, but more than 5000 km wide between the

continents. Also in the shelf seas, the ratio is about the

same with 0.1 km depth and 100 km width. Secondly, the

ocean water is normally stratified and shows increasing

densities with the depth because of the downward de-

creasing temperature. That means energy is used to dis-

place water in the vertical direction. In any case, the verti-

cal component must be very small as compared to the

horizontal component of the ocean currents because there

is no place for them. Nevertheless, the consequences of

these small vertical components cannot be neglected be-

cause there exist great vertical gradients in the stratified

ocean water concerning temperature, salinity as well as

concentration of nutrients and gases. Even a small vertical

component of the current brings water with different

characteristics from one level to the other. The upward

movement is called upwelling, and the downward move-

ment downwelling.

Upwelling is especially conspicuous because it influences

the surface layer of the ocean in many respects. The

deeper layers are always relatively cold. Therefore, upwell-

ing is combined with fog and dust formation in the water-

near layers of the atmosphere and thus influences the heat

exchange between ocean and atmosphere. 0. HOFLICH, Ham-

burg, considers these meteorological consequences in his

contribution ,,Die meteorologischen Wirkungen kalter

Auftriebsgebiete”.

Upwelling water is not only relatively cold, but also rich

in nutrients. The plants and animals, which live mainly in

the upper layer (about O-50 m), sink after death to the

deep and when this material is regenerated it enriches the

subsurface water with nutrients. The permanent supply of

these nutrients to the surface layer due to upwelling leads

to an enormous primary organic production. R. C. DUG-

DALE, Seattle, discusses these processes in his article

“Chemical oceanography and primary productivity in up-

welling regions” in this issue.

Enrichment of nutrients has consequences regarding the

activity of phytoplankton, zooplankton and finally fish.

G. I. MURPHY, Honolulu, describes this for the most

effective upwelling region in the world ocean in his

article “Fisheries in upwelling regions with special refer-

ence to Peruvian waters”. The small coastal waters off

Peru contribute 15 % to the total world fishery showing

an annual yield of about 10 million tons of fish, mainly

anchovis.

In some respects, the consequences of upwelling are

easier to understand than the complicated physical pro-

cesses. Two classes of upwelling phenomena can be distin-

guished: open ocean and coastal upwellings. The first class

is of considerably larger scale and pertains such vertical

motions as those caused by the wind, by influences of the

main oceanic thermocline and by the equatorial ocean

currents. K. HIDAKA, Tokyo, explains in his contribution

“Physical oceanography of upwelling” the theory of the

stationary conditions in both classes. The coastal upwell-

ing is more regionally limited than the oceanic upwelling,

but its stronger vertical motion is associated with greater

climatic and biological impact. Vertical velocities in coastal

upwelling are in the order of 10m3 cm/set, but in mid-

ocean upwelling of about lO* cm/set, that means a

vertical lift of the layers of about 1 m/day and 10 cm/day,

respectively.

The understanding of the dynamics of coastal upwelling is

difficult. Nonstationary processes are involved as has been

shown by recent observations in the main regions of

coastal upwelling in Californian and Peruvian waters as

well as off Somalia in summer and off Southwest Africa

and Northwest Africa. In the latter regions this has first

been shown during the German North Atlantic Expedition

1937 and 1938 with the old research vessel Meteor and up

to 1972 with the last cruise of the new Meteor and the

research vessel Planet during a special upwelling expedition

which took place within the frame of an international in-

vestigation CINECA (Cooperative Investigations of the

Northeastern Central Atlantic) sponsored by international

organisations, the FAO (Food and Agriculture Organisa-

tion) and the ICES (International Council for Exploration

of the Sea). The background problems and hints on solving

them - especially for the Northwest African waters - is

described by M. TOMCZAK, jr., Kiel, in his contribution

“Problems of physical oceanography in coastal upwelling

investigations”.

The last studies with two research vessels (Meteor and

P/met) and with an aircraft for surveying the radiation

Page 2: Upwelling in the ocean and its consequences

temperature at the water surface took place in january-

March 1972 under the coordinatorship of Prof. Dr. G.

HEMPEL, Kiel. The work during this cruise contributed to

a new base for the studies of the nonstationary processes

in the Northwest African upwelling south of Cap Blanc

at about 20 “N. It was a successful interdisciplinary work

adjusted to the manifold problems concerning physical

and chemical oceanography, marine meteorology, marine

geology, and marine biology including primary production,

plankton, fish and bacteria. The continuous recordings

from 10 arrays with 59 recorders for current and tempera-

ture over a period of one month will give insight into

time and space changes of movements and layering and,

therefore, into the nonstationary processes of upwelling.

Oceanography can be brought nearer to a practical pre-

diction of coastal upwelling and its consequences. Probab-

ly no final conclusion can be made with the above mention-

ed expedition in 1972 because it was the first concentrated

attempt after some preliminary tests to the study of one

of the most complicated processes in the sea.

The scientific programme of the “Upwelling Expedition

1972” is described in a special report, edited by the

German Research Society in 1971. The cruise report and

the scientific results will be published as usually done for

Meteor expeditions in the “Meteor” Forschungsergebnisse,

Stuttgart, Series A and D in the near future. ClNECA goes

on.

Giinter Dietrich

Page 3: Upwelling in the ocean and its consequences

Editorial

Auftrieb im Ozean und seine Auswirkungen

Die Meeresstrijmungen verlaufen vornehmlich in horizon-

taler Richtung und haben entweder gar keine oder nur

eine sehr kleine vertikale Komponente. Es gibt zwei

Grijnde fur dieses Verhalten: 1. Das Ozeanwasser bildet

eine relativ diinne Schicht auf der Erdkruste. Das Ver-

haltnis Tiefe zu Breite der Ozeane ist ungefahr 1: 1000;

die Ozeane sind ungefahr 5 km tief, aber mehr als 5000 km

breit. Auch in den Schelfmeeren herrscht das gleiche Ver-

haltnis bei 0.1 km Tiefe und 100 km Breite. 2. Das Ozean-

wasser ist normalerweise geschichtet. Es zeigt mit zuneh-

mender Tiefe infolge der geringen Temperaturen hohere

Dichtewerte. Das bedeutet, da6 Energie benotigt wird,

urn Wasser in vertikaler Richtung zu verfrachten. Auf

jeden Fall mu13 die vertikale Komponente der Meeres-

strijmungen im Verhaltnis zur horizontalen sehr klein sein.

Trotzdem konnen die Auswirkungen dieser kleinen Verti-

kalkomponenten nicht unbeachtet bleiben, weil starke

vertikale Unterschiede im Ozeanwasser hinsichtlich der

Temperatur, des Salzgehahes und der Konzentrationen von

Nahrstoffen und Gasen existieren. Schon eine kleine verti-

kale Stromungskomponente bringt Wasser mit unterschied-

lichen Eigenschaften von einer Schicht in die andere. Die

Aufwartsbewegung wird Auftrieb genannt, fur die Abwarts-

bewegung (“downwelling”) hat sich im Deutschen kein

Ausdruck eingebiirgert. Der Auftrieb ist besonders be-

merkenswert, weil er die oberflachennahen Schichten des

Meeres in mancher Hinsicht beeinflugt. Er bringt z. B.

relativ kaltes Wasser aus der Tiefe an die Oberfliche und

ist deshalb mit Nebel- und Dunstbildung in den wasser-

nahen Schichten der Atmosphare verbunden und beein-

flu& auf diese Weise den Wirmeaustausch zwischen Ozean

und Atmosphare. 0. HUFLICH, Hamburg, betrachtet diese

meteorologischen Konsequenzen in seinem Beitrag ,,Die

meteorologischen Wirkungen kalter Auftriebsgebiete”.

Auftriebswasser ist nicht nur relativ kalt, sondern such

reich an Nahrstoffen. Pflanzen und Tiere, die hauptsachiich

im Oberflkhenwasser leben (ungefahr O-50 m Tiefe),

sinken nach dem Absterben in die Tiefe. Das regenerierte

Material reichert die tieferen Schichten mit Nihrstoffen an,

die durch Auftrieb den oberflachennahen Wasserschichten

zugute kommen und dort zu einer betrachtlichen organi-

schen Primarproduktion beitragen. R. C. DUGDALE, Seattle,

diskutiert diese Prozesse in diesem Heft in seinem Artikel

“Chemical oceanography and primary productivity in up

welling regions”.

Die Anreicherung von Nahrstoffen hat Auswirkungen auf

die Produktion von Phytoplankton und Zooplankton und

damit auf die Ansammlung von Fischen. G. I. MURPHY,

Honolulu, beschreibt diese Lebensvorgange fur die ertrag-

reichste Auftriebsregion im Weltmeer in seinem Artikel

“Fisheries in upwelling regions with special reference to

Peruvian waters”. Die schmalen Kiistengewbser von Peru

tragen mit 15 % zur gesamten Weltfischerei bei. Der jahr-

lithe Ertrag belauft sich auf 10 Mio. t Fisch, vornehmlich

Anchovis.

In mancher Hinsicht sind die Auswirkungen des Auftriebs

leichter zu verstehen als die komplizierten physikalischen

Prozesse. Zwei Gruppen von Auftrieb konnen unterschie-

den werden: Auftrieb im offenen Ozean und Auftrieb in

Kiistennahe. Die erste Gruppe ist sehr viel umfangreicher;

zu ihr gehoren such die Vertikalbewegungen, die durch

den Wind, die Einfliisse der ozeanischen thermischen

Sprungschicht und die grogen aquatorialen Meeres-

stromungen hervorgerufen werden. K. HIDAKA, Tokio,

beschreibt in seinem Beitrag “Physical oceanography of

upwelling” die Theorie der stationaren VerhHltnisse in

beiden Gruppen. Der kiistennahe Auftrieb ist regional

begrenzter als der ozeanische Auftrieb, aber seine st&kere

Vertikalbewegung erzeugt gr66ere klimatische und bio-

logische Gegensatze. Im kiistennahen Auftrieb liegen die

vertikalen Stromgeschwindigkeiten in der GrBBenordnung

10e3 cm/set, im offenen Ozean dagegen bei etwa lo-“

cm/set; das bedeutet eine Vertikalverlagerung der Schich-

ten von etwa 1 m/Tag, beziehungsweise 10 cm/Tag.

Die Erklarung der Dynamik des ktistennahen Auftriebs

ist schwierig. Kijrzliche Untersuchungen der Hauptauf-

triebsgebiete in den kalifornischen und peruanischen Ge-

wbsern, vor Somalia im Sommer sowie vor Siidwest- und

Nordwestafrika haben gezeigt, dag nichtstationare Pro-

zesse beteiligt sind. In der letztgenannten Region wurde

dies zuerst wahrend der Deutschen Nordatlantischen Ex-

pedition 1937 und 1938 mit dem alten Forschungsschiff

Meteor und bis 1972 auf der zuletzt durchgeftihrten Fahrt

mit der neuen “Meteor” und dem Forschungsschiff P/met

wahrend einer speziellen Auftriebsexpedition nachge-

wiesen, die im Rahmen von CINECA (Cooperative Investi-

gations of the Northern Part of the Eastern Central Atlan-

tic), unterstiitzt durch die internationalen Organisationen

FAO (Food and Agriculture Organization of the United

Nations) und ICES (International Council for the Explora-

Page 4: Upwelling in the ocean and its consequences

‘Jal!aM lya%

V33N13 wu!ay~sJa aZJQ)l U! ‘lJE!&lnlS ‘a pun \d uaq!aa

‘uassyqa%Jas%uny~Jo~ AXW~W uap u! ‘yyqg uauo!l!pad

-xg-loalaM, !aq ay ‘uapJah ass!uqa%Jg ua~~!l~~~~suass!M

a!p pun lqs!Jaqas!ax Jaa -( LLfj 1) ~oh l~~q~u!a~a~s~unq~s

-JOj uaywnaa lap ly3!Jag JalJapuosa~ sp? l%!l ,,73 1 uo!l!padxasqa!Jynv” Jap uweJ%oJd aqwlyeyssuass!m sea

*lsga% lq3!u q3ou Jaqe ‘ly3apaQw uapJnm

awafqoJd aqylauasaM -JIM Jaaw ur! assazoJd ualsaua!z!~d

-woq Jap sauy ~n!pnls tunz y3nsJaA a~a!Jlu~zuo~ alua

Jap uaZuny2nsJalun uapual!aJaqJon y3eu a!s I!am *uaZi

-u!JqJa ass!uqaBJg ua%!l@?pua au!ay q3ou z~61 uoypad h

-x3 ualuueua8 uaqo Jap SuniJamsnv a!p PJ!M y3!lu!aq3s

-JqeM -uaurwoyJaqeu ua%unyJ!msnv Jagas pun sqa!Jl

-gw uaqeuualsgy sap aflesSneJoA UaysS!lyeJd Jap a!qdtCJ%

-0ueazg afp uuey l!uma -uaqa’d sqa!Jyny sap assazoJd

u~~~uo!i~~~~!u a!p u! l!ubos pun ~unl~~!q3s pun %un8

-amag uoh ua23unJapuy aqcyuiny pun aqs!ll!az u! y31q

4.t!3 uapJaM s)euoly saya Janea alp Jy uallay 01 ue uJas

-wwJnieJadural pun 4uo~as 6s 1ju.i ua4unJa!Jls@aJJanea

a!a ‘Jw iu~w!lsa8qe (ua!Jalyeg pun ay9s!j ‘uolyuold

‘uo!l~n~JdJ~~!Jd a!p uasso~y3sa%.I~a) a!%oyo!qsaJaa~

pun a!~l~~SaJaa~ ‘a!~lOJOala~ ua~!l!~~ ‘a!qdt?J%

-0uoazo uaq3syaq3 pun UaqyeysAqd Jap awalqoJd

ua%!llg!Jla!n a!p yw a!p ‘l!aqJeuauJluvsn~ aJgu!ld!zs!p

-Jalu! aqyaJSloya au!a JIM sy *!aq N, 0~ efila u! 3uelg

de> uon qyypgs la!qa%sqa!Jynv uay+n?y!J~glsampJou

w! assazoJd uaJ~uo!a~~q~!u Jap utn!pnlS sep J~J s!seg

uanau Jau!a nz ua%ntl uogpadxg Jap puaJqgm ua%unqws

-JalUn a!a ‘llT?lS ‘la!) ‘ladI.UaH ‘JOJ,j UOA UO~l~U!pJOO)l

Jap Jalun zL6L zlew s!q lenuef uoh l!az Jap u! uapuy

aq3gwaqoJasseM hap JnleJadwalsfdun~qeJls Jap SunsSy3

Jnz %naz%nf j uzaya 1p.u a!mos zaun/d pun ~oa3aj4 uag!y3s

4kinq3SJoj uapfaq uap l!ut ua~ffn~~n~alu~ ualnal a!a

-18!aza8Jne ,,suo!ae%!lsaw! %u!llahdn IWEO:, u!

iydF!.&&Ra30 leD!sAqd $0 SuJalqoJd,, tkJl!afj uJaU!aS U! ‘la!)i

‘*J! ‘XVZ~WOL *w UOA uapJam - ala!qag uaqss!uey!ye

-1sa~ a!p J~J aJapuosaqsu! - Bunsol J~JII! nz as!amu!t( a!p

pun autalqoJd uaqypua4!a a!a *pueJup)s (eas ayl 40 uo!l

Page 5: Upwelling in the ocean and its consequences

~ditoriai

Les courants marins se devetoppent essentieflement en direction horizontale et ne possedent, lorsqu’elle existe, qu’une tris faible composante verticale. Deux causes ex- pliq~ent cette situation:

1, La masse des eaux oceaniques ne forme qu’une couche relativement mince a la surface de la terre. Le rapport profondeur~iargeur des o&ns est d’environ lllOO0”. tes oceans ont une profond~r d’environ 5 km, mais ont plus de 5000 km de largeur. La m&me situation se re- trouve Cgalement dans ies mers bordiires ou epiconti- nentales, avec une profondeur de U,? km et une largeur de 100 km.

2. La masse des eaux oceaniques est normalement struc- turee en couches superpodes. Elle est marquee par des densites plus fortes en profondeur par suite d’une baisse de la temperature. Ce fait explique qu’un deplacement de I’eau dans le sens vertical necessite de I’encrgie. Mais, de toute fxon, les composantes verticales des courants marins doivent etre t&s inferieures aux composantes horizontaies. Cependan~ ieurs con&quences ne peuvent pas etre negligees 2 cause des grands contrastes crtses dans le sens verticai des eaux o&aniques par les differences de temperature, de salinite, de concentration d’tlements nutritifs et de gaz. Rien qu’une faible composante verti- tale est capable de deplacer de I’eaux aux propri&% dif- ferentes, d’une couche dans I’autre. Ce mouvement as- cendant d’eau profonde est appele remontee (upwelling~. Pour le mouvement descendant (downwelling), aucun vocable ne s’est impose en allemand. En effet, c’est sur- tout ta remontie qui est importante, car etle influence de diff4rentes faGons ies couches superficielles de t’odan. Par exemple, elle amkne de f’eau des profondeurs, relative- ment plus froide, vers la surface et provoque ainsi la formation de brouillards et de brumes dans les couches atmosph&iques au contact de la surface ocdanique. Eile influence par Ia I’echange thermique entre I’ocean et I’atmosphkre. 0. H~~FLICH, Hamburg, considkre ces con- s&quences m~t~orologique~ dans sa con~rfbution ((Die meteoroiogischen Wirkungen kalter Auftriebsgebietew.

L’eau de remonde ne se distingue pas seulement par sa temp&ature relativement froide mais aussi par sa richesse en elements nutritifs. Les vgg&aux et Ies animaux, qui vivent surtout dans les eaux supe~~ielles (environ de 0

* Traduit de I’allemand par Roger DiRR&, Strasbaorg

a 50 m de profondeur), tombent au fond aprbs leur mort, enrichissant les couches profondes d’blements nutritifs. Par les remontees, ce materiel regent%6 profite aux couches supe~cjeiles et contribue ainsi a une production organi- que primaire importante, R. C. DUGDALE, Seattle, dis- cute ces processus dans son article uchemical oceano- graphy and primary productivity in upwelling regions>).

L’enrichissement en Biements nut&ifs a des con~quen~es sur la production de phytoptancton et de zoopla~cton et favorise ainsi le rassemblement de poissons. G. I. MURPHY,

Honofulu, dkrit ces processus vitaux pour la region de remontee la plus riche, dans son article ((Fisheries in up- welling regions with special reference to Peruvian waters)). L’etroite zone cotibre du Pdrou fournit 15 % de la ptkhe mondiale avec 10 millions de t de poissons par an, surtout de Panchois.

A beaucoup d’igards, les consequences de la remontee sont plus faciles a comprendre que tes processus physi- ques compliques, Deux groupes de remont6es peuvent 6tre distinguds: remont&s au large et remonties a proximi- t6 du littoral. Les premieres sont beaucoup plus impor- tantes. En font aussi partie les grandacourants Cquatori- aux, les mouvements vertitaux provoques par le vent ou ceux dus aux influences de la surface de discontinuit.6 thermique. K. HIDAKA, Tokio, decrit dans sa contribu- tion ctPhysical oceanography of upweliing~), la theorie des &tats stationnaires dans tes deux groupes. La remontie littorale est regionalement plus limit6e que la remontee oceanique, mais son mouvement vertical plus important determine des contrastes climatiques et biologiques plus grands. Dam !a remontie littoraie, fes vitesses du courant sent de l’ordre de 10m3 cm/set, au large, par contre, elles sont de I’ordre de IO* cm/s&, ce qui repr&ente respec- tivement un d&placement vertical des couches d’environ 1 mijour et de 10 cm/jour.

L’explication de la dynamique de la remontke littorale est difficile. Des recherches recentes dans les principales regions de remontee, dans les eaux californiennes et peruviennes, devant la Somalie en Cte, ainsi qu’au SW et au NW de I’Afrique, ont decelb la participation de pheno- menes non stationnaires. Pour le dernier secteur, ce fait fut mis en evidence pour la premiire fois pendant l’ex- pedition nerd-atlantique allemande de 1937 et de 1938 avec le vieux navire o~~anographique Mereor et jusqu’en 1972, pendant fa dernihre expedition du nouveau Meteof

Page 6: Upwelling in the ocean and its consequences

et du navite ~~anographique Planet, lors d’une expkdi-

tion spkciale consacrke aux remonthes, dans le cadre de

CINECA (Cooperative Investigations of the Northern

Part of the Eastern Central Atlantic), avec I’appui

d’organismes internationaux: FAO (Food and Agricul-

ture Organization of the United Nations) et ICES (Inter-

national Council for the Exploration of the Sea). Les

vrais problimes, ainsi que des indications pour leur solu-

tion - surtout pour les kgions nerd-~~identales de

I’Afrique - sont Btudi6s par M. TOMCZAK jr., Kiel, dans

sa contribution ctProblems of physical oceanography in

coastal upwelling investigations)).

Les dernikes investigations eurent lieu de janvier ZI mars

1972, sous la direction de G. Hempel, Kiel, avec les deux

bateaux OcCanographiques Meteor et Planet et I’aide d’un

avion, pour l’6tude de la temperature de rayonnement ?i

la surface de I’eau. Les recherches, pendant cette ex$di-

tion, ont apportk une nouvelle base pour IVtude des

phi?nom&nes non stationnaires dans la zone de remontie

de 1’Afrique du NW, au Sud du Cap Blanc, a environ 20’N.

II s’agissait d’une collaboration interdisciplinaire, couron-

nbe de succ&s et orientE;e vers les probli?mes vari6s de I’

OcCanographie physique et chimique, de la mt%orologie

marine, de la gkologie et de la biologie marine (en y in-

cluant la production primaire de plancton, les poissons et

les bactiries). Les enregistrements continus du courant et

de la temperature, avec 59 instruments de mesure, sur 10

chaines, pendant un mois, permet~ront d’appnkier les

changements temporels et spatiaux dans les mouvements

et les superpositions de la remontke, et par conskquent

les processus non-stationnaires. Ainsi, I’ockanographie

peut determiner avec plus de prkision la remontke lit-

torale et ses corkquences. L’expioitation des rksultats de

I’expbdition de 1972 n’apportera sans doute pas encore

de rCsultats dbfinitifs, car elle fut, apri?s des recherches

pr~p~atoires, le premier essai centr6 sur I’Btude d’un des

processus ocdaniques les plus compliqu6s. Des problkmes

essentiels furent r&t%% mais non r6solus.

Le programme scientifique de la ((Auftr~ebsexpedition

1972)) est disponible comme rapport particulier de la

Deutsche Forschungsgemeinschaft (1971). Le rapport de

I’expkdition et les r6sultats scientifiques, comme d’habi-

rude dans les exp&ditions Meteor, parattront prochainement

dans les Meteor Forschungsergebnisse, skies A et D, Stutt-

gart. CINECA continue les recherches.

Giinter Dietrich