untitled omnipage document - uni-bielefeld.degrigor/isoprod.pdf · and the infimum is taken ove r...

6
, ' b ' ,-.. .. , , " ' " . >• ISO PER lMETRIC INEQUALITIES FOR RIEMANNIAN PROD UCTS A. A. C rigor ' yan r. =" I NTR ODU CTI ON We sha ll s ay th at the f -i s operimetri c ineq ua lity the s moo th Riemannian manifold M. or. wha t Is th e s..e . that the manif ol dH has lsope rimet ri c fun ction f. If for any o pen se t DC.\I of fin ite vol Ullle v, ha vi ng eeoo t.h boundaq . the IIle&s ure of co dillleDsion 1 of the boundary aD Is n ot less th an f (v ) . The need to ca lcula te an l sope ri me tr ic fun ction arise s. for e xample, in th e inv es tigation of ell ipt ic and pa rabo lic equa tions on a aaaifoid {ct ., e. g., (I - 5}) . A vast li te ratu re is devo t ed to proofs of various lsoperiDe tr ic ineq uali ties Sobol ev- t ype inequa li ties conne ct ed wit h th em. The li st of pap er s [6- 8] has a pu rel y illust ra t i ve cha racte r. In th e p re sen t pape r we sol ve the prob l em of finding an iso pe rUie t ri c f un c t i o n up to • constan t for the d ir ect p roduc t .lI, x Mof the man i f o l d s M 1 an d "'10 if is operbetric inequali t ies on "'I and /tI. a re known. For .e x aap Le , it turns out that if the isoperimetri c func tions of th e manif ol ds !ttl and .ttl are eq ua l to II' an d vi res pectively. where 0 <; a. Ii < 1 then on th e lIWI ifold ."tI 1 X M. o ne has a 1I "-iaope rbetric inequal ity. wh ere 1 I -+..I 1- ., """ i_a T=J ' The pr e cise of the bas ic re sul ts is given in Se c. 1. In Se c . 2 the geometri c pIVblem of the proof of the iso per imetric in equalit y is r educ ed to find in g the Diniaua of a certain fun ct i onal of funct i on s of one va ri abl e. The latter proble. i. solve d (up to multipli- ca t ion by a cons ta ut ) in Sec . 3. The re sult s of the pres ent paper we re parti ally re port ed to jo int ses sions of the Mos cow So c i e ty and th e 1. G. Petrev skii Se min ar in 1982 (c f. (9] ). Not a tion. The symbo ls Ill ' Il. , I' '''''' 11 ," I '. will den ot e the mea sure s on the Riemannian Mn lt ol ds ." " M. and AI _ .\1 1 X M•• induced by t he Riemannian metri c. If N is a Riemannia n of dimen si on n ( fo r e xamp l e. a submanifold of H). then its n-dimen sional volume wi ll be denoted by I N I. The l etter c den o tes an absolute positive con stant. 1. F ormul ati on of th e Basic Result s Let If: (0, + "OQ )-' 10, + :-0 ) be a mono ton e decr ea si ng ri ght contin uous func tion, whe re lim,. (t) == 0 We call the function 1J! (8) ... mes, {t > OI IJ' (t) > s}, , > O. the ge neralized '- ln verse of 'P It ). It is e as y to s ee that th e ge ne ral ize d inverse funct ion 1l' also decr ea ses "n otonica lly on (0. +(0 ). is ri ght continuo us. and - 0. Hareover . the fun ction lJ' itap lf is the i.e•• lJ' (t ) - m; ;{ , > n l't (,) > t) , and one has r s, lltEOREH 1. Let the man ifo lds !ttl and AI. have isope rime t ri c fun cti ons f and g, whi ch e re c ontinuous on t he in tervals (0. IM 1 1) and (0. 1.11.1). respe ctivel y. Then on the manifold Mthe (1/2)h(v)-isoperimetric inequali ty hold s. Wh ere 38 , No.4. 000 1 -4 346 /&5 /384 5- 0849$09 . 50 0 1986 Plenum Publi sh in l Corporati on (2) (1) 849 ." I . 11 , I, ,M. I h(v) =," r[[ r' .• J. 'f and f a re gene ralized mutually i nve rse functions such tha t Vo lgogr ad State Univer, ity. Translated from Matema ticheskie Zametk i, Vo l. 61 7-6 26, October . 1985 . Or i g i n a l ar ti cle · submitted Septembe r 19, 1984 . >P . bo ,. c. d - t 1 I I i

Upload: others

Post on 12-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Untitled OmniPage Document - uni-bielefeld.degrigor/isoprod.pdf · and the infimum is taken ove r all such pairs

, '• b ', -.. .. ,,

" '" .> •

ISOPERlMETRIC INEQUALITIES FOR RIEMANNIAN PRODUCTS

A. A. Crigor ' yan

r.

="

I NTRODUCTION

We shall s ay that the f-isoperimetric inequality hOld~ the s moo th Riemannian manifoldM. or. wha t I s the s..e . that the mani fold H has lsoperimet ric fun ction f. I f fo r any opense t DC.\I of finite vol Ullle v , h avin g eeoot.h boundaq . the IIle&sure of co dillleDsion 1 of t heboundary aD Is not less than f (v ) . The need to calcul a te an l sope r i me t r ic function arises.for example, in the inves tigation of elliptic and pa rabolic equations on a aaaifoid {c t .,e .g., (I - 5}) . A vast li te ratu re is devo t ed to proofs of various lsoperiDe t r ic inequali ties~d Sobol ev- t ype inequal i ties connected with them. The lis t of papers [6- 8] has a purelyillust ra t i ve cha racte r .

In the presen t pape r we solve the probl em of finding an isope rUie t ric f un c t i on up t o •constant f or the dire c t p roduct .lI, x M,£ of t he man i f o l ds M1 and "'10 if i s operbetricinequali t ies on "'I and /tI. a re known. For .exaapLe , it turns out that if the isoperimetricfunc tions of the manifol ds !ttl and .ttl are equal to II' and vi respectively. where0 <; a. Ii < 1 • then on the lIWIifold ."tI1 X M. one ha s a 1I"-iaoperbe t r i c inequality. where

1 I -+..I1- ., """ i _ a T=J '

The precis e fo~ulation o f t he basic resul t s is given i n Se c. 1 . In Se c . 2 the geometricpIVblem o f t he proof of the i soperimetric inequality i s r educed to f i nding the Diniaua o f acertain funct i onal o f funct i ons o f one va riab l e. The latter proble. i . solved (up t o multipli­ca t ion by a cons t aut ) in Sec . 3.

The r e sults o f the pre s ent paper were partially reported t o joi n t sessions of the Mos cow~thematical Soc i e ty and the 1. G. Petrevskii Se minar in 1982 ( c f. (9] ) .

No t a tion. The symbols Ill ' Il. , I' '''''' 11 , " I'. will denote the mea sures on the RiemannianMnltol ds ." " M . and AI _ .\11 X M • • induced by t he Riemannian metric. If N is a Riemannian~&nlfol d of dimension n ( fo r e xampl e. a submanifold o f H). t hen its n-dimensional volume wi llbe denoted by I N I. The l etter c deno tes an ab s ol u t e positive constant.

1. Formulation of the Basic Results

Let If : (0, + "OQ ) - ' 10, + :-0) be a monotone decreasing right continuous func tion, whe relim,. (t) == 0 • We call the function 1J! (8) ... mes, {t > OI IJ' (t) > s}, , > O. the ge neralized'-ln verse of 'P I t). I t is easy t o see that the gene r a l ized inverse f un c t ion 1l' also de c r eas e s"notonically on (0. +(0 ) . is right continuous. an d l i m ~ (,) - 0. Hareover . the function lJ'

i taplf is t he gene ral1~;'d"func tion o f ~ , i . e • • lJ' (t ) - m;;{, > n l't (,)> t) , and one has

r ~(')<IJ=r. ~(.) ds,

lltEOREH 1. Let the man ifolds !ttl and AI. have isope rime t ric functions f and g, whi chere continuous on t he in tervals (0. IM1 1) and (0. 1.11.1). r e s pe ctively. Then on the manifoldMthe (1 / 2 )h (v ) - i s ope r i met r i c inequalit y holds . Where

38 , No.4.

0001-4346 /&5 /384 5- 0849 $09 . 50 0 1986 Plenum Publishinl Corporation

(2)

(1)

849

. " I .11, I, ~ " ,M. I

h(v) =,"r[[ fl~ (t)) dt + r' ,(~(.))d.l;•.• • J.'f and f a re gene ralized mutually i nve rse functions such that

Vo l gograd St a t e Un i v e r , i t y . Translated from Matema ticheski e Zametki , Vo l.61 7-626, Oct obe r . 1985 . Or i g i na l a r ticle· submitted September 19, 1984 .

>P .

bo ,.c.d

-•

t

•1

•II

i

Page 2: Untitled OmniPage Document - uni-bielefeld.degrigor/isoprod.pdf · and the infimum is taken ove r all such pairs

and the infimum is taken ove r all s uch pairs <p,"'.Remark . The ass e rtion o f The orem 1 i s sha rp in the following sense. I f t he mani fol ds

M1 and M, have one- parameter f amil i es o f s ubse ts on which t he isope rimet ric ine quali t i esreduce t o e qua l i t i e s (cf. Sec. 2 fo r a precise f ormul at i on ), then an y isoperime tric f unctiono f the manifold H doe s not e xceed h (v ) . We have be en unabl e t o l i qu i da te the mar gin be tween(1/ 2)h(v) and h (v).

Under a ddi t i on a l restrictions on f an d g one can ge t e s tima tes fo r the function h , wh i chare more conveni en t for a pp l i ca t ions.

THEOREM 2 . Let the functions f an d g be con t i n uous, monotone i nc reas ing on the in te rvalCO. + <Xl ) and the functions f ( x)/x and g(y) /y be mono tone decrea sing . Then

where

It (L') --;, (WI) " , [e),

1" M ''''' iu l (f (.r) !I -i- J: (II ) x ).ao.....

0)

(4)

(5)

Remarks . 1. The exp r e s s ion f(x)y + g(y) x i s natural from t he geomet r ic poin t o f vi ew.In fac t. if Dt c::;M"D.CM•. IDtl = z, IV.I = y. then ID1,<DII =.ElI and l iJ(lll X D:) I II:

I oo, I y + I iJD, I~. I2 . If one does not impos e any condi t ions on t h e f un ctions f and g besides the monotonic1tJ,!

t hen h cannot be e stimated in t erm s of h.: , an exam ple is given in Sec . 3 when h (11) es 0,and h , (v) > n, ,

3. In the case of mono tone i n creasing f(x)/x a nd g(y)/y . an d also in a s omewha t moregeneral si t ua tion on e can pr ove the estimate h (v) ;> e,h, ((1 - !) 11) (where it is impossibleto ge t rid of the t>O ).

THEOREM 2a . Let the func t i ons f and g be nonnegat i ve . con t inuo us on t he i n te rvals(0, VI) and (0. VI) • and symme t ric with respect to the points VI/2 and V.I2 · r e spectively.Al so le t f and g increase on the interva l s (0, VII:!) an d (0, YJ 2) r e s pective l y, and func t IoneI (:r)/z .~ (y)J, be monotone de cre asing on the s e i n t ervals. Then fo r 11 " (112) VI VI one has .

hM ;>cmiu{Jt.{u). t(* )V., t{*)VI } ,

where

i IIf..­"";U fI)V,. II<:(I111 V,

(/(z)y +t(y)r).

Remar ks . 1. Fo r a man i fold of finite vo l ume V one ca n a s sume that the i sope r i met r icfunction is symmetric with respect t o the point V/2, since th e boundaries o f an open se t andits complement coincide. ~.

2. Al l three terms on the right side of (5) a r e ess ential.co r r e s pon ds to th e f ollowing geomet ric s itua tion. If DI C MI ,

Thus the t erm t (vIVI )y,D - D1 X M: . ID I =v. then

I eo I - laD, I . V, :> f (I D, I) v, - f (viV,) v,3. If one of the volumes Vj i s e qual t o .:JO , then i t is necessary t o throw the

correspon ding term in (5 ) away .

2 . Proof of Theorem I

We need the f ollowing a ux i l iary a s se r t ions .

u:HMA 1 . Le t N b e a smooth Riemann i an manifold. p E: c- (N) , Sf = {z ~ N J p (z) :<II t }a l e ve l set o f the function P (which is a submanifold f or allDOst all t ) ; let v, v, bemeasure s on N and SJ . generat e d by the Riemannian met r ic.

Then if tl E J.I (N , v), 'I .> U. one has (6) ; .

Page 3: Untitled OmniPage Document - uni-bielefeld.degrigor/isoprod.pdf · and the infimum is taken ove r all such pairs

LEMUA 2 . Let D be a n open subset of the manifold N, having smooth boundary . Then

laDI = inf lim ~ IVF" ldV= inf Jim~ IVF"ldv,1',,1"- H 1' ,,1;::; N

wher e {F.l is a mon oton e i ncreasing s e quence of functions p. E e- (N) . converging po intwiseto XD, t he charac teris t ic function of the se t D.

Both these l e mmas are special cases o f mor e gene r a l assertions proved in [10]. I n thi s, connec t ion we note that the requirement of smoothnes s demande d in the present paper o f all

the f unc t i on s and boun daries conside r e d i s no t esse n t ial. but merely simplifies the arguments.

Proo f o f Theo rem 1. Le t D be an open se t in H with smoo th bounda ry . I D I = 1'<00

Let {F.} be a mono tone inc reasing sequence o f smoo t h f unct ions on H, where F. _ :to. ByLemma 2 i t suffi ce s t o prove that

( 7)

Let V. and V, de note gradien ts on the manifo l ds MI and JI, re spectively. ThenIVF.,' "'" I V.F.r + IV.F.r • s o I VP. J:> IV.? I. I VF. I> IV.F.. I. He nce instea d o f (7) it s u ff i ceat o prove tha t

We es tima t e t he secon d sl.mlllla.n d in (8) as f o l l ows . Fo r each{y -== .W', I (z. y) E D) It f ollows f rom Sard ' 8 t heo r em t h at fo rSex) has s moot h boun dary . We conside r Fo. (z , y) as a f unc t ion on2 we have

lim1M

, I V,F. (x , Y) I d", (y) "> IdS(x) 1-

( 8)

%0;: -'1'1 we let S (z) =almost all x the section.'1, for fixed x. By Lemma

(9)

( f l1 r a lmo s t all x) . I n t eg ra ting ( 9) ove r .lIt and us i n g Fa t ou ' s lemma. we ge t

li m ~ I V,IF" l ril l >~ laS(z)fdll l .,, _ ,\{ .11,

(10)

pa r t o f the measure ofIf M I ... M, = R, D is anot less than the pro j ec-

The geometric meaning o f (10) is this. We have es tima ted thethe bo un da ry aD. which depends on th e "extent" o f D a long .M! .domain in R' . (10) means that the length o f the boundary aD isHon o f D t o MI '

Now we estimate the f irst s umman d in (8) . Of course it could be e stimated analogouslyt o (1 0) . but it i s more convenient t o do this as f oHova , Let o (z) ... ~S (z). Then the partof the measure o f t he bo tmda ry aD . whi ch depends on the " extent" along M,. roughlys pea ki ng , i s larger the l arger the va l ues assumed by o. For e xample. if 0 assumes on l yone value. then D ca n be a cylinder D, X MI' and the whole botmdary8D is determined by t heex ten t along Atl • .

The formal realization o f t his idea is the f ol l owing . By Fubini' s formula we have

Let

(11)

Thenwise

a,. (%") ist o (J Cr) •

8 mono t one inc rea sing s equence of smoo t h f tmc t i ons on ,U I • con ve r ging po lnt-Usi n g ( I I) . Lemma 1 . and the f -isoperimet ric i n equality. we get

c /VJ .l d. > t 1' ••• ld. , -J)! J.u ,

=~.. dt~,O""_" IV.a,, II V:aO. rJdj.loU . r j.lo UCa. = t) dt > r f(j.lod O'. > t)) dt .

851

Page 4: Untitled OmniPage Document - uni-bielefeld.degrigor/isoprod.pdf · and the infimum is taken ove r all such pairs

set f(O) • 0). Pauing to the limit as n _ QO • we get

Combining (IO) and (12) now and using the isoperimetric inequality I as (z) 1:> t (0 (z)).

n;;;t IV,F.ldp +um t IV,F.ldp >t .(a(z))dpd·~f(pda>l})dt._JM _JM JM, J.

We set ,,(I) - III {e > I}; let ... be the generalized inverse function t o CF .frOlll the ·de f initi on of that the functions .. and (J are equimeasu rable. Henc e'I> <IM, I.

an d the right aide of (13 ) I s equal to

I:'•(t (.)) ds +r. f(~ (I))dl - , h (a).

(12 )

(g•

we get ..,(13) •.. I -•

re ~

It f ollows~ < I Md.

3.

(2

This proves ( 8) and hence Theorem 1. "It \(

Now ~ give an example con f i rming the sharpness of the function hey) we have found . Letus assUIlle that for 8ufflcient.ly large families of subsets in At, and Ms the f- andg- !sope r 1met ric inequalities are sharp. Namely, let H, (t), I ,,> U, be .. family of open sets

"" AI, with SUlOoth boundaries, such that: a ) H, (a) c H, (b) for II < b ; b) the union Weof all the boundaries oB, <I) coi ncide s with the whole aanifold At, without a set ofmeas u re uro ; c ) one has

Moreover, one can assume that

(l fi 8 ,(1)1>­

la8.c11l~ .CI8, (I)D.

111,(1)1 - 1

l~ t,l _ 2.

(14 )

1,

of parameter t ) .

1.1 :::: (U, l,lfl) and for each positive ~ one can find a domainand I iJD I <C.;; Il (I.') + ' . We introduce functions p, an ,u, : P, (z) """ l. ifv E (0, I J1f I) and we choose the ftmctlons lJI and -.p in (1) so

and

~e can ass ume that the functions, "ze d sense.

If' and 't are smooth and mutually inverse in the general-

(o the rwise we make & ch an ge

We show that for eachD eAl such that I D I ... 1.1

z EdB,(t). We fix ~ >U,

th~t r ~(I)dl _1:' 'I>(.)dz -v

h(v) >I:' f(. (I)) dl +r .(.(,») dz -.;(15)

"eq­n,1n

We conside r the domain

(16 )Th.

Let SI (z) - {y E M, I (z. y) E D) and S, (g) "'" {z E ltIl I (z . y) E D) be sec t i ons of thedolaa in D. Obviously they belong to the f8lllUies {B, (t)) . By (14) and (16) we have

IS, (z) I - '" (g E M, I p, tv) < ~ (p, (z))) - ",8, (0 (P, (z))) - 0 (p, (z));

P. (z I I Sdz) I > . ) ~ p, (z I ~ (pdz)) > .) - p, (z I pdz) < 'I> (.l) - 'I> (.).

Conse quently , theis equ1De&surab le with

852

function 18 1 (z) I i s equimeasurab le with.. . In particular,

.; ana l o gous l y , IS, tv)l

h C',

Page 5: Untitled OmniPage Document - uni-bielefeld.degrigor/isoprod.pdf · and the infimum is taken ove r all such pairs

We note that

(g eome t r i cal l y this inequality is obvious; the rigorous proof uses Lemma 2 for a specials equen ce {F",} and t he triangle inequality I VF. I <: I VzF,. I + I V.F. I) .

Since t be sections 5. belong to the family {B. (t». one has I iJS1 I ....., 1 (I SI I),I dS t I~ I (I S: I) • Usin g t he e quimeasurability of I SJ (z) I and lSI (y) I vith lp and ..r espectivel y, and ( 15) . we s e t

IaOI<r. /(~(t» dt +r. ,NC'»)d' < h (u) + e.

3. Proof of Theorem 2

We sh ow that for any generalized mutually inverse functions 1J' and ., satisfying(2 ) , on e h as

where I.,.h. are the functions from the hypothesis o f Theorem 2. Let

We cons i de r all rectangles

n, .. """ {(to ..) ~ Rl 10 " I "p.0"" d ,

lying en t i rely in U . If f or one of them pq " (113) 11. then

r. /(~ct)) dt ;;.I: /(o) dt-/(O) P.

r. , (~C,» d< >O'(p).

I ;> f (0)p + , (p) . ;;' I~ « 1/3)0) ;;' (1/3)Io, (u).

The las t inequality is valid s ince the function

_11. (1" = inf (/ (Z) + '('» )v zy_.'" ,

i s monotone decreasing.

Let the area of any rectangle 011,. C U not exceed (l/3)v.equal t o v , one can find a r ectangle TIp,., dividing the domain an"" . {' > p} n D, {J'> qJ n U where the areas of the last two partsIn othe r words ,'.!Then

Since the area of n isinto three parts:are not less than (1/3) v.

~: IC'9(t» dt :» : J~(~'," If{t) tit ;::' J~' ~~" (I) d' > -} 11 J~') •., )r 4'(fCIr»lh ;~ t' f!~) :- +,. I:~/: =+qg( ;) .

I : +(/(.)+ ;- , (+),» +Io, (U).The proof of Theorem 2a, and a l s o o f the generalization mentioned in the r~rks on

Theo rem 2, goes analogous ly .

We g i ve an e xample showi ng that for monotone increasing functions f and g, the functionb (v ) cannot be bounded below, in ge ne ra l by /I" (t') (obviously h (v) -< h, (v) always) .

853

Page 6: Untitled OmniPage Document - uni-bielefeld.degrigor/isoprod.pdf · and the infimum is taken ove r all such pairs

",For the sake of some s implif ica t i on, i n the followi ng exampl e the funct ions f and g Will ~ ,

be pi e c ewi s e - con s t an t (in pa r t icu l a r , di s continuo us ) . Le t a. =- t , at . «2. ... be a monotoneincre...sing s equence . whi ch we shall make more precise below. For now we shall on l y a asueet ha t a,..1 > 2a. . We define the function f (x ) fo r :J':~ I as follows :

fo r z< t we s e t

I (J:) ~. f (t f.rf' . ( 17)

Also le t I -f. It follows in an obvious way from ( 4 ) an d (1 7) that for 1/ ;> l , lt. (c) ;:;:' h.(1) ;;> 2. At the sa me time i t turns out t hat h(c) .H. To prove th is i t s uf fices t o give ane xample o f a fun ction If , having t he followi n g prope rties ;

. ) l' is i ts own generalized inve rse:

b ) r~CtJ dt -~ ;. .

c) r. tc.Ct»d.l<~.

For , ;> 1). (t ) is defined as follows:

and for ' <: '. '1'0) is defined s o as to satisfy a ) .

I t i s easy to show that b ) and c ) will hold if

(18)

Rela t i on (18 ) holds. f or e xample, f or the re cursive l y defined s equence';

LITERATURE CITED

1. A. K. Guscbin . " Es t imates : o f solutions of boun da ry p roblems for pa r abolic second-orde req ua tions," r r . m AN SSSR, 12 6, 5- 45 (1973).

2 . V. V. IUnalthin. "Liouville ' . theorem a nd t he Harna ck i nequality fo r Bel trami' s e quationon an a rbitrary manifold, " Funk ts . Anal . Prilozhen • • 14 , No.2 , 71-72 (1980).

3 . S. Y. OlenS, P . Lt, and S. T. Yau, "On t h e upper est imate of the hea t ke rne l o f a completeRielll8Ilnian lI8l11fo ld." Am. J . Hath •• I DS. No.5, 1021-1063 (1981).

4 . A. A. Grigo r 'yan, "A Li ouville theoremon a Riemannian manifold , " re. 1bil1sskogo lIniv . ,Se r. Hat • • Meith. , Astron., 232 -233 . No. 13-14, 49-76 ( 19 82).

5 . A. A. Gdgor 'yan, "Exis tence of a Green's funct ion on a -.anifo1d," Usp . nat . Nauk . ~,No . I. 16 1-162 ( 19 83) .

6 . S . T. Yau. " lsope r ime t d c constant and the firs t eigenvalue of a compac t Riemannian-.nifold," Ann . Sci. Ecole Norm. Sup ., Se r. IV, ! ' No.4, 487-507 (1975).

7. D. Hoffman and J. Spruck, " Sobolev and isoperimetric i nequalit ies for Riema nnian s ub­aan ifol ds . " CouDun. Pure App1. Hath., 2 7 . No .6. 715-727 (1974 ).

8 . w. r~ zj • • Einbe ttungss a tze f ur Sob olevSCbe Raw-e. Vol. I. Teubner . Leipzig (19 79) .9 . A. A. Crigor'yan. "Hat1llOD.ically degenerate lIW1ifolds ." Usp. Kat . Nault. 37 . No.4 , 106

(1982) . .10 . H. Federe r . Geometric Heasure 1heory. Springe r - Ve r lag , Berlin (1969) .

854