universidade federal do cearÁ a centro de ......dados internacionais de catalogação na...

21
a UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA LEO IVO DA SILVA SOUZA DIFFERENTIAL OPERATORS PENALIZED BY GEOMETRIC POTENTIALS FORTALEZA 2018

Upload: others

Post on 06-Aug-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

a

UNIVERSIDADE FEDERAL DO CEARÁCENTRO DE CIÊNCIAS

DEPARTAMENTO DE MATEMÁTICAPROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

LEO IVO DA SILVA SOUZA

DIFFERENTIAL OPERATORS PENALIZED BY GEOMETRICPOTENTIALS

FORTALEZA

2018

Page 2: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

LEO IVO DA SILVA SOUZA

DIFFERENTIAL OPERATORS PENALIZED BY GEOMETRIC POTENTIALS:

Thesis submitted to the Post-graduate Pro-gram of the Mathematical Departament ofUniversidade Federal do Ceará in partial ful-fillment of the necessary requirements for thedegree of Ph.D in Mathematics. Area of ex-pertise: Geometric Analysis

Advisor: Prof. Dr. José Fábio Bezerra Mon-tenegro

FORTALEZA

2018

Page 3: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará

Biblioteca UniversitáriaGerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

S239d Souza, Leo Ivo da Silva. Differential operators penalized by geometric potentials / Leo Ivo da Silva Souza. – 2018. 20 f.

Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação emMatemática , Fortaleza, 2018. Orientação: Prof. Dr. José Fábio Bezerra Montenegro.

1. Operador. 2. Autovalor. 3. Curvatura. I. Título. CDD 510

Page 4: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

LEO IVO DA SILVA SOUZA

DIFFERENTIAL OPERATORS PENALIZED BY GEOMETRIC POTENTIALS

Thesis submitted to the Post-graduate Pro-gram of the Mathematical Departament ofUniversidade Federal do Ceará in partial ful-fillment of the necessary requirements for thedegree of Ph.D in Mathematics. Area of ex-pertise: Geometric Analysis

Aproved in: 21/08/2018.

EXAMINATION BOARD

Prof. Dr. José Fábio Bezerra Montenegro (Advisor)Universidade Federal do Ceará (UFC)

Prof. Dr. Gleydson Chaves RicarteUniversidade Federal do Ceará (UFC)

Prof. Dr. Levi Lopes de LimaUniversidade Federal do Ceará (UFC)

Prof. Dr. Luiz Antônio Caetano MonteUniversidade Federal do Ceará (UFC-Campus de Russas)

Prof. Dr. Barnabé Pessoa LimaUniversidade Federal do Piauí (UFPI)

Page 5: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

1

I dedicate this work to all those who havecontributed directly or indirectly to its com-pletion.

Page 6: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

ACKNOWLEDGMENTS

I would like to thank Prof. Fábio Montenegro, for the excellent guidance andsupport given throughout these years.

I want to thank the participating professors of the examining board GleydsonRicarte, Luiz Antônio, Barnabé Lima, Levi Lima and Cleon Barroso for their time, fortheir valuable collaboration and suggestions.

I would like to thank professors Luciano Mari, Daniel Cibotaru, Diego Moreira,Marcos Melo and Jorge Herbert for the knowledge provided during their courses and thegood reception they always had with me.

Futhermore, I want to thank my family, especially my father Francisco dePaulo Souza and my aunt Joana Darc Souza for the intensive support during my studies.

Also thanks to my friends Roger Oliveira, Henrique Blanco, Gilson Granja,Eduardo Garcez,Wanderley Oliveira, Diego Eloi, Diego Sousa, Nicolas Alcantara, Reni-valdo Sena, JoserlanPerote, Edson Sampaio, Ederson Braga, Gleison Carneiro, Amil-car Montalban, FlavianoFrota, Fabricio Oliveira, Antônio Grangeiro, Davi Lustosa, DaviRibeiro, Rafael Eufrásio,Jocel Faustino, Marcos Ranieri, João Nunes, Rui Paiva, BrenoRafael, Leonardo Tavares,Eurípedes Silva, Anderson Feitosa, Ivaldo Tributino, RicardoFreire, Elisafã Braga, Air-ton Oliveira, Adriana Martins, Lisiane Castro, Letícia Holanda,Neilha Márcia, JaniellyAraújo and Elaine Sampaio for their sincere friendship and supportthroughout these years.

To the coordination of PGMAT-UFC, to the teachers Pacelli Bessa and Alexan-dreFernandes, the secretaries Andrea Costa and Jessyca Soares for all the assistance theyhave given over the years.

This study was financed in part by the Coordenação de Aperfeiçoamento dePessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

Page 7: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

RESUMO

Este trabalho é apresentado em duas partes. Na primeira parte, estabelecemos a não-positividade do segundo autovalor do operador de Schrödinger −div

(Pr∇ ·

)− W 2

r emuma hipersuperfície fechada Σn de Rn+1, onde Wr é uma potência da (r + 1)-ésima cur-vatura média de Σn que pediremos positiva. Se este eigenvalue é nulo, teremos umacaracterização da esfera. Este teorema generaliza o resultado de Harrell e Loss provadopara o operador de Laplace-Beltrame penalizado pelo quadrado da curvatura média. .Nasegunda parte, nós estabelecemos a não-positividade do segundo auto-valor do operadorde Schrödinger − d2

ds2− (√F )−2C F (κ), em uma curva fechada do plano com comprimento

2π, F ∈ C1(R) e κ é a curvatura da curva. Se este autovalor é nulo, teremos uma car-acterização do círculo, que generaliza parcialmente o resultado de Harrell e Loss provadoao operador unidimensional de Laplace penalizado pelo quadrado da curvatura em curvasdo plano.

Palavras-chave: Operador. Autovalor. Curvatura.

Page 8: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

ABSTRACT

This paper is presented in two parts. In the first part, we establish the non-positivity ofthe second eigenvalue of the Schrödinger operator −div

(Pr∇ ·

)−W 2

r on a closed hyper-surface Σn of Rn+1, where Wr is a power of the (r + 1)-th mean curvature of Σn whichwe will ask to be positive. If this eigenvalue is null, we will have a characterization of thesphere. This theorem generalizes the result of Harrell and Loss proved to the Laplace-Beltrame operator penalized by the square of the mean curvature. In the second part,we established the non-positivity of the second auto-value of the Schödinger operator− d2

ds2− (√F )−2C F (κ), in a closed curve of the plane with length 2π, F ∈ C1(R) and κ is

the curvature of the curve. If this eigenvalue is null, we will have a characterization ofthe circle, which generalizes partially the result of Harrell and Loss proved to the one-dimensional Laplace operator penalized by the square of the curvature in curves of theplane.

Keywords: Operator. Eigenvalue. Curvature.

Page 9: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

SUMÁRIO

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 ON THE Lr-OPERATORS PENALIZED BY (r + 1)-MEAN

CURVATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.1 Principal Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.1.1 Proof of the principal theorem . . . . . . . . . . . . . . . . . . . . . . . . 123 ON THE UNIDIMENSIONAL LAPLACE OPERATOR PE-

NALIZED BY A FUNCTION OF THE CURVATURE . . . . . 164 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Page 10: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

9

1 INTRODUCTION

This result is based on the ideas presented by Harrell and Loss in (1998),where we obtain an elegant and more simplified proof that allowed us to generalize theirresults to a more general class of operators, Lr penalized by a power of (r+ 1)− th meancurvature. In 1997, Harrell and Loss, obtained the following rigidity result.

Theorem 1.1. Let Ω a smooth compact oriented hypersurface of dimension d immersedin Rd+1; in particular self-intersections are allowed. The metric on that surface is thestandard Euclidean metric inherited from Rd+1. Then the second eigenvalue λ2 of theoperator

H = −∆− 1

dh2

is strictly negative unless Ω is a sphere, in which case λ2 equals zero.The goal of this paper is to extend this result for a more general class

of elliptic geometric operators. To present our main result, we need to introduce somedefinitions and notations.

Let φ : Mn → Mn+1 be an isometric immersion, and denote by A the second

fundamental form associated to φ. It is known that A has n-geometric invariants. Theyare given by the elementary symmetric functions Sr of the principal curvatures κ1, . . . , κn

as follows:Sr :=

∑i1<···<ir

κi1 . . . κir (1 ≤ r ≤ n).

The r-curvature Hr of φ is then defined by

Hr :=Sr(nr

) .Notice that H1 corresponds to the mean curvature and Hn the Gauss-Kronecker curvatureof φ. The Newton’s transformations of φ are the operators Pr defined inductively by

Pr = SrI −APr−1,

P0 = I.

Page 11: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

10

2 ON THE Lr-OPERATORS PENALIZED BY (r+ 1)-MEAN CURVATURE

The so-called Lr-operators are defined by Lr := div(Pr∇ ·

). It is known that

if every Hr is positive, then Lr is elliptic by Proposition 3.2 in (BARBOSA e COLARES,1997).

Let Σ be a compact hypersurface of Rn+1 with the operator Lr being elliptic,we have that−Lr is a positive, unbounded, self-adjoint operator with the spectrum formedonly by eigenvalues

σ(−Lr) = 0 = λ1(−Lr) < λ2(−Lr) ≤ ....

We consider the following class of Schrödinger operators

Lr := −Lr −W 2r .

where the potential Wr =(crH

r+2r+1

r+1

)1/2 and cr = (n− r)(nr

), with 0 ≤ r ≤ n− 1. Now we

can present the main result of this thesis.

2.1 Principal Theorem

Theorem 2.1. Let Σ be a n-dimensional closed hypersurface embedded in Rn+1. Assumethat Hr+1 > 0. Then the second eigenvalue of Lr, λ2(Lr) is strictly negative unless Σ isa sphere, in which case λ2(Lr) equals zero.

Note that the potential W 2r has the dimension (vol(Σ))−(r+2), the same as the

differential operator. As a consequence, the number of negative eigenvalues is independentof the volume of the hypersurface.

For the above proof, the following lemma will be used

Lemma 2.1. Let Σ be a n-dimensional closed hypersurface embedded in Rn+1 with Hr+1 >

0 and consider the operator Lr = −Lr −W 2r . Suppose there f ∈ L2(Σ) satisfying:

(1) 〈f,Wr〉 = 0;(2) 〈R0(Wrf),Wrf〉 > ‖f‖2

2,where 〈 , 〉 is the inner product in L2(Σ), R0 =

(−Lr|[1]⊥

)−1 and

[1]⊥ = u ∈ L2(Σ); 〈u, 1〉 = 0.

Then the operator Lr has two negative eigenvalues.

Proof. Note that 〈Lr1, 1〉 < 0. To prove the lemma, we must find another function suchthat Lr is negative and then, apply the Min-Max Principle.

Page 12: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

11

Let α = sup〈R0(Wrg),Wrg〉; ‖g‖2 = 1, 〈g,Wr〉 = 0 be, note that α > 1, then α = 1 + ε

for ε > 0. Define the functional in L2(Σ) as being

F (g) = 〈R0(Wrg),Wrg〉, (1)

G(g) = ‖g‖22 (2)

and

J(g) = 〈g,Wr〉. (3)

By Lagrange Multipliers method, there exists u ∈ L2(Σ) with ‖u‖ = 1 and 〈u,Wr〉 = 0,such that

F ′(u) = αG′(u) + βJ ′(u). (4)

The above functional equation gives us the following Euler-Lagrange equation

WrR0(Wru) = αu+ βWr. (5)

Rewriting the above equation in the differential form, we have the following partial dif-ferential equation

Wru = −αLr(u

Wr

). (6)

Using the fact that α = 1 + ε, we have to

Lr(u

Wr

)= εLr

(u

Wr

). (7)

Thus we conclude that⟨Lr(u

Wr

),

(u

Wr

)⟩= ε

⟨Lr

(u

Wr

),

(u

Wr

)⟩(8)

= −ε⟨Pr∇

(u

Wr

),∇(u

Wr

)⟩< 0.

Using the Min-Max characterization we have to

λ2(Lr) = minV⊂H2(Σ)dimV =2

maxv∈Vv 6=0

〈Lrv, v〉‖v‖2

. (9)

Let V0 = [1, u/Wr] be, we have dimV0 = 2 and 〈Lrv, v〉 < 0 for all v ∈ V0. In factdimV0 = 2, otherwise we would have Wr = 0, which contradicts the fact that Hr+1 > 0.

Page 13: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

12

Let v ∈ V0 be then we have v = a · 1 + b · uWr

, and

〈Lrv, v〉 = a2〈Lr1, 1〉+ 2ab

⟨Lr1,

(u

Wr

)⟩+ b2

⟨Lr(u

Wr

),

(u

Wr

)⟩,

and2ab

⟨Lr1,

(u

Wr

)⟩= 2ab

⟨−W 2

r ,

(u

Wr

)⟩= −2ab〈Wr, u〉 = 0.

Then we have to 〈Lrv, v〉 < 0 for all v ∈ V0. Choosing V = V0, we have to λ2(Lr) < 0.Hence, the operator Lr has more than one negative eigenvalue, if there is

f ∈ L2(Σ) satisfying (1) and (2).

2.1.1 Proof of the principal theorem

Now we give a proof for the Theorem 1.2. Let φ : Σn → Rn+1 be an isometricimmersion. By (ALENCAR, DO CARMO, e ROSENBERG, 1993), we have the followingequation satisfied:

− Lrφ = crHr+1N, (10)

where N is the normal vector of the surface. Thus, each coordinate satisfies

−Lrφi = crHr+1Ni,

with i ∈ 1, ..., n+ 1. Denote by

(φi)Σ :=1

vol(Σ)

∫Σ

φidΣ,

and (φ)Σ := ((φ1)Σ, ..., (φn+1)Σ). Choosing fi so that

fiWr = crHr+1Ni,

we havefi = (crH

rr+1

r+1 )12Ni,

and 〈fi,Wr〉 = 0, by (2.10).Observe that

R0(Wrfi) = R0(crHr+1Ni) = R0(−Lr(φi − (φi)Σ)) = φi − (φi)Σ.

By multiplying both sides by Wrfi and using Divergence Theorem, we conclude that

〈R0(Wrfi),Wrfi〉2 = 〈Pr∇φi,∇φi〉2 =

∫Σ

crHr+1(φi − (φi)Σ)NidΣ.

Page 14: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

13

Summing up both sides with i varying from 1 to n+ 1, we have

n+1∑i=1

〈R0(Wrfi),Wrfi〉2 =n+1∑i=1

〈Pr∇φi,∇φi〉2 =

∫Σ

crHr+1〈φ− (φ)Σ, N〉dΣ.

In (ALENCAR, DO CARMO, e ROSENBERG, 1993), we find the Minkowski’sintegral formula ∫

Σ

HrdΣ−∫

Σ

Hr+1〈φ− (φ)Σ, N〉dΣ = 0.

Thus, replacing the previous expression, we have

n+1∑i=1

〈R0(Wrfi),Wrfi〉2 =n+1∑i=1

〈Pr∇φi,∇φi〉2 =

∫Σ

crHrdΣ.

By (ALENCAR, DO CARMO, e ROSENBERG, 1993) using the classical inequalityH1rr ≥

H1

r+1

r+1 , for r ≥ 1, we have

n+1∑i=1

〈R0(Wrfi),Wrfi〉2 =

∫Σ

crHrdΣ ≥∫

Σ

crHr

r+1

r+1 dΣ =n+1∑i=1

∫Σ

crHr

r+1

r+1N2i dΣ

=n+1∑i=1

‖fi‖22.

Remark. If r = 0, we have written the sums above being identical and the only step thatdoes not appear is the gap between the curvatures, however it is easy to see that the restof the argument is following analogous to other cases.

Define di = 〈R0(Wrfi),Wrfi〉2−‖fi‖22, thus

n+1∑i=1

di ≥ 0 and then two possibilitiesmay occur:(i) There is i ∈ 1, ..., n+ 1 such that di > 0;(ii) di = 0, for all i ∈ 1, ..., n+ 1.

If (i) occurs, we have fi satisfies the hypotheses (1) and (2) of the Lemma 2.1and therefore

λ2(Lr) < 0.

If (ii) occurs, we have all the di void. In this case we use Lagrange multipliers.Now consider the functionals Ψ,Φ : L2(Σ)→ R given by

Ψ(f) = 〈R0(Wrf),Wrf〉 − ‖f‖22, Φ(f) = 〈Wr, f〉2

Page 15: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

14

and the set of constraints

S = f ∈ L2(Σ); Φ(f) = 〈Wr, f〉2 = 0.

We have to study two possibilities:(a) infΨ(f); f ∈ S < 0 or(b) infΨ(f); f ∈ S = 0.

In the first case, there is function f ∈ S such that Ψ(f) < 0, and f is a criticalfunction for Ψ on S. Then the method of Lagrange multipliers have to exist Γ ∈ R, suchthat

Ψ′(f) = ΓΦ′(f)

which resulted in the following Euler-Lagrange equation

WrR0(Wrf)− f = ΓWr.

Multiplying both sides of the above equation for f ∈ S and integrating, we have

0 = Γ〈Wr, f〉 = 〈R0(Wrf),Wrf〉 − ‖f‖22 < 0.

This is a contradiction, and the case (a) not occuring. In the second case, we haveseen that each fi ∈ S and Ψ(fi) = infΨ(f); f ∈ S = 0. By the Method of LagrangeMultipliers, there exists Γ ∈ R such that Ψ′(fi) = ΓΦ′(fi). Hence, we obtain that each fisatisfies the following Euler-Lagrange equation,

WrR0(Wrfi) = fi + ΓWr,

therefore we conclude thatWr(R0(Wrfi)− Γ) = fi,

Wr(φi − (φi)Σ − Γ) = fi,

thenφi − (φi)Σ − Γ =

fiWr

= H− 1

r+1

r+1 Ni.

Thus, have its version vector

φ− (φ)Σ − Γ = H− 1

r+1

r+1 N.

Differentiating the above expression along any curve Σ, we conclude that thederivative of H

− 1r+1

r+1 is zero, so Hr+1 is constant, then Σ is a sphere by Alexandrov’sTheorem in (ROS, 1987).

Page 16: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

15

In fact, in this case we have λ2(Lr) = 0, as we have

Wr(φi − (φi)Σ − Γ) = fi,

and multiplying both sides by the expression Wr, we obtain

W 2r (φi − (φi)Σ − Γ) = Wrfi = −Lr(φi − (φi)Σ − Γ),

thus ψ = φi − (φi)Σ − Γ is the second eigenfunction of Lr = −Lr −W 2r , and Lrψ = 0.

Define the operator Tr = −Lr − cr‖A‖r+2.

Corollary 2.1. Under the same conditions of Theorem 1.2, λ2(Tr) ≤ 0, with equality ifand only if Σ is a round sphere.

The proof of the corollary follows immediately from the Jensen’s inequalityand the min-max principle. This finishes the proof.

Page 17: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

16

3 ON THE UNIDIMENSIONAL LAPLACE OPERATOR PENALIZED BY

A FUNCTION OF THE CURVATURE

This result is based on the ideas presented by Harrell and Loss in (1998). Inthis section we will consider a family of operators in a smooth and closed curve of theplane with length 2π and study the non-positivity of the second eigenvalue of these oper-ators, characterizing the circle when the second auto value is zero.

Theorem 3.1. Let C be a smooth, closed, simple curve in the plane with length 2π andwith curvature κ. We consider F ∈ C1(R) a function such that F ≥ 0, where F, F ′ vanishonly in 0, and the operator

LF := − d2

ds2− (√F )−2C F (κ),

with (√F )C = 1

∫ 2π

0

√F (κ)dt. Then, the second eigenvalue of LF is less than or equal

to 0, with equality if and only if C is a circle.

For the above proof, the following lemma will be used.

Lemma 3.1. Let C be a smooth, closed, simple curve in the plane and consider theoperator LF := − d2

ds2− (√F )−2C F (κ). Suppose there f ∈ L2(C) satisfying:

(1) 〈f, (√F )−1C√F (κ)〉2 = 0;

(2) 〈R0((√F )−1C√F (κ)f), (

√F )−1C√F (κ)f〉2 > ‖f‖2

2,

where 〈 , 〉2 is the inner product in L2(C), R0 =(− d2

ds2|[1]⊥

)−1

and

[1]⊥ = u ∈ L2(C); 〈u, 1〉2 = 0.

Then the operator LF has two negative eigenvalues.The proof of the lemma is analogous to the case where F (x) = x2.

Now we show the Theorem 1.

Proof. Let φ1, φ2,Φ1,Φ2 : [0, 2π]→ R the functions defined by

φ1(s) := cos

((√F )−1

C

∫ s

0

√F (κ)dt

),

φ2(s) := sin

((√F )−1

C

∫ s

0

√F (κ)dt

),

Page 18: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

17

Φ1(s) :=

∫ s

0

φ1(t)dt and Φ2(s) :=

∫ s

0

φ2(t)dt.

Observe that

Φ′1 = φ1,Φ′2 = φ2,Φ

′′1 = φ′1 = −(

√F )−1C

√F (κ)φ2 and Φ′′2 = φ′2 = (

√F )−1C

√F (κ)φ1.

Then

R0((√F )−1C

√F (κ)φ2) = R0(−Φ′′1) = Φ1 − (Φ1)C

andR0((√F )−1C

√F (κ)φ1) = R0(Φ′′2) = (Φ2)C − Φ2.

Therefore〈R0((

√F )−1C

√F (κ)φ1), (

√F )−1C

√F (κ)φ1)〉2 = ‖φ2‖2

2

and〈R0((

√F )−1C

√F (κ)φ2), (

√F )−1C

√F (κ)φ2)〉2 = ‖φ1‖2

2.

Define di = 〈R0((√F )−1C√F (κ)φi), (

√F )−1C√F (κ)φi)〉2−‖φi‖2

2, thus d1 + d2 = 0 and thentwo possibilities may occur:

(i) There is i ∈ 1, 2 such that di > 0;(ii) di = 0, for i ∈ 1, 2.If (i) occurs, we have φi satisfies the hypotheses (1) and (2) of the Lemma 2

and therefore λ2(LF ) < 0.

If (ii) occurs, we have all the di void. In this case we use Lagrange multipliers.

Now consider the functionals Ψ,Θ : L2(C)→ R given by

Ψ(f) = 〈R0((√F )−1C

√F (κ)f), (

√F )−1C

√F (κ)f〉2−‖f‖2

2, Θ(f) = 〈(√F )−1C

√F (κ), f〉2

and the set of constraints

S = f ∈ L2(C); Θ(f) = 〈(√F )−1C

√F (κ), f〉2 = 0.

We have to study two possibilities:(a) infΨ(f); f ∈ S < 0 or(b) infΨ(f); f ∈ S = 0.

In the first case, there is function f ∈ S such that Ψ(f) < 0, and f is a criticalfunction for Ψ on S. Then the method of Lagrange multipliers have to exist Γ ∈ R, such

Page 19: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

18

thatΨ′(f) = ΓΘ′(f)

which resulted in the following Euler-Lagrange equation

(√F )−1C

√F (κ)R0((

√F )−1C

√F (κ)f)− f = Γ(

√F )−1C

√F (κ).

Multiplying both sides of the above equation for f ∈ S and integrating, we have

0 = Γ〈(√F )−1C

√F (κ), f〉2 = 〈R0((

√F )−1C

√F (κ)f), (

√F )−1C

√F (κ)f〉2 − ‖f‖2

2 < 0.

This is a contradiction, and the case (a) not occurs.In the second case, we have seen that each φi ∈ S and Ψ(φi) = infΨ(f); f ∈ S = 0.

By the Method of Lagrange Multipliers, there exists Γ ∈ R such that Ψ′(φi) = ΓΘ′(φi).Hence, we obtain that each φi satisfies the following Euler-Lagrange equation,

(√F )−1C

√F (κ)R0((

√F )−1C

√F (κ)φi) = φi + Γ(

√F )−1C

√F (κ),

therefore we conclude that

(√F )−1C

√F (κ)(R0((

√F )−1C

√F (κ)φi)− Γ) = φi,

(√F )−1C

√F (κ)(Φj − (Φj)C − Γ) = φi

Differentiating the above expression we have that

φj = [(√F )C(

√F (κ))−1]′φi + φj.

Therefore,[(√F )C(

√F (κ))−1]′ = 0⇒ κ′(s)F ′(κ) = 0

such as κ > 0, F ′(κ) 6= 0 we have κ′ = 0, that is κ is constant and therefore C is acircle.

Page 20: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

19

4 CONCLUSION

In this thesis, we present some results based on the work of Harrell and Loss.In the first part we generalize the result in hypersurfaces submerged with

(r+1)-positive mean curvature, for the operator Lr penalized by a power of this curvature.In the second part we generalize the result into curves of the plane with length

2π, for the one-dimensional laplace operator penalized by a function of the curvature ofthe curve.

Page 21: UNIVERSIDADE FEDERAL DO CEARÁ a CENTRO DE ......Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente

20

REFERENCES

ALENCAR, Hilário; DO CARMO, Manfredo; ROSENBERG, Harold. On the firsteigenvalue of the linearized operator of ther-th mean curvature of a hypersurface.Annals of Global Analysis and Geometry, v. 11, n. 4, p. 387–395, 1993.

BARBOSA, João Lucas Marques; COLARES, Antônio Gervasio. Stability ofHypersurfaces with Constant r-Mean Curvature. Annals of Global Analysis andGeometry, v. 15, n. 3, p. 277–297, 1997.

HARRELL II, EVANS M; LOSS, Michael. On the Laplace operator penalized by meancurvature. Communications in mathematical physics, v. 195, n. 3, p. 643–650,1998.

ROS, Antonio. Compact hypersurfaces with constant higher order mean curvatures.Revista Matemática Iberoamericana, v. 3, n. 3, p. 447–453, 1987.