universiti putra malaysia evaluation of groundwater ...psasir.upm.edu.my/39285/1/fpas 2012...

18
UNIVERSITI PUTRA MALAYSIA LEILA KHODAPANAH FPAS 2012 16 EVALUATION OF GROUNDWATER VULNERABILITY TO CONTAMINATION AND GEOCHEMICAL CHARACTERISTICS IN AN ALLUVIAL AQUIFER OF ESHTEHARD PLAIN, IRAN

Upload: others

Post on 24-Dec-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

UNIVERSITI PUTRA MALAYSIA

LEILA KHODAPANAH

FPAS 2012 16

EVALUATION OF GROUNDWATER VULNERABILITY TO CONTAMINATION AND GEOCHEMICAL CHARACTERISTICS IN AN

ALLUVIAL AQUIFER OF ESHTEHARD PLAIN, IRAN

© COPYRIG

HT UPM

i

EVALUATION OF GROUNDWATER VULNERABILITY TO

CONTAMINATION AND GEOCHEMICAL CHARACTERISTICS IN AN

ALLUVIAL AQUIFER OF ESHTEHARD PLAIN, IRAN

LEILA KHODAPANAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2012

© COPYRIG

HT UPM

ii

DEDICATION

To my Husband, Son, Father

And

In memory of my Mother

© COPYRIG

HT UPM

iii

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia

infulfilment of the requirement for the Degree of Doctor of Philosophy

EVALUATION OF GROUNDWATER VULNERABILITY TO

CONTAMINATION AND GEOCHEMICAL CHARACTERISTICS IN AN

ALLUVIAL AQUIFER OF ESHTEHARD PLAIN, IRAN

By

LEILA KHODAPANAH

August 2012

ABSTRACT

Chairman: Associate Professor Wan Nor Azmin B Sulaiman, PhD

Faculty: Environmental Studies

Amajority of the population in Eshtehard district depends upon the availability of

quality groundwater from public or private sources. Eshtehard alluvial aquifer is the

main source for irrigation, industrial and domestic uses. Recent anthropogenic

activities, though, have created a potentially vulnerable environment as groundwater

becomes exposed to contamination from municipal, industrial, and agricultural

practices threatening the short and long term sustainability of high quality

groundwater as a natural resource. Industrial discharge, waste disposal sites,

application of pesticidesand fertilizers, poultry farms and municipal sewage are

examples of potential source contamination in Eshtehard.

© COPYRIG

HT UPM

iv

Groundwater vulnerability to contamination from surface sources was evaluated for

Eshtehard aquifer using a modified GIS based DRASTIC and GOD vulnerability

methods. The study also evaluates groundwater quality and hydrochemistry.

Chemical compositions of 114 groundwater samples were used to assess the

groundwater quality in the study area and to validate the vulnerability mapsproduced

by the two mentioned methods above.

Most water samples aregrouped into two categories: relatively low mineralizedof

Ca–HCO3 type and high mineralizedwaters of Na–Cl type,which indicate the

intrusion of saline water and dissolution of carbonate minerals.Based onMANOVA

test (P=0.05) on water samples collected during wet and dry seasons didn’t show

any significant difference. Concentrations of most of the groundwater quality

indicators exceed the maximum allowable limits set by WHO drinking water

standards. The chemical analysis also indicates strong affect of anthropogenic

activities on the groundwater quality as implied by high nitrate, chloride, and

sulfateconcentrations. High levels of salinity and sodium content suggest that the

most of groundwater samples are of poor to medium quality for irrigation

purposes.The factor analysis reveals that there are two sources of solutes: (1) saline

water intrusion with high loading of Cl, Na, Ca, EC, TDS and K; (2) anthropogenic

activities, characterizedby high loadings of NO3, SO4 and Mg.

For evaluating the groundwater vulnerability in Eshtehard area based on DRASTIC

model, two challenging issues were encountered in this study: recharge estimation

and alluvial media rating. Direct groundwater recharge from precipitation in semi-

© COPYRIG

HT UPM

v

arid areas is generally small, usually less than about 5% of the average annual

precipitation, with a high temporal and spatial variability. A combined groundwater

balance and water table fluctuation method was applied to estimate the groundwater

recharge in the research area. Original rating tables provide sufficient detail for

mapping at theregional scale, where broad ranges of geologic material are present.

However,modified rating tables improved spatial representation of input parameters

atlocal scales, which is useful for local planning.

The DRASTIC and GOD’s index values and maps for Eshtehard alluvial aquifer

were generated in GIS environment. The Classic DRASIC was modified and

optimized by incorporation of simple statistical and geostatistical techniques for the

revision of the factor rating and weighting of all the parameter. The criterionfor

these modifications was based on the correlation coefficientof each parameter with

the nitrates concentration in groundwater.The correlation coefficient was obtained as

r = 0.53, r = 0.42 and r = 0.68 (p< 0.01) for the original DRASTIC, GOD and

modified DRASTIC methods, respectively. On the basis of their statistical

significance, original ratings and weighting of the parameters werechanged in the

DRASTIC equation. Following the above-mentioned modifications,the correlation

coefficient between groundwater pollution potential and nitrates concentration was

considerably improvedand rose to 15% higher than the original method. The results

also showed that both GOD and modified DRASTIC indices values are relatively

high and thus Eshtehard aquifer is considered vulnerable to pollution. However, the

results indicated that the vulnerability prediction by DRASTIC proved superior to

GOD in this particular hydrogeologic setting. These classification of the

© COPYRIG

HT UPM

vi

vulnerability index showed that central and downstream parts of the aquifer are most

vulnerable to pollution. The salt flat in north and the alluvial fans of the southern

heights yielded moderate scores. The aquifer in and around Eshtehard township,

industrial zone and cultivation lands are highly susceptible to contamination.

© COPYRIG

HT UPM

vii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENILAIAN KETERDEDAHAN AIR BAWAH TANAH KEPADA

PENCEMARAN DAN CIRI-CIRI GEOKIMIA DALAM AKUIFER

ALUVIUM ESHTEHARD PLAIN, IRAN

ABSTRAK

Oleh

LEILA KHODAPANAH

August 2012

ABSTRAK

Pengerusi: Professor Madya Wan Nor Azmin B Sulaiman, PhD

Fakulti: Pengajian Alam Sekitar

Majoriti penduduk di daerah Eshtehard bergantung kepada kebersihan air bawah

tanah dari sumber-sumber awam atau swasta. Eshtehard akuifer aluvium adalah

sumber utama untuk pengairan, industri dan penggunaan domestik. Aktiviti

antropogenik yang berlaku kebelakangan ini, walau bagaimanapun, telah

mewujudkan persekitaran yang berpotensi terdedah kepada pencemaran hasil

daripada amalan perbandaran, perindustrian, pertanian dan boleh mengancam

kemapanan sebagai sumber air semula jadiyang berkualiti tinggi dalam jangka masa

pendek dan panjang. Pelepasan perindustrian, tapak pelupusan sampah, permohonan

racun perosak dan baja, ladang ternakan dan kumbahan perbandaran adalah

sebahagian dari contoh sumber pencemaran yang berpotensi di Eshtehard.

© COPYRIG

HT UPM

viii

Keterdedahan air bawah tanah kepada pencemaran dari sumber permukaan telah

dinilai bagi akuifer Eshtehard dengan menggunakan kaedah keterdedahanDRASTIC

dan GOD diubahsuai dalam persekitaran GIS. Kajian ini juga menilai kualiti air

bawah tanah dan sifat hidrokimia. Komposisi kimia mewakili 114 sampel air bawah

tanah telah dianalisisbagi tujuan menilai kualiti air bawah tanah di kawasan kajian

dan mengesahkan peta keterdedahan yang dihasilkan oleh dua kaedah tersebut.

Kebanyakan sampel air terkumpul kepada dua kategori: secara relatif agak rendah

kandungan mineral jenis Ca-HCO3 dan tinggi mineral jenis Na-Cl, yang

menunjukkan pencerobohanair masin dan pembubaran mineral karbonat telah

berlaku. Berdasarkan ujian statistik, MANOVA (P = 0.05) ke atas sampel air yang

dikumpul semasa musim hujan dan panas tidak menunjukkan sebarang perbezaan

yang signifikan. Kepekatan kebanyakan penunjuk kualiti air bawah tanah melebihi

had maksima yang ditetapkan oleh piawaian bagi air minum, WHO. Analisis kimia

juga menunjukkan kesan dari aktiviti antropogenik yang tinggi terhadap kualiti air

bawah tanah sebagimana yang ditunjukkan oleh kepekatan kandungan nitrat,

klorida, dan sulfat yang tinggi. Disamping itu, tahap kemasinan dan kandungan

natrium yang tinggi mencadangkan bahawa kebanyakan sampel air bawah tanah

terdiri dari kualiti sederhana hingga rendah tujuan pengairan. Analisis faktor

menunjukkan terdapat dua sumber bahan larut: (1) pencerobohan air masin dengan

muatan Cl, Na, Ca, EC, TDS dan K yang tinggi; (2) aktiviti antropogenik, dicirikan

oleh beban NO3, SO4 dan Mg yang tinggi.

© COPYRIG

HT UPM

ix

Untuk menilai keterdedahan air bawah tanah kepada pencemaran di kawasan

Eshtehard berdasarkan model DRASTIC, dua isu yang mencabar dihadapi dalam

kajian ini: anggaran imbuhan dan pengkadaran media aluvium. Kadar imbuhan dari

curahan hujan di kawasan separa gersang umumnya adalah kecil, biasanya kurang

5% daripada purata curahan hujantahunan, dengan ciri variasi ruang dan masa yang

agak tinggi. Gabungan kaedah imbangan air bawah tanah dan pembuaian muka air

tanah telah digunakan untuk menganggar imbuhan air bawah tanah di kawasan

kajian. Jadual pengkadaranmedia asal menyediakan butir-butir yang mencukupi

untuk pemetaan pada skala serantau, di mana julat luas bahan geologi hadir. Walau

bagaimanapun, ubahsuai kepada jadual pengkadaran jadual tersebut telah

meningkatkan perwakilan ruang parameter input pada skala tempatan, yang mana

sangat berguna untuk perancang tempatan.

Indek DRASTIC dan GOD telah dihasilkan dalam persekitaran GIS. Kaedah

DRASIC Classic telah diubahsuai dan dioptimumkan melalui penggabungan teknik

statistik mudah dan geostatistik untuk semakan semula penarafan faktor pemberatan

bagi semua parameter terlibat. Kriteria untuk pengubahsuaian ini adalah berdasarkan

pekali korelasi setiap parameter dengan kepekatan nitrat dalam air bawah tanah.

Pekali korelasi yang diperolehi sebagai r = 0.53, r = 0,42 dan r = 0.68 (p <0.01) bagi

kaedah DRASTIC asal, GOD dan kaedah DRASTIC yangdiubahsuai, secara

berturutan. Atas dasar keertian statistik ini, penilaian asal dan wajaran bagi

parameter telah diubah dalam persamaan DRASTIC. Berikutan pengubahsuaian di

atas, pekali korelasi antara potensi pencemaran air bawah tanah dan kepekatan nitrat

didapati telah jauh bertambah baik dan meningkat kepada 15% lebih tinggi daripada

© COPYRIG

HT UPM

x

kaedah asal. Keputusan juga menunjukkan bahawa kedua-dua indek bagi kaedah

GOD dan juga DRASTIC yang diubahsuai adalah agak tinggi dan seterusnya akuifer

Eshtehard dianggap terdedah kepada pencemaran. Walau bagaimanapun, keputusan

menunjukkan bahawa ramalan keterdedahan air bawah tanah kepada pencemaran

oleh kaedah DRASTIC terbukti lebih tinggi berbanding kaedah GODbagi keadaan

hidrogeologi berkenaan.Klasifikasi indeks keterdedahan ini jelas menunjukkan

bahawa bahagian tengah dan hiliran akuifer Eshtehard paling terdedah kepada

pencemaran. Garam rata di utara dan lapisan aluvium di bahagian ketinggian selatan

telah mempengaruhi skor yang sederhana. Akuifer di bawah dan sekitar perbandaran

Eshtehard, zon perindustrian dan tanah pertanian adalah sangat mudah terdedah

kepada pencemaran.

© COPYRIG

HT UPM

xi

ACKNOWLEDGEMENTS

I would like to thank, first and foremost, Allah Almighty and God's Messenger

Muhammad (peace be upon him) for the opportunity to take on this challenge.

Thank you for providing me strength, talents, tools and special people that aided me

in the completion of this task.

I wish to express my sincere appreciation to my supervisor Assoc. Prof. Dr. Wan

Nor Azmin Bin Sulaiman for his assistance, guidance and encouragement through

this study. Thank you for the long hours that you dedicated to this script, for helping

me to achieve my best. Your support is greatly respected.

I would also like to thank to my advisory committee; Dr. Kourosh Mohammadi and

Dr. Shaharin Ibrahim for being very supportive and helpful during the work process

of this thesis. I would like to thank my classmates and friends in Faculty of

Environmental Studies for their friendship and help.

I cannot finish without saying how grateful I am with my family. I would like to

give an extra thanks to my beloved father for his love and the way he makes me feel

proud of my accomplishments, and the way he supports and encourages my work.I

also would like to thank my dear sistersLida and Nasrin and my brother Abbas, for

their love and support in every moment of my life.

I wish to express my gratitude to my dear husband, Dr. Hassan Soleimani, who has

supported me along the way to achieve my study dreams, for hislove and strong

moral support. Finally, I would like to dedicate this work to a Super Little Boy, my

lovely son, AmirAli, for being a terrific child, for having a curious, eager and

sensitive mind, for enduring my absence all the time when I was away from home

and above all bringing daily joy to my life.

© COPYRIG

HT UPM

xii

I certify that a Thesis Examination Committee has met on 16 August 2012 to

conduct the final examination of Leila Khodapanah on her thesis entitled

"Evaluation of Groundwater Vulnerability to Contamination and Geochemical

Characteristics in an Alluvial Aquifer of Eshtehard Plain, Iran" in accordance with

the Universities and University Colleges Act 1971 and the Constitution of the

Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee

recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Ahmad Makmom bin Abdullah, PhD

Associate Professor

Faculty of Environmental Studies

Universiti Putra Malaysia

(Chairman)

Mohamad Pauzi Zakaria, PhD

Professor

Faculty of Environmental Studies

Universiti Putra Malaysia

(Internal Examiner)

Mohammad Firuz bin Ramli, PhD

Associate Professor

Faculty of Environmental Studies

Universiti Putra Malaysia

(Internal Examiner)

Kyoung-Woong Kim, PhD

Professor

School of Environmental Science and Engineering

Gwangju Institute of Science and Technology

South Korea

(External Examiner)

APPROVAL

SEOW HENG FONG, PhD

Professor and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 23 January 2013

© COPYRIG

HT UPM

xiii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee are as follows:

Wan Nor Azmin B Sulaiman, PhD

Associate Professor

Faculty of Environmental Studies

University Putra Malaysia

(Chairman)

Shaharin Ibrahim, PhD

Associate Professor

Faculty of Environmental Studies

University Putra Malaysia

(Member)

Kourosh Mohammadi, PhD

Associate Professor

Tarbiat Moddaress University

Tehran, I.R.Iran

(Member)

BUJANG BIN KIM HUAT, Ph.D.

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

© COPYRIG

HT UPM

xiv

DECLARATION

I declare that the thesis is my original work except for quotations and citations,

which have been duly acknowledged. I also declare that it has not been previously,

and is not concurrently, submitted for any other degree at Universiti Putra Malaysia

or at any other institutions.

LEILA KHODAPANAH

Date: 16 August 2012

© COPYRIG

HT UPM

xv

TABLE OF CONTENT

Page ABSTRACT iii

ABSTRAK vii

ACKNOWLEDGEMENTS xi

APPROVAL xii

DECLARATION xiv

TABLE OF CONTENT xv

LIST OF TABLES xviii

LIST OF FIGURES xx

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background 2

1.3 Problem Statement 6

1.4 Research Purpose and Objectives 8

1.5 Scope of Thesis 9

2 LITERATURE REVIEW Error! Bookmark not defined. 2.1 Introduction Error! Bookmark not defined.

2.2 Groundwater Recharge Error! Bookmark not defined.

2.3 Groundwater Quality Studies Error! Bookmark not defined.

2.4 Groundwater Vulnerability Definitions Error! Bookmark not defined.

2.5 The purpose of vulnerability assessments Error! Bookmark not defined.

2.6 Approaches to groundwater vulnerability assessment Error! Bookmark

not defined. 2.6.1 Index and overlay methods Error! Bookmark not defined.

2.6.2 Process-based simulation models Error! Bookmark not

defined. 2.6.3 Statistical methods Error! Bookmark not defined.

2.7 Vulnerability assessment using Index and overlay simulation models

Error! Bookmark not defined. 2.8 Comparison of aquifer vulnerability Assessment Techniques Error!

Bookmark not defined. 2.9 Validation of groundwater vulnerability assessment Error! Bookmark

not defined. 2.10 GIS in Groundwater Vulnerability Assessment Error! Bookmark not

defined.

3 METHODOLOGY 48

3.1 Introduction 48

3.2 Study area 52

3.2.1 Location and Accessibility 52

© COPYRIG

HT UPM

xvi

3.2.2 Data Collection 54

3.2.3 Climate 57

3.2.4 Physiography 61

3.2.5 Surface Water 64

3.2.6 Geology 66

3.2.7 Geoelectrical investigation 75

3.3 Well Log Analysis 81

3.4 Hydrogeology 87

3.4.1 Hydraulic Characteristics of Aquifer 88

3.4.2 Groundwater Level Fluctuations 91

3.5 Groundwater Recharge 96

3.6 Geochemical analysis 106

3.6.1 Graphical methods 111

3.6.2 Statistical methods 112

3.7 Groundwater vulnerability assessment 115

3.7.1 DRASTIC model 116

3.7.2 GOD model 122

3.8 Geostatistical techniques 125

3.8.1 Introduction to interpolation 125

3.8.2 Theoretical basis 127

4 RESULTS AND DISCUSSION 132

4.1 Introduction 132

4.2 Groundwater quality assessment 133

4.2.1 Major ion chemistry 133

4.2.2 Water classification 142

4.2.3 Hydrochemical Facies 154

4.2.4 Statistical analysis 157

4.3 Geostatistical analyses 170

4.3.1 Depth to water 171

4.3.2 Nitrate concentration map 173

4.4 Aquifer vulnerability assessment 175

4.4.1 Depth to water 176

4.4.2 Recharge 179

4.4.3 Aquifer media 182

4.4.4 Soil media 185

4.4.5 Topography 188

4.4.6 Impact of vadose zone 190

4.4.7 Hydraulic conductivity 192

4.4.8 DRASTIC index 194

4.4.9 GOD index 196

4.5 Modified DRASTIC index 200

4.6 Comparison between DRASTIC and GOD scores 206

4.7 Validation of DRASTIC and GOD 209

5 CONCLUSION 221

© COPYRIG

HT UPM

xvii

5.1 Summary and conclusion 221

5.2 Recommendation for future works 227

REFERENCES 230

APPENDIX A 248

APPENDIX B 254

APPENDIX C 260

APPENDIX D 263

APPENDIX E 267

BIODATA OF STUDENT 270