update of improve carbon analysis

20
Update of IMPROVE Carbon Analysis Presented at: 2015 IMPROVE Steering Committee Meeting Grand Canyon, AZ November 3, 2015 Judith C. Chow ([email protected]) John G. Watson Xiaoliang Wang Dana L. Trimble Steven D. Kohl Desert Research Institute, Reno, NV

Upload: others

Post on 18-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Update of IMPROVE Carbon Analysis

Update of IMPROVE Carbon Analysis

Presented at: 2015 IMPROVE Steering Committee Meeting

Grand Canyon, AZ

November 3, 2015

Judith C. Chow ([email protected]) John G. Watson Xiaoliang Wang Dana L. Trimble Steven D. Kohl

Desert Research Institute, Reno, NV

Page 2: Update of IMPROVE Carbon Analysis

Objectives

• Report status of IMPROVE carbon analyses

• Update on Model 2001 hardware improvements

• Discuss plans for transition to DRI Model 2015

Page 3: Update of IMPROVE Carbon Analysis

Carbon Laboratory Operations (July 2014 to June 2015 samples)

• Received ~1,700 samples per month (varied from 1,200 to 2,000 for samples received each month)

• Maintained 24 hours per day/5-7 days per week operation with 6 staff

• Analyzed ~21,600 IMPROVE samples (869 to 3,000 per month)

• Averaged ~4,247 samples per month in the queue (2,290 to 7,400)

Page 4: Update of IMPROVE Carbon Analysis

IMPROVE_A Carbon Analyses (July 2014 to June 2015 samples)

Sampling Period Samples Received

Analysis Completion Date

7/1/14-12/31/14 9,966 May 2015

1/1/15-6/30/15 10,400 Est. November 2015

a Chow et al. (2007) JAWMA

Page 5: Update of IMPROVE Carbon Analysis

IMPROVE carbon reporting time fluctuates between 150 and 200 days (increased frequency of instrument failures)

Batches received outside of the original sample month group

Special studies with fast turn-around

batches expedited to report a full month

Date Received

Cale

ndar

Day

s fro

m S

ampl

e Re

ceip

t to

Dat

e Re

port

ed

Page 6: Update of IMPROVE Carbon Analysis

Traceable O2 in pure He remains below 30 ppm (O2 performance test limit is 100 ppm)

OC4

Page 7: Update of IMPROVE Carbon Analysis

Thrice per week sucrose performance tests are within 5% tolerance

(Between 7/1/2014 and 6/30/2015, acceptance testing limits are ± 10%) Acceptable Limit (5%=between 17.1 and 18.9 µg C ) Revised Acceptable Limit (10%=Between 16.2 and 19.8 µ C) +10%

+5%

-5%

-10%

Date of Sucrose Analysis

Aver

age

Carb

on M

easu

rem

ent (μC

)

Page 8: Update of IMPROVE Carbon Analysis

Current boards in Model 2001 became obsolete (working with Chinese firm to reverse

engineer the boards) • Stepper Drive Control ● Signal Control • Optical Shutter (Chopper) (Working after DRI modifications)

• Power Distribution (needs modification)

Original New

Missing cable fastener

Cable fastener was upside down

New Power Board Original Power Board

J2 contains 6 pins instead of 4 J2 contains 4 pins

Molex pins do not fit current Molex sockets due to pin dividers .

Page 9: Update of IMPROVE Carbon Analysis

DRI Model 2015 has been designed, tested, and commercialized

(Magee Scientific, Berkeley, CA, USA)

Oxidation Oven(MnO2)C→CO2

NDIR CO2 Detector

Carrier/ReactionGases

10%

O2 i

n H

e

100%

He

5% C

H4 in

He

CalibrationGas

Oven

Filter LoadingPush Rod

UV-VIS-NIRLight Source(λ=405-980 nm)

ReflectanceDetector

TransmittanceDetector

OpticalFibers

Filter Filter Holder

Thermocouple

Oxidation ReactorC→CO2

FIDMethanatorCO2→CH4

From Oven

DRI Model 2001 Carbon Analyzer

MFC MFC MFC

Vent

6-Port Injection

Valve Loop

MFM

10% O2 in He (OC Stage)100% He (EC Stage)

MFC Mass Flow Controller

MFM Mass Flow Meter

3-Way Solenoid Valve

Manual Ball Valve

Symbols:

Com

pres

sed

Air

MFCMakeup Air

Soda LimeCO2 Scrubber

Filter

2% O2 in He (EC Stage) 100% He (OC Stage)

DRI Model 2015 configuration

Page 10: Update of IMPROVE Carbon Analysis

60-70% lower MDLs† are achieved

† Minimum Detectable Limits

Page 11: Update of IMPROVE Carbon Analysis

MDLs are similar among the 7 wavelengths

OC

(μg/

cm2 )

EC (μ

g/cm

2 )

Page 12: Update of IMPROVE Carbon Analysis

Began replicate analysis between Models 2001 and 2015 during Fall 2014

(equivalence in carbon found for >350 samples) Model 2015 vs. Model 2001

(2/8/2015-7/29/2015)

Model 2001 vs. Model 2001 (2/8/2015-7/29/2015)

y = 1.00x + 0.22 R² = 1.00 n = 779

0200400600800

10001200

0 200 400 600 800 1000 1200

Mod

el 2

001

(µg/

filte

r)

Model 2001 (µg/filter)

OC y = 0.94x + 0.23 R² = 0.97 n = 779

020406080

100120

0 20 40 60 80 100 120Mod

el 2

001

(µg/

filte

r)

Model 2001 (µg/filter)

EC y = 0.99x + 0.47 R² = 1.00 n = 779

0200400600800

10001200

0 200 400 600 800 1000 1200M

odel

200

1 (µ

g/fil

ter)

Model 2001 (µg/filter)

TC

y = 1.03x - 3.41 R² = 0.96 n = 354

0

50

100

150

200

0 50 100 150 200Mod

el 2

015

(µg/

filte

r)

Model 2001 (µg/filter)

TC y = 1.05x - 0.72 R² = 0.95 n = 354

0102030405060

0 20 40 60Mod

el 2

015

(µg/

filte

r)

Model 2001 (µg/filter)

EC y = 1.02x - 2.43 R² = 0.95 n = 354

0

50

100

150

200

0 50 100 150 200Mod

el 2

015

(µg/

filte

r)

Model 2001 (µg/filter)

OC

Page 13: Update of IMPROVE Carbon Analysis

IMPROVE_A NIOSH STN EUSAAR_2

Atmosphere

Temp (°C)

Residence Time (tr, sec)

Temp (°C)

Residence Time (tr, sec)

Temp (°C)

Residence Time (tr, sec)

Temp (°C)

Residence Time (tr, sec)

OC1 Inert (He) 140 80-580 250 150 310 60 200 120 OC2 Inert 280 80-580 500 150 480 60 300 150 OC3 Inert 480 80-580 650 150 615 60 450 180 OC4 Inert 580 80-580 850 160 900 90 650 180 Cooling N/A 45 45 45 EC1 Oxidizing

(2% O2 in He) 580 80-580 650 150 600 45 500 120

EC2 Oxidizing 740 80-580 750 150 675 45 550 120 EC3 Oxidizing 840 80-580 850 150 750 45 700 70 EC4 Oxidizing N/A N/A 825 45 850 80 EC5 Oxidizing N/A N/A 920 120 N/A

All temperature and optical (R or T) protocols can be implemented

Common analysis protocols are pre-programmed

Page 14: Update of IMPROVE Carbon Analysis

Comparable TC is found using different thermal/optical protocols, but

OC and EC are different DRI Model 2015 TC Comparison

NIOSH: y=(1.00±0.04)x + (1.42±1.00), r2=0.99 STN: y=(1.07±0.07)x + (1.43±1.39), r2=0.99 EUSAAR_2: y=(1.10±0.07)x + (-0.40±1.38), r2=0.99

Page 15: Update of IMPROVE Carbon Analysis

For wood smoke dominated samplesa

EC405 (i.e., ECR and ECT at 405 nm) exceeds EC635

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

200

400

600

800

1000

1200

0 500 1000 1500 2000

Ref

lect

ance

(R) a

nd T

rans

mitt

ance

(T)

Tem

pera

ture

(°C

) and

evo

lved

car

bon

(ng

C)

Time since analysis start (seconds)

Sample Temperature Evolved CarbonR635 T635R405 T405

98% He/2% O2100% He

ECR635

ECT635

OC1

CH4CAL

OC3

OC2

OC4

EC1

EC2EC3

ECT405

ECR405

a IMPROVE samples from Buffalo Pass, CO, USA, using multiwavelength IMPROVE_A protocol

Page 16: Update of IMPROVE Carbon Analysis

Introduction of BrC in DRI Model 2015 requires redefinition of LACλ

• EC633 = LAC633 (IMPROVE_A protocol in Model 2001) • EC405 = BrC405 + BC405 (For each wavelength in DRI Model 2015)

EC445 = BrC445 + BC445

EC532 = BrC532 + BC 532 EC635 = BrC635 + BC635

EC780 = BrC780 + BC780

EC808 = BrC808 + BC808

EC980 = BrC980 + BC980

(LACλ = BCλ + BrCλ)

Page 17: Update of IMPROVE Carbon Analysis

Continue software development to separate brown from black carbon (λ-AAE* assumption does not

necessarily provide a good fit to the measurements)

Wavelength (nm)

400 500 600 700 800 900 1000

b ATN(,

mM

-1)

0

10

20

30

40

50

bATN (Total) by UV-VIS Spectrometer

bATN (Total) by DRI Model 2015 TOT

Power law fit to bATN (Total) bATN (Total)=4.4×105/1.614

bATN (BC)=7.4×103/

bATN (BrC)=bATN (Total)-bATN (BC)

Power law fit to bATN (BrC) bATN (BrC)=5×1030/11.6

(IMPROVE Buffalo Pass, CO, samples influenced by forest fire smoke)

* AAE = Absorption Ångström Exponent

ATNT(λ) = ln (𝐹𝐹𝐹𝐹λ,𝐹𝐹

𝐹𝐹𝐹𝐹λ,𝐼𝐼)

bATN(λ,Mm-1) = ATN(λ) x AreaVolume

bATN(λ) ∝ λ-AAE Law

b ATN

(λ, M

m-1

)

Law

Page 18: Update of IMPROVE Carbon Analysis

• Start replicates on available Model 2015 units (3 units by December 2015 – total of 6-8 units by Spring 2016)

• Working with U.C. Davis team to begin 7 λ data reporting for samples collected after January 1, 2016 (~May 2016)

Transition Plan

445 445

Page 19: Update of IMPROVE Carbon Analysis

DRI publications and reports using the IMPROVE protocol (2014 and 2015, n=17)

• Blanchard, C.L., Chow, J.C., Edgerton, E.S., Watson, J.G., Hidy, G.M., Shaw, S., 2014. Organic aerosols in the southeastern United States: Speciated particulate carbon measurements from the SEARCH network, 2006 to 2010. Atmos. Environ 95, 327-333.

• Chakrabarty, R.K., Pervez, S., Chow, J.C., Dewangan, S., Robles, J.A., Tian, G.X., Watson, J.G., 2014. Funeral pyres in south Asia: Large-scale brown carbon emissions and associated warming. Environmental Science & Technology Letters 1, 44-48.

• Chen, L.-W.A., Chow, J.C., Wang, X.L., Robles, J.A., Sumlin, B.J., Lowenthal, D.H., Watson, J.G., 2015a. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos. Meas. Tech 8, 451-461.

• Chen, L.-W.A., Han, Y.M., Chow, J.C., Watson, J.G., Cao, J.J., 2015b. Black carbon in urban dust and surface soil particles: Refining optical measurement for environmental pollution survey. J. Aerosol Sci, submitted.

• Cheng, Y., Lee, S.C., Gu, Z.L., Ho, K.F., Zhang, Y.W., Huang, Y., Chow, J.C., Watson, J.G., Cao, J.J., Zhang, R.J., 2015. PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 18, 96-104.

• Cheng, Z., Wang, S.X., Fu, X., Watson, J.G., Jiang, J.K., Fu, Q.Y., Chen, C.H., Xu, B.Y., Yu, J.S., Chow, J.C., Hao, J.M., 2014. Impact of biomass burning on haze pollution in the Yangtze River Delta, China: A case study of summer in 2011. Atmos. Chem. Phys 14, 4573-4585.

• Chow, J.C., Wang, X.L., Sumlin, B.J., Gronstal, S.B., Chen, L.-W.A., Trimble, D.L., Kohl, S.D., Mayorgal, S.R., Riggio, G.M., Hurbain, P.R., Johnson, M., Zimmermann, R., Watson, J.G., 2015a. Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer. AAQR 15, 1145-1159.

• Chow, J.C., Yang, X.F., Wang, X.L., Kohl, S.D., Watson, J.G., 2015b. Characterization of ambient PM10 bioaerosols in a California agricultural town. AAQR 15, 1433-1447.

• Diab, J., Streibel, T., Cavalli, F., Lee.S.C., Saathoff, H., Mamakos, T., Chow, J.C., Chen, L.-W.A., Watson, J.G., Sippula, O., Zimmermann, R., 2015. Hyphenation of a EC/OC thermal-optical carbon analyzer to photo ionization time-of-flight mass spectrometry: A new off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter. Atmos. Meas. Tech, 3337-3353.

• Eklund, A.G., Chow, J.C., Greenbaum, D.S., Hidy, G.M., Kleinman, M.T., Watson, J.G., Wyzga, R.E., 2014. Public health and components of particulate matter: The changing assessment of black carbon-Critical review discussion. JAWMA 64, 1221-1231.

• Gargava, P., Chow, J.C., Watson, J.G., Lowenthal, D.H., 2014. Speciated PM10 emission inventory for Delhi, India. AAQR 14, 1515-1526.

• Hand, J.L., Schichtel, B.A., Malm, W.C., Copeland, S., Molenar, J.V., Frank, N.H., Pitchford, M.L., 2014a. Widespread reductions in haze across the United States from the early 1990s through 2011. Atmos. Environ 94, 671-679.

Page 20: Update of IMPROVE Carbon Analysis

• Hand, J.L., Schichtel, B.A., Malm, W.C., Pitchford, M.L., Frank, N.H., 2014b. Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States. J. Geophys. Res. Atmos 119, 12832-12849.

• Lowenthal, D.H., Zielinska, B., Samburova, V., Collins, D., Taylor, N., Kumar, N., 2015. Evaluation of assumptions for estimating chemical light extinction at US national parks. JAWMA 65, 249-260.

• Orasche, J., Seidel, T., Hartmann, H., Schnelle-Kreis, J., Chow, J.C., Ruppert, H., Zimmermann, R., 2012. Comparison of emissions from wood combustion. Part 1: Emission factors and characteristics from different small-scale residential heating appliances considering particulate matter and polycyclic aromatic hydrocarbon (PAH)-related toxicological potential of particle-bound organic species. Energy & Fuels 26, 6695-6704.

• Pervez, S., Chakrabarty, R.K., Dewangan, S., Watson, J.G., Chow, J.C., Matawle, J.L., Pervez, Y., 2015. Cultural and ritual burning emission factors and activity levels in India. AAQR 15, 72-80.

• Schwander, S., Okello, C.D., Freers, J., Chow, J.C., Watson, J.G., M., C., Q.Y., M., 2014. Particulate matter air pollution in Mpererwe District, Kampala, Uganda - A pilot study. Journal of Environmental and Public Health 2014, 1-7.

• Tang, D.L., Li, T.Y., Chow, J.C., Kulkarni, S.U., Watson, J.G., Ho, S.S.H., Quan, Z.Y., Qu, L.R., Perera, F., 2014. Air pollution effects on fetal and child development: A cohort comparison in China. Environ. Poll 185, 90-96.

DRI publications and reports using the IMPROVE protocol (2014 and 2015, continued)