universiti putra malaysia performance evaluation of …psasir.upm.edu.my/id/eprint/69022/1/fsktm...

27
UNIVERSITI PUTRA MALAYSIA PERFORMANCE EVALUATION OF ADAPTIVE FORWARDING STRATEGY USING STOCHASTIC ADAPTIVE FORWARDING (SAF) IN NAMED DATA NETWORKING NOR FAIZAH BT JEMANGIN FSKTM 2018 51

Upload: others

Post on 05-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • UNIVERSITI PUTRA MALAYSIA

    PERFORMANCE EVALUATION OF ADAPTIVE FORWARDING STRATEGY USING STOCHASTIC ADAPTIVE FORWARDING (SAF) IN

    NAMED DATA NETWORKING

    NOR FAIZAH BT JEMANGIN

    FSKTM 2018 51

  • © CO

    PYRI

    GHT U

    PM

    PERFORMANCE EVALUATION OF ADAPTIVE FORWARDING

    STRATEGY USING STOCHASTIC ADAPTIVE FORWARDING (SAF) IN

    NAMED DATA NETWORKING

    By

    NOR FAIZAH BT JEMANGIN

    Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

    in Fulfilment of the Requirements for the Master of Computer Science

    June 2018

  • © CO

    PYRI

    GHT U

    PM

    All material contained within the thesis, including without limitation text, logos,

    icons, photographs and all other artworks, is copyright material of Universiti Putra

    Malaysia unless otherwise stated. Use may be made of any material contained within

    the thesis for non-commercial purposes from the copyright holder. Commercial use

    of material may only be made with the express, prior, written permission of

    Universiti Putra Malaysia.

    Copyright © Universiti Putra Malaysia

  • © CO

    PYRI

    GHT U

    PM

    DEDICATIONS

    To my beloved husband, Abd. Rashid Ahmad.

    Thank you for the support, encouragement and constant love.

    Also, to my supervisor, YM Raja Azlina Raja Mahmood

    Your encouragement, support, advice and guidance are outline to my achievement.

    Finally, thank you to all my family and friends,

    Thank you for the support and encouragement.

  • © CO

    PYRI

    GHT U

    PM

    Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment

    of the requirement for the Master of Computer Science

    PERFORANCE EVALUATION OF ADAPTIVE FORWARDING

    STRATEGY USING STOCHASTIC ADAPTIVE FORWARDING (SAF) IN

    NAMED DATA NETWORKING

    By

    NOR FAIZAH BT JEMANGIN

    June 2018

    Supervisor : YM Raja Azlina Raja Mahmood

    Faculty : Computer Science and Information Technology

    In current IP-based network, loop is avoided by routing which have an authority in

    determining forwarding decision but it prevent efficiency of content dissemination.

    As future Internet architecture, NDN gives forwarding plane more authority by using

    forwarding strategy to improved Interest satisfaction ratio and cache hit ratio even in

    unexpected network status such as link failures. However, there are increased delay

    whenever simulation times, link failures or number of clients are increased. A

    number of technologies have been deployed in the current Internet infrastructure to

    accommodate the new demands for access to content such as Content Distribution

    Networks (CDN), Load Balancers, and Cloud Services. Although a lot of effort has

    been made to improved IP-based forwarding plane but it is confined to the data

    transmission in client-to-server mode or end-to-end. Thus, limiting the adaptability

    in the forwarding plane function. Unique characteristic of NDN over IP is the

    adaptability of its forwarding plane on choosing the potential outgoing face or

    forwarding link when it discovers link failure to achieve quick recovery and manage

    congestion by load balancing in multiple links. SAF has been introduced by Posch,

    Rainer & Hellwagner in 2017 as new forwarding strategy in NDN to increase the

    throughput by using adaptive ability in it. Thus, it gains my interest to study different

  • © CO

    PYRI

    GHT U

    PM

    perspective of performance such as delay and Interest retransmission in SAF using

    ndnSIM simulator. The result shows that Stochastic Adaptive Forwarding (SAF) is

    better than BestRoute in Interest satisfaction ratio by 17.8%, cache hit ratio by 1.8%,

    delay by 10.5 seconds and Interest retransmission by 22%. Result also shows

    BestRoute outperforms SAF in hop count by 3.2 hops because its aim is to find the

    shortest route to the cache or server without evaluating the link performance.

  • © CO

    PYRI

    GHT U

    PM

    Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

    sebagai memenuhi keperluan untuk Sarjana Sains Komputer

    PENILAIAN PRESTASI STRATEGI MUDAH SUAI PENGHANTARAN

    MENGGUNAKAN PENGHANTARAN MUDAH SUAI STOKASTIK (SAF)

    DALAM RANGKAIAN DATA YANG DINAMAKAN

    Oleh

    NOR FAIZAH BT JEMANGIN

    Jun 2018

    Penyelia : YM Raja Azlina Raja Mahmood

    Fakulti : Sains Komputer dan Teknologi Maklumat

    Dalam rangkaian semasa yang berasaskan IP, putaran berulang dielakkan oleh

    penghalaan yang mempunyai kuasa dalam menentukan keputusan penghantaran

    tetapi ia menghalang kecekapan penyebaran kandungan. Sebagai seni bina Internet

    untuk masa akan datang, NDN memberi pemproses penghantaran lebih kuasa dengan

    menggunakan strategi penghantaran bagi mencapai nisbah kepuasan Minat dengan

    lebih baik dan nisbah jumpa simpanan walau dalam keadaan rangkaian yang tidak

    diduga seperti kegagalan tautan. Walau bagaimanapun, terdapat kenaikan kelewatan

    apabila masa simulasi, kegagalan tautan atau bilangan pelanggan dinaikkan.

    Sebilangan teknologi telah dilaksanakan di dalam infrastruktur Internet semasa untuk

    menampung permintaan yang baru bagi capaian kepada kandungan di rangkaian

    pengedaran kandungan (CDN), pengimbang beban dan perkhidmatan awan.

    Walaupun banyak usaha telah dibuat untuk menambahbaik penghantaran berasaskan

    IP tetapi ia terhad kepada penghantaran data pelanggan-pelayan atau hujung-ke-

    hujung. Oleh itu, menghadkan keupayaan penyesuaian diri di dalam fungsi tersebut.

    Ciri-ciri unik NDN berbanding IP adalah keupayaan menyesuaikan diri dengan

    menggunakan pemproses penghantaran untuk memilih antaramuka keluar atau laluan

    penghantaran yang berpotensi apabila ia bertemu laluan yang gagal bagi mencapai

  • © CO

    PYRI

    GHT U

    PM

    pemulihan yang cepat dan menguruskan kesesakan dengan mengimbangi beban di

    beberapa laluan keluar. SAF telah diperkenalkan oleh Posch, Rainer & Hellwagner

    pada 2017 sebagai strategi penghantaran yang baru dalam NDN untuk meningkatkan

    daya pemprosesan dengan menggunakan keupayaan adaptif di dalamnya. Justeru,

    saya berminat untuk belajar berkenaan prestasi dari sudut perspektif lain seperti

    kelewatan dan penghantaran semula Minat dalam SAF menggunakan pensimulasi

    ndnSIM. Keputusan menunjukkan yang Penghantaran Adaptif Stokastik (SAF) lebih

    baik daripada LaluanTerbaik dalam nisbah kepuasan Minat sebanyak 17.8%, nisbah

    jumpa simpanan sebanyak 1.8%, kelewatan sebanyak 10.5 saat dan penghantaran

    semula Minat sebanyak 22%. Keputusan juga menunjukkan LaluanTerbaik

    mengatasi SAF dalam bilangan lompatan sebanyak 3.2 lompatan kerana kaedahnya

    hanya memilih jalan terpendek kepada tempat simpanan atau pelayan tanpa menilai

    prestasi talian.

  • © CO

    PYRI

    GHT U

    PM

    ACKNOWLEDGEMENTS

    I would like to thank the author of SAF, Mr. Daniel Posch who had provided the

    simulation program in https://github.com/danposch/ for me to explore and completed

    this project. He also responses my email even though we never know each other

    before.

    Again, I need to acknowledge for the second time in this report to my supervisor YM

    Raja Azlina for her guidance. She guided me a lot and also allow me to participate

    in her Python class for Bachelor Degree class. She deserves to be one of the best

    postgraduate supervisors in UPM.

    Also, thank you for my assessor, Encik Mohd. Noor Derahman for his constructive

    comments during project proposal and project report presentation.

    Lastly to all my lecturers during my master studies who always encourage research

    effort among students and share their experience and knowledge to inspired us.

    May Allah blessed all of you. Ameen.

  • © CO

    PYRI

    GHT U

    PM

    APPROVAL

    This thesis submitted to the Faculty of Computer Science and Information

    Technology of Universiti Putra Malaysia and has been accepted as fulfilment of the

    requirements for the degree of Master of Computer Science (Distributed Computing).

    _______________________________

    YM RAJA AZLINA RAJA

    MAHMOOD

    Senior Lecturer

    Department of Network and

    Communication Technology Department

    Faculty of Computer Science and

    Information Technology

    Universiti Putra Malaysia

    Date:

    ___________________________

    Accepted and approved by,

  • © CO

    PYRI

    GHT U

    PM

    DECLARATION BY GRADUATE STUDENT

    I hereby confirm that:

    • this thesis is my original work;

    • quotations, illustrations and citations have been duly referenced;

    • this thesis has not been submitted previously or concurrently for any other degree at any other institutions;

    • intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

    (Research) Rules 2012;

    • written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the

    form of written, printed or in electronic form) including books, journals,

    modules, proceedings, popular writings, seminar papers, manuscripts, posters,

    reports, lecture notes, learning modules or any other materials as stated in the

    Universiti Putra Malaysia (Research) Rules 2012;

    • there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate

    Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia

    (Research) Rules 2012. The thesis has undergone plagiarism detection software.

    Signature: ________________________ Date: __________________

    Name and Matric No.: Nor Faizah bt Jemangin (GS48106)

  • © CO

    PYRI

    GHT U

    PM

    TABLE OF CONTENTS

    Page DEDICATIONS ................................................................................................................... iii

    ACKNOWLEDGEMENTS ............................................................................................... viii

    APPROVAL ........................................................................................................................ ix

    TABLE OF CONTENTS ..................................................................................................... xi

    LIST OF TABLES ............................................................................................................. xiv

    LIST OF FIGURES ............................................................................................................ xv

    LIST OF ABBREVIATIONS ........................................................................................... xvii

    CHAPTER 1 ............................................................................................................. 1

    INTRODUCTION ..................................................................................................... 1

    1.1 Background .............................................................................................................. 1

    1.2 Problem Statement ................................................................................................... 5

    1.3 Research Objectives ................................................................................................. 5

    1.4 Research Scope ........................................................................................................ 6

    CHAPTER 2 ............................................................................................................. 7

    LITERATURE REVIEW .......................................................................................... 7

    2.1 Introduction .............................................................................................................. 7

    2.2 Related Works ........................................................................................................ 10

    2.3 SAF Detail Review ................................................................................................ 18

    CHAPTER 3 ........................................................................................................... 20

    METHODOLOGY .................................................................................................. 20

    3.1 Literature Review ................................................................................................... 20

    3.2 Simulation .............................................................................................................. 20

    3.2.1 Hardware and Software Requirement .................................................................... 20

    3.2.2 A Brief of ndnSIM Simulator ................................................................................ 22

    3.2.3 Simulation Parameter ............................................................................................. 23

    3.2.4 Project Limitation and Challenges ......................................................................... 25

    3.2.5 ndnSIM Simulator Installation to Prepare Project Environment ........................... 26

    3.3 Performance Metrics .............................................................................................. 30

    3.3.1 Interest Satisfaction Ratio ...................................................................................... 30

    3.3.2 Cache Hit Ratio ...................................................................................................... 30

    3.3.3 Average Hop count ................................................................................................ 31

  • © CO

    PYRI

    GHT U

    PM

    3.3.4 Average Delay ....................................................................................................... 31

    3.3.5 Average Interest Retransmission ........................................................................... 31

    CHAPTER 4 ........................................................................................................... 32

    DESIGN AND IMPLEMENTATION ....................................................................... 32

    4.1 Topology Model ..................................................................................................... 32

    4.2 Topology Architecture ........................................................................................... 34

    4.3 Scenario.................................................................................................................. 35

    4.4 Process Flow .......................................................................................................... 36

    4.5 Testing Commands ................................................................................................ 39

    4.6 Generating the Results ........................................................................................... 40

    CHAPTER 5 ........................................................................................................... 42

    RESULT AND DISCUSSION .................................................................................. 42

    5.1 Introduction ............................................................................................................ 42

    5.2 Scenario 1: Different Number of Simulation Time (In Minutes)........................... 42

    5.2.1 Average Interest Satisfaction Ratio ........................................................................ 42

    5.2.2 Average Cache Hit Ratio ....................................................................................... 43

    5.2.3 Average Hop Count ............................................................................................... 44

    5.2.4 Average Delay ....................................................................................................... 44

    5.2.5 Average Retransmission ........................................................................................ 45

    5.3 Scenario 2: Different Number of Link Failures ..................................................... 46

    5.3.1 Average Interest Satisfaction Ratio ........................................................................ 46

    5.3.2 Average Cache Hit Ratio ....................................................................................... 47

    5.3.3 Average Hop Count ............................................................................................... 49

    5.3.4 Average Delay ....................................................................................................... 50

    5.3.5 Average Retransmission ........................................................................................ 50

    5.4 Comparison Between Scenario 3: Different Number of Clients And 10 Servers and

    Scenario 4: Different Number of Clients and Servers ........................................... 51

    5.4.1 Average Interest Satisfaction Ratio ........................................................................ 51

    5.4.2 Average Cache Hit Ratio ....................................................................................... 53

    5.4.3 Average Hop Count ............................................................................................... 54

    5.4.4 Average Delay ....................................................................................................... 55

    5.4.5 Average Retransmission ........................................................................................ 56

    CHAPTER 6 ........................................................................................................... 57

    CONCLUSION AND FUTURE WORK ................................................................... 57

    6.1 Conclusion ............................................................................................................. 57

  • © CO

    PYRI

    GHT U

    PM

    6.2 Future Works ......................................................................................................... 58

    REFERENCES ....................................................................................................... 59

    BIODATA OF STUDENT ....................................................................................... 62

  • © CO

    PYRI

    GHT U

    PM

    LIST OF TABLES

    Page

    Table 1: Differences of IP, Path Slicing and NDN 7

    Table 2: Summary of Different Research Areas Covered in NDN Forwarding

    Strategy 11

    Table 3: The Actual Parameter from Posch et. al (2017) 23

    Table 4: The Project Parameter 24

    Table 5: Bandwidth and Connectivity Parameter Setting 34

    Table 6: Scenarios of This Project 35

    Table 7: Detail of Trace Files and Related Metrics 40

    Table 8: Python Program to Run the Simulation and Generate Performance Metrics

    41

  • © CO

    PYRI

    GHT U

    PM

    LIST OF FIGURES

    Page

    Figure 1: IP vs NDN ......................................................................................... 1

    Figure 2: How Data Gets Distributed Over IP-CDN Architectures ......................... 2

    Figure 3: How Data Gets Distributed Over NDN Architectures. ............................ 2

    Figure 4: Interest and Data Processing In NDN .................................................... 9

    Figure 5: The NDN Model Using SAF .............................................................. 18

    Figure 6: Algorithm 1 in SAF. ......................................................................... 19

    Figure 7: Algorithm 2 in SAF .......................................................................... 19

    Figure 8: Structure of Hardware And Software Requirement ............................... 21

    Figure 9: My Current Computer Specification Model Lenovo Ideapad MIIX 510 .. 21

    Figure 10: Oracle VM VirtualBox setting.......................................................... 22

    Figure 11: ndnSIM Component ........................................................................ 23

    Figure 12: Pre-compile Library for ndnSIM ...................................................... 26

    Figure 13: BRITE Installation .......................................................................... 27

    Figure 14: Fetch the Code Repositories for ndn-cxx, ndnSIM, itec-ndn ................ 28

    Figure 15: Build and Install ndn-cxx ................................................................. 28

    Figure 16: Build and Install Ns-3 With The ndnSIM and the BRITE plugin .......... 29

    Figure 17: Build SAF Scenarios In itec-ndn Folder ............................................ 29

    Figure 18: Cache Hit vs Cache Miss ................................................................. 31

    Figure 19: Random Network vs Scale-Free Network .......................................... 32

    Figure 20: Different of Poisson Distribution and Power Law Distribution............. 33

    Figure 21 : SAF Topology of Medium Connectivity ........................................... 33

    Figure 22 : Topology Architecture .................................................................... 34

    Figure 23 : Process Flow for Select Outgoing Face for An Interest ...................... 37

    Figure 24 : Process Flow for Forwarding Table In SAF ...................................... 38

    Figure 25 : Interest Satisfaction Ratio for Different Simulation Time ................... 43

    Figure 26 : Cache Hit Ratio for Different Simulation Time ................................. 43

    Figure 27 : Hop Count for Different Simulation Time ........................................ 44

    Figure 28 : Delay for Different Simulation Time ................................................ 45

    Figure 29 : Interest Retransmission for Different Simulation Time ....................... 45

    Figure 30 : Interest Satisfaction Ratio for Different Link Failures ........................ 46

    Figure 31 : Interest Satisfaction Ratio for Different Link Failures ........................ 47

    Figure 32: Cache Hit Ratio for Different Link Failure ........................................ 47

    Figure 33: Cache Hit Ratio For 0 Link Failure ................................................... 48

    Figure 34: Hop Count for Different Link Failure ................................................ 49

    Figure 35: Hop Count for 0 Link Failure ........................................................... 49

    Figure 36: Delay for Different Link Failure ....................................................... 50

    Figure 37: Interest Retransmission for Different Link Failures ............................ 50

    Figure 38: Average Interest Satisfaction Ratio for Different Number of Clients And

    10 Servers ............................................................................................... 52

  • © CO

    PYRI

    GHT U

    PM

    Figure 39: Average Interest Satisfaction Ratio for Different Number of Clients and

    Servers.................................................................................................... 52

    Figure 40: Average Cache Hit Ratio for Different Number of Clients And 10 Servers

    .............................................................................................................. 53

    Figure 41: Average Cache Hit Ratio for Different Number of Clients and Servers . 53

    Figure 42: Average Hop Count for Different Number of Clients and 10 Servers .... 54

    Figure 43: Average Hop Count for Different Number of Clients and Servers ........ 54

    Figure 44: Average Delay for Different Number of Clients and 10 Servers ........... 55

    Figure 45: Average Delay for Different Number of Clients and Servers ............... 55

    Figure 46: Average Retransmission for Different Number of Clients And 10 Servers

    .............................................................................................................. 56

    Figure 47: Average Retransmission for Different Number of Clients And Servers . 56

  • © CO

    PYRI

    GHT U

    PM

    LIST OF ABBREVIATIONS

    Abbreviations Meaning

    AS Autonomous System

    CDN Content Delivery Network

    CS Content Store

    FIB Forwarding Information Base

    ICN Information Centric Network

    IP Internet Protocol

    ISP Internet Service Provider

    LAN Local Area Network

    LFU Least Frequently Used

    FIFO First In First Out

    LRU Least Recently Used

    NDN Named Data Networking

    PIT Pending Interest Table

    RAM Random-Access Memory

    TCP/IP Transmission Control Protocol/Internet Protocol

    WAN Wide Area Network

  • © CO

    PYRI

    GHT U

    PM

    1

    CHAPTER 1

    INTRODUCTION

    1.1 Background

    It is all started when Van Jacobson presenting “A New Way to look at Networking”

    in Google Tech Talk in 2006. This talk introduce a new paradigm of moving the

    Internet toward a content distribution architecture (“NDN Frequently Asked

    Questions (FAQ) - Named Data Networking (NDN),” n.d.). In this event, Jacobson

    had defined ICN as to remove IP address which currently used in Internet

    communication.

    In short, IP is end to end host communication and centred around host

    address while NDN is focusing on data content names instead of end to end host.

    This requirement has translated from “where is the server hosting my data?” to

    “where is my data?” (Aloulou, Ayari, Zhani, Saidane, & Pujolle, 2017) as in Figure 1

    taken from http://comnet.ieee.tn/wp-content/uploads/2017/05/Comnet2017_Final.pdf

    Figure 1: IP vs NDN

    Retrieved from http://comnet.ieee.tn/wp-

    content/uploads/2017/05/Comnet2017_Final.pdf

    (Source: Aloulou, Ayari, Zhani, Saidane, & Pujolle, 2017)

  • © CO

    PYRI

    GHT U

    PM

    2

    In the same reference as above, a lot of effort has been made to improve the

    content delivery performance in current IP infrastructure such as using Content

    Delivery Network (CDN). Although CDN is an effective solution to date but it is not

    able to optimized the bandwidth usage in local area network (LAN) or in wide area

    network (WAN), as the data is located in the region data centre. Thus, it has the

    potential to increase the risk of bottleneck in the network gateways. That is all nodes

    need to go to the endpoint of the CDN if they want to access the same content.

    Figure 2 and Figure 3 illustrate how data gets distributed over the IP-based (CDN)

    and NDN architectures respectively.

    Figure 2: How Data Gets Distributed Over IP-CDN Architectures

    Retrieved from http://mustafacanturk.com/named-data-networking/

    (Source: Mustafacanturk, 2015)

    Figure 3: How Data Gets Distributed Over NDN Architectures.

    Retrieved from http://mustafacanturk.com/named-data-networking/

    (Source: Mustafacanturk, 2015)

  • © CO

    PYRI

    GHT U

    PM

    3

    Further, the role of Internet is increasing with the demand of Internet of

    Things (IoT). According to Shang, Yu, Droms and Zhang (2016) the TCP/IP is not

    suitable to handle IoT environment because it is not effective and efficient as

    compared to NDN architecture. Cisco forecasted that global IP traffic in 2021 will

    be equivalent to 127 times the volume of the entire global IP traffic in 2005 (“Cisco

    Visual Networking Index: Forecast and Methodology, 2016–2021 - Cisco,” 2017).

    Content Delivery Network (CDN) traffic will carry 71 percent of all Internet traffic

    by 2021 in the same forecast report. Named data networking (NDN) is a promising

    approach to address the needs of improving content delivery, handling IoT

    environment and increasing volume of Internet traffic as it is expected to be future of

    Internet architecture. Instead of sending packets between client and server devices

    identified by numeric IP addresses in IP network, in NDN the network will send

    Interest in the form of desired data name without specifying where the data may be

    located. Routers may satisfy the Interests from router caches, other nodes or original

    data producer. This will increase user experience in using Internet and lowering cost

    of service provider who owned the original data producer by reducing number of

    servers and the amount of bandwidth needed at their datacentre.

    According to Yi, Abraham, Afanasyev, Wang, Zhang & Zhang (2014), IP

    networks make routing as a brain of activity, such as spreads policy information and

    topology, discovers and recovers from network failures, calculate route meanwhile

    the data plane only forwards packets based on the Forward Information Based (FIB).

    However, NDN forwarding react differently which it has adaptive forwarding to

    handle further changes in network once the above activities have been implemented

  • © CO

    PYRI

    GHT U

    PM

    4

    without the need to refer back to the routing information. Routing information in

    NDN only used during first time and for any long-term network changes.

    Although a lot of effort has been made to improved IP-based forwarding

    plane but it is confined to the data transmission in end-to-end or client-to-server

    mode. Thus, limiting the adaptability in the forwarding plane (Cao et al., 2016).

    The forwarding strategy is crucial to the robustness and effectiveness of

    Named Data Networking (NDN) (Lei, Wang, & Yuan, 2015) and (Cao et al., 2016).

    The spread of NDN’s local caching is an advantage in decreasing duplication of

    content transmission. However, the behaviour of cached items which can volatile in

    certain condition calls for an effective and efficient forwarding strategy to

    significantly improved the performance of data delivery (Yao, Yin, Tan, & Jiang,

    2017).

    There are two types of forwarding strategies. An adaptive forwarding

    strategy learns current network status through it face(s) or interfaces to improve

    future decisions. A static forwarding strategy only relies on the decisions made by

    the routing protocol and unable to adapt with network changes unless it removes the

    unperformed face in forwarding information base (FIB) (Ben Abraham, Crowley, &

    Abraham, 2016).

    I have chosen an anchor paper wrote by Posch, Rainer & Hellwagner (2017)

    about Stochastic Adaptive Forwarding (SAF) in Named Data Networking. It has

    been published in IEEE Transaction on Networking in April 2017. SAF is focuses to

  • © CO

    PYRI

    GHT U

    PM

    5

    improved throughput or Interest satisfaction ratio by evaluating the interface

    performance and diverting Interest to another reliable interface if the current

    interface become unreliable.

    1.2 Problem Statement

    In current IP-based network, loop-free can be achieved by routing which have an

    authority in determining forwarding decision but it prevent efficiency of content

    dissemination. As future Internet architecture, there have been several researches

    effort pertaining forwarding strategies in NDN to increase any relevant performance.

    These include SAF that studied such as Interest satisfaction ratio, cache hit ratio and

    hop count (Posch, Rainer, & Hellwagner, 2017). However, their work does not

    evaluate delay and Interest retransmission in different simulation time, different link

    failures, different number of clients and different number of servers.

    1.3 Research Objectives

    The aim of this project is to evaluate the performance of stochastic adaptive

    forwarding (SAF) and comparing it with the BestRoute algorithm in terms of delay

    and Interest retransmission in different simulation time, different link failures,

    different number of clients and different number of servers. The project will also

    evaluate and verify the performance of the two algorithms in terms of Interest

    satisfaction ratio, cache hit ratio and hop count in the said scenarios.

  • © CO

    PYRI

    GHT U

    PM

    6

    1.4 Research Scope

    This project focuses on evaluating the performance of SAF approach as compared to

    the current forwarding strategy available in ndnSIM such as BestRoute in NDN. The

    studied performance parameters are delay, Interest retransmission, Interest

    satisfaction ratio, cache hit ratio and hop count.

  • © CO

    PYRI

    GHT U

    PM

    59

    REFERENCES

    Mustafacanturk. (2015). Named Data Networking. Retrieved from

    http://mustafacanturk.com/named-data-networking/, January 2015.

    Afanasyev, A., Mastorakis, S., Moiseenko, I., & Zhang, L., (2017)

    http://ndnsim.net/current/intro.html.

    Shang, W., Yu, Y., Droms, R., & Zhang, L. (2016). Challenges in IoT Networking

    via TCP/IP Architecture. NDN. Retrieved from http://named-

    data.net/techreports.html

    Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B. & Zhang, L. (2013). A

    case for stateful forwarding plane, Comput. Commun., vol. 36, no. 7, pp.

    779–791.

    Posch, D., Rainer, B. & Hellwagner, H. (2017). SAF: Stochastic Adaptive

    Forwarding in Named Data Networking. IEEE/ACM Transactions on

    Networking, Vol. 25, No. 2.

    D. Nguyen, M. Fukushima, K. Sugiyama, and A. Tagami, ‘Efficient multipath

    forwarding and congestion control without route-labeling in CCN’, in

    Communication Workshop (ICCW), 2015 IEEE International Conference

    on, 2015, pp. 1533–1538.

    K. Schneider, C. Yi, B. Zhang, and L. Zhang, ‘A Practical Congestion Control

    Scheme for Named Data Networking’, in Proceedings of the 3rd ACM

    Conference on Information-Centric Networking, New York, NY, USA,

    2016, pp. 21–30.

    Ilya Moiseenko Alexander Afanasyev and Lixia Zhang. ndnsim: Ndn simulator for

    ns-3. In NDN, Technical Report NDN-0005, 2012.Revision 2: October 5,

    2012, 2012.

    The CCNx project, Palo Alto Research Center. http://www.ccnx.org.

    Yi, C. (2014). Adaptive Forwarding in Named Data Networking (Doctoral thesis,

    University of Arizona). Retrieved from

    https://www2.cs.arizona.edu/~yic/paper/dissertation.pdf

    Posch, D. (2016). Towards Effective Multimedia Dissemination in Information-

    Centric Networks (Doctoral thesis, Alpen Adria University at Klagenfurt,

    Austria). Retrieved from http://www-itec.uni-

    klu.ac.at/bib/files/posch_thesis.pdf

    Sadek, A. (2016). Forwarding Strategies in Information Centric Networking

    (Doctoral Thesis, Kth Royal Institute of Technology) http://www.diva-

    portal.org/smash/get/diva2:1039090/FULLTEXT01.pdf

    Chiocchetti, R., Perino, D., Carofiglio, & G., Rossi, D. (2013). INFORM: A

    dynamic interest forwarding mechanism for information centric networking,

    in Proc. 3rd ACM SIGCOMM Workshop ICN, pp. 9–14.

    Yi, C., Abraham, J., Afanasyev, A., Wang, L., Zhang, B. & Zhang, L. (2014). On

    the role of routing in named data networking,” in Proc. 1st Int. Conf. Inf.

    Centric Netw., pp. 27–36.

    Shi, J. & Liang, T (2018). NFD forwarding pipelines. Retrieved April 2018 from

    https://gitlab.com/named-data/TR-NDN-0021-NFD-dev-

    guide/blob/master/slides/forwarding-pipelines_20180411.pptx.

    PabloGN (2015). Libboost libraries installed but not detected. Retrieved July 6,

    2018, from https://github.com/sferes2/sferes2/issues/20

    Velázquez, F., Lyngstøl, K., Heen, T.F., & Renard, J.Cache (2018). HTTP. Retrieved

  • © CO

    PYRI

    GHT U

    PM

    60

    from http://book.varnish-software.com/4.0/chapters/HTTP.html.

    Afanasyev, A. (2017). [ndnSIM] error while loading shared libraries: libns3-dev-

    brite-optimized.so. Retrieved July 6, 2018, from

    http://www.lists.cs.ucla.edu/pipermail/ndnsim/2017-October/004256.html

    Alexander Afanasyev, Spyridon Mastorakis, Ilya Moiseenko, and L. Z. (2017).

    ndnSIM Documentation — ndnSIM documentation. Retrieved July 17, 2018,

    from http://ndnsim.net/2.5/

    Aloulou, N., Ayari, M., Zhani, M. F., Saidane, L., & Pujolle, G. (2017). Taxonomy

    and comparative study of NDN forwarding strategies. In 2017 Sixth

    International Conference on Communications and Networking (ComNet) (pp.

    1–8). IEEE. https://doi.org/10.1109/COMNET.2017.8285592

    Amadeo, M., Molinaro, A., Campolo, C., Sifalakis, M., & Tschudin, C. (2014).

    Transport layer design for named data wireless networking. In 2014 IEEE

    Conference on Computer Communications Workshops (INFOCOM WKSHPS)

    (pp. 464–469). IEEE. https://doi.org/10.1109/INFCOMW.2014.6849276

    Ben Abraham, H., Crowley, P., & Abraham, B. (2016). In-Network Retransmissions

    in Named Data Networking Recommended Citation In-Network

    Retransmissions in Named Data Networking In-Network Retransmissions in

    Named Data Networking. Retrieved from

    http://openscholarship.wustl.edu/cse_research

    Bian, C., Zhao, T., Li, X., & Yan, W. (2015). Boosting named data networking for

    data dissemination in urban VANET scenarios. Vehicular Communications,

    2(4), 195–207. https://doi.org/10.1016/J.VEHCOM.2015.08.001

    Cao, J., Pei, D., Wu, Z., Zhang, X., Zhang, B., Wang, L., & Zhao, Y. (2016).

    Improving the freshness of NDN forwarding states. In 2016 IFIP Networking

    Conference (IFIP Networking) and Workshops (pp. 189–197). IEEE.

    https://doi.org/10.1109/IFIPNetworking.2016.7497213

    Carofiglio, G., Gallo, M., Muscariello, L., Papalini, M., & Sen Wang. (2013).

    Optimal multipath congestion control and request forwarding in Information-

    Centric Networks. In 2013 21st IEEE International Conference on Network

    Protocols (ICNP) (pp. 1–10). IEEE.

    https://doi.org/10.1109/ICNP.2013.6733576

    Cisco Visual Networking Index: Forecast and Methodology, 2016–2021 - Cisco.

    (2017). Retrieved June 29, 2018, from

    https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

    networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813970

    Glushnev, N., O’Donovan, B., & Troussov, A. (2003). Efficient implementation of

    morphological finite-state transition networks employing their statistical

    properties. In International Conference on Natural Language Processing and

    Knowledge Engineering, 2003. Proceedings. 2003 (pp. 50–55). IEEE.

    https://doi.org/10.1109/NLPKE.2003.1275868

    Kerrouche, A., Senouci, M. R., & Mellouk, A. (2016). QoS-FS: A new forwarding

    strategy with QoS for routing in Named Data Networking. In 2016 IEEE

    International Conference on Communications (ICC) (pp. 1–7). IEEE.

    https://doi.org/10.1109/ICC.2016.7511378

    Lei, K., Wang, J., & Yuan, J. (2015). An entropy-based probabilistic forwarding

    strategy in Named Data Networking. In 2015 IEEE International Conference on

    Communications (ICC) (pp. 5665–5671). IEEE.

    https://doi.org/10.1109/ICC.2015.7249225

    Mastorakis UCLA, S., Afanasyev, A., & Zhang, L. (2017). On the Evolution of

  • © CO

    PYRI

    GHT U

    PM

    61

    ndnSIM: an Open-Source Simulator for NDN Experimentation. ACM

    SIGCOMM Computer Communication Review, Volume 47(Issue 3). Retrieved

    from https://named-data.net/wp-content/uploads/2017/07/ccr17-ndnsim.pdf

    Moll, P., Posch, D., & Hellwagner, H. (2017). Investigation of push-based traffic for

    conversational services in Named Data Networking. In 2017 IEEE International

    Conference on Multimedia & Expo Workshops (ICMEW) (pp. 315–320). IEEE.

    https://doi.org/10.1109/ICMEW.2017.8026212

    Ndegwa, A. (2017). What is Cache Hit Ratio? | StackPath Blog. Retrieved July 6,

    2018, from https://blog.stackpath.com/glossary/cache-hit-ratio/

    NDN Frequently Asked Questions (FAQ) - Named Data Networking (NDN). (n.d.).

    Retrieved May 26, 2018, from https://named-data.net/project/faq/

    Obtaining metrics — ndnSIM documentation. (n.d.). Retrieved May 25, 2018, from

    http://ndnsim.net/current/metric.html

    Posch, D., Rainer, B., & Hellwagner, H. (2017). SAF: Stochastic Adaptive

    Forwarding in Named Data Networking. IEEE/ACM Transactions on

    Networking, 25(2), 1089–1102. https://doi.org/10.1109/TNET.2016.2614710

    Qian, H., Ravindran, R., Wang, G. Q., & Medhi, D. (2013). Probability-based

    adaptive forwarding strategy in named data networking. In 2013 IFIP/IEEE

    International Symposium on Integrated Network Management (IM 2013) (pp.

    1094–1101).

    Rossini, G., & Rossi, D. (2014). Coupling caching and forwarding. In Proceedings of

    the 1st international conference on Information-centric networking - INC ’14

    (pp. 127–136). New York, New York, USA: ACM Press.

    https://doi.org/10.1145/2660129.2660153

    Saxena, D., Raychoudhury, V., Suri, N., Becker, C., & Cao, J. (2016). Named Data

    Networking: A survey. Computer Science Review, 19, 15–55.

    https://doi.org/10.1016/J.COSREV.2016.01.001

    Thomas, Y., Xylomenos, G., Tsilopoulos, C., & Polyzos, G. C. (2015). Object-

    oriented Packet Caching for ICN. Retrieved from

    http://conferences2.sigcomm.org/acm-icn/2015/slides/04-03.pdf

    Tortelli, M., Rossi, D., Boggia, G., & Grieco, L. A. (2014). ICN software tools:

    survey and cross-comparison. Retrieved from https://perso.telecom-

    paristech.fr/drossi/paper/rossi16simpat.pdf

    Udugama, A., Zhang, X., Kuladinithi, K., & Goerg, C. (2014). An On-demand

    Multi-Path Interest Forwarding strategy for content retrievals in CCN. In 2014

    IEEE Network Operations and Management Symposium (NOMS) (pp. 1–6).

    IEEE. https://doi.org/10.1109/NOMS.2014.6838389

    Yao, J., Yin, B., Tan, X., & Jiang, X. (2017). A POMDP framework for forwarding

    mechanism in named data networking. Computer Networks, 112, 167–175.

    https://doi.org/10.1016/J.COMNET.2016.11.005

    Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., & Zhang, L. (2013). A

    case for stateful forwarding plane. Computer Communications, 36(7), 779–791.

    https://doi.org/10.1016/J.COMCOM.2013.01.005

    Yuhang Ye, Brian Lee, Flynn, R., Murray, N., & Yuansong Qiao. (2017). HLAF:

    Heterogeneous-Latency Adaptive Forwarding strategy for Peer-Assisted Video

    Streaming in NDN. In 2017 IEEE Symposium on Computers and

    Communications (ISCC) (pp. 657–662). IEEE.

    https://doi.org/10.1109/ISCC.2017.8024603