universidade estadual de campinas instituto de...

176
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA MARCELO VENTURA RUBIO EFEITO DE N-GLICANAS SOBRE PROPRIEDADES FUNCIONAIS DE GLICOSIL HIDROLASES N-GLYCANS EFFECT ON FUNCTIONAL PROPERTIES OF GLYCOSYL HYDROLASES CAMPINAS 2018

Upload: others

Post on 27-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE BIOLOGIA

MARCELO VENTURA RUBIO

EFEITO DE N-GLICANAS SOBRE PROPRIEDADES

FUNCIONAIS DE GLICOSIL HIDROLASES

N-GLYCANS EFFECT ON FUNCTIONAL PROPERTIES OF

GLYCOSYL HYDROLASES

CAMPINAS

2018

MARCELO VENTURA RUBIO

EFEITO DE N-GLICANAS SOBRE PROPRIEDADES FUNCIONAIS DE GLICOSIL HIDROLASES

N-GLYCANS EFFECT ON FUNCTIONAL PROPERTIES OF GLYCOSYL HYDROLASES

Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutor em Ciências, na área de concentração em Fármacos, Medicamentos e Insumos para Saúde

Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of PhD in Sciences, in the field of concentration Pharmaceuticals, Medicines and Health Supplies

Orientador: ANDRÉ RICARDO DE LIMA DAMÁSIO Co-Orientador: FABIO MARCIO SQUINA

CAMPINAS

2018

ESTE ARQUIVO DIGITAL CORRESPONDE À

VERSÃO FINAL DA TESE DEFENDIDA PELO

ALUNO MARCELO VENTURA RUBIO E

ORIENTADA PELO ANDRÉ RICARDO DE LIMA

DAMÁSIO

Campinas, 12 de julho de 2018.

COMISSÃO EXAMINADORA

Profa. Dra. Maria de Lourdes Teixeira de Moraes Polizeli

Prof. Dr. Marcos Silveira Buckeridge

Dr. Fausto Bruno dos Reis Almeida

Dra. Thamy Lívia Ribeiro Corrêa

Prof. Dr. André Ricardo de Lima Damásio (Orientador)

Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno.

Dedicatória

Aos meus pais e irmã

A toda minha família

A todos os meus amigos

“Education is the most powerful weapon which you can use to change the world”

“Always seems impossible until it’s done”

(Nelson Mandela)

Agradecimento

Ao longo dessa jornada, chamada doutorado, muito tenho a agradecer a todos que

fizeram parte dessa etapa da minha vida. Diretamente ou indiretamente todos vocês

são responsáveis e o motivo de chegar aonde cheguei e ser o que eu sou.

Agradeço a minha família por estar sempre ao meu lado, tanto nos momentos fáceis

quanto nos difíceis.

Agradeço a minha namorada, Aline, pela paciência, compreensão e companheirismo

ao longo desses anos.

Agradeço aos meus amigos que tornaram essa jornada mais fácil e muito mais

divertida. Pela ajuda no dia a dia, dentro e fora de um laboratório.

Agradeço a Universidade Estadual de Campinas (Unicamp) e a Fundação de Amparo

a Pesquisa do Estado de São Paulo (Fapesp; processo n° 2013/24988-5) pelo suporte

concedido ao longo de minha vida acadêmica.

Agradeço ao meu orientador, Prof. Dr. André Damásio, por todos esses anos de

ensinamentos passados e pela amizade criada nesses anos.

Muito obrigado a todos!

“We must find time to stop and thank the people who make a difference in our lives”

(John F. Kennedy)

Resumo

O mercado de enzimas industriais abrange uma ampla variedade de aplicações, bem

como: cuidados pessoais, indústria alimentícia, biocombustíveis, biopolímeros, entre

outros. O principal desafio para o uso de coquetéis enzimáticos em larga escala é seu

custo elevado, aumentando o valor final dos bioprodutos. Portanto, o custo dos

bioprodutos pode ser reduzido significativamente, através do aumento do rendimento

da produção de enzimas em cepas fúngicas por técnicas de biologia molecular e/ou

melhorando a eficiência enzimática por engenharia de proteínas. Os fungos

filamentosos são os principais produtores de enzimas industriais devido ao vasto

repertório enzimático em seu genoma e elevada secreção. O gênero Aspergillus inclui

microrganismos que naturalmente degradam a biomassa lignocelulósica secretando

grandes quantidades de enzimas ativas em carboidratos (CAZymes). A capacidade

de Aspergillus de realizar modificações pós-traducionais, tais como: clivagem

proteolítica, ligações dissulfeto e glicosilação, proporciona uma vantagem adicional à

sua utilização para a produção de enzimas heterólogas. Contudo, a super-expressão

de proteínas sobrecarrega a via de N-glicosilação e os mecanismos de enovelamento,

resultando no acúmulo de proteínas mal ou não enoveladas. Proteínas mal

enoveladas são direcionadas à degradação, consequentemente reduzindo o

rendimento de sua secreção. Além disso, a posição e o número de N-glicanas ligados

às proteínas podem influenciar sua secreção e propriedades funcionais. Com o

objetivo de minimizar o custo de produção de enzimas, Aspergillus nidulans foi

utilizado como organismo modelo para estudar o efeito da N-glicosilação na secreção

de enzimas industriais. Utilizando abordagem proteômica identificou-se 265 N-

glicoproteínas secretadas por A. nidulans quando cultivado em xilano e bagaço de

cana-de-açúcar pré-tratado. As CAZymes corresponderam a mais de 50% do

secretoma e 182 sítios de N-glicosilação foram validados por LC-MS/MS. A fim de

investigar a influência das N-glicosilações na secreção de proteínas em A. nidulans, a

β-xilosidase (BxlB) da família glicosil hidrolase 3 foi selecionada como alvo devido ao

seu elevado nível de secreção durante o crescimento em xilano. As β-xilosidases são

hidrolases glicosídicas que auxiliam na degradação da biomassa vegetal, liberando

xilose a partir de xilooligossacarídeos e/ou xilobiose. Sete sítios de N-glicosilação

foram preditos em BxlB e cinco deles foram validados por LC-MS/MS. Glicomutantes

foram desenhados para investigar a influência da glicosilação na secreção e função

de BxlB. O mutante deglicosilado (BxlBDeglyc) apresentou secreção e atividade

enzimática semelhantes com a proteína selvagem (BxlBwt). Interessantemente, o

mutante parcialmente glicosilado (BxlBN1;5;7) apresentou níveis aumentados de

atividade e secreção. Por outro lado, o mutante BxlBCC, no qual o contexto de N-

glicosilação foi alterado, foi expresso, mas não secretado em A. nidulans. BxlBwt,

BxlBDeglyc e BxlBN1;5;7 mostraram estrutura secundária semelhante, embora os

mutantes tivessem menor temperatura de fusão em comparação com o tipo selvagem.

Além disso, um novo glicomutante mantendo apenas dois sítios de N-glicosilação

(BxlBN5;7) mostrou uma melhor eficiência catalítica. Este estudo mostra a influência da

N-glicosilação na função e produção de BxlB em A. nidulans, reforçando que a

glicoengenharia de proteínas é uma ferramenta promissora para aumentar a

estabilidade térmica, secreção e atividade enzimática. Esse trabalho, também, poderá

servir de base para modificações de N-glicosilação em CAZymes para aplicações

biotecnológicas.

Abstract

The industrial enzymes market covers a wide variety of applications such as personal

care, food industries, biofuels, biopolymers, among others. The main bottleneck for

using enzymatic cocktails at large scale is the high-cost, which increases the

bioproducts final value. Thus the bioproducts cost can be significantly reduced by

improving the yield of enzymes production by molecular biology of fungal strains and/or

by improving enzymes efficiency by protein engineering. Filamentous fungi are the

main producers of industrial enzymes due to the great enzymatic repertoire and the

high levels of protein secretion. The genus Aspergillus includes microorganisms that

naturally degrade lignocellulosic biomass by secreting large amounts of carbohydrate-

active enzymes (CAZymes). The capacity of Aspergillus to perform post-translational

modifications such as proteolytic cleavage, disulfide bond formation and glycosylation,

provides an additional advantage to their use as hosts for heterologous protein

production. However, the overexpression of target proteins overloads the N-

glycosylation pathway and folding mechanisms resulting in the accumulation of

unfolded or misfolded proteins. Misfolded proteins are directed to degradation,

consequently reducing the secretion yield. Furthermore, the position and the number

of N-glycans attached to proteins can influence their secretion and functional

properties. Aiming to minimize the cost of enzymes production, Aspergillus nidulans

was used as a model organism to study the effect of N-glycosylation in the secretion

of industrial enzymes. A proteomics approach identified 265 N-glycoproteins secreted

by A. nidulans grown on xylan and pretreated sugarcane bagasse. CAZymes

corresponded to more than 50% of the secretome and 182 N-glycosylated sites were

validated by LC-MS/MS. In order to investigate the influence of N-glycosylation in

protein secretion by A. nidulans, a β-xylosidase (BxlB) was selected as target protein

due to its high secretion level during growth on xylan. β-xylosidases are glycoside

hydrolases that assist plant biomass degradation by releasing xylose from

xylooligosaccharides and/or xylobiose. Seven N-glycosylation sites were predicted in

the BxlB and five were validated by LC-MS/MS. Glycomutants were designed in order

to investigate the influence of glycosylation on β-xylosidase secretion and function.

The deglycosylated mutant (BxlBDeglyc) showed similar results regarding enzyme

secretion and activity compared to the wild-type (BxlBwt). Interestingly, a partially

glycosylated mutant (BxlBN1;5;7) showed increased activity and secretion levels. On the

other hand, the mutant BxlBCC, in which the glycosylation context was changed by the

design of four new N-glycosylation sites, was expressed but not secreted in A.

nidulans. BxlBwt, BxlBDeglyc and BxlBN1;5;7 showed similar secondary structure, although

the mutants had lower melting temperature compared to the wild-type. Moreover, an

additional BxlB glycomutant maintaining only two N-glycosylated sites (BxlBN5;7)

showed improved catalytic efficiency. This study showed the influence of N-

glycosylation on BxlB function and production in A. nidulans, reinforcing that proteins

glycoengineering is a promising tool to enhance thermal stability, secretion and

enzymatic activity. Our report may also support N-glycosylation modification in

CAZymes to biotechnological applications.

Sumário

Capítulo 1. Revisão bibliográfica ...................................................................................... 12

Produção de enzimas de interesse por Aspergillus spp. .................................................. 16

Secreção de proteínas recombinantes em fungos filamentosos ....................................... 19

Obstáculos para a produção de proteínas recombinantes em fungos filamentosos.......... 20

Estratégias para superar os principais “gargalos” ............................................................. 26

Glicosilação de proteínas ................................................................................................. 31

N-glicosilação e biotecnologia .......................................................................................... 38

Estratégias empregadas para estudos de N-glicosilação ................................................. 38

Capítulo 2. Glicoproteômica e Glicômica de Aspergillus nidulans ................................ 43

Introdução ........................................................................................................................ 43

Mapping N-Linked Glycosylation of Carbohydrate-Active Enzymes in the Secretome of

Aspergillus nidulans Grown on Lignocellulose .................................................................. 44

Abstract ............................................................................................................................ 45

Background ...................................................................................................................... 46

Results ............................................................................................................................. 48

Discussion ........................................................................................................................ 62

Conclusion ....................................................................................................................... 71

Material and methods ....................................................................................................... 72

Additional files .................................................................................................................. 77

Capítulo 3 – Influência da N-glicosilação na produção e função de uma β-xilosidase de

A. nidulans ....................................................................................................................... 110

Introdução ...................................................................................................................... 110

Redesigning N-glycosylation sites in a GH3 β-xylosidase improves enzyme efficiency in

Aspergillus nidulans ....................................................................................................... 111

Abstract .......................................................................................................................... 112

Introduction .................................................................................................................... 112

Results ........................................................................................................................... 114

Discussion ...................................................................................................................... 122

Experimental procedure ................................................................................................. 126

Capítulo 4. Considerações finais .................................................................................... 142

Referências ...................................................................................................................... 144

Anexos.............................................................................................................................. 175

Termo de aprovação da pesquisa pela Comissão de Biossegurança ............................. 175

Declaração referente aos direitos autorais ..................................................................... 176

12

Capítulo 1. Revisão bibliográfica

Desde os tempos antigos, os microrganismos têm desempenhado um papel central

em diversos processos na fabricação de alimentos, tais como na produção de queijo,

cerveja e vinho, e na fabricação de produtos como couro e linho. Além disso, diversas

características do metabolismo dos fungos vêm sendo exploradas para produção e

obtenção de compostos bioativos e antibióticos (Magaña-Ortíz et al., 2013). Com o

passar dos anos descobriu-se que o papel dos microrganismos nesses processos

produtivos estava diretamente relacionado à produção de enzimas (Kirk, Borchert, &

Fuglsang, 2002).

Atualmente, as enzimas microbianas têm sido aplicadas em diversos setores da

indústria, os quais são classificados como: cuidados pessoais; alimentício;

bioenergético; agricultura e ração; e técnico e farmacêutico (Fleiβner & Dersch, 2010;

Maloy & Schaechter, 2006; Owen P. Ward, 2012). Nesses casos, as enzimas podem

ser parte componente ou então serem aplicadas na forma de coquetéis para a

obtenção de produtos de limpeza, detergentes, produção de xaropes, etanol de

primeira e segunda geração; ração animal; produção de tecidos, papel,

medicamentos, entre outros.

A produção de enzimas em escala industrial tem sido reportada desde 1874, quando

Christian Hansen fabricou queijo, usando renina (quimosina) obtido a partir de extratos

de estômagos de bezerros (Sani & Krishnaraj, 2017). Esta enzima é produzida

atualmente usando a técnica do DNA recombinante com o gene expresso em

Escherichia coli K-12, sendo a primeira enzima aprovada pela US Food and Drug

Administration (FDA) para uso em alimentos (Flamm, 1991). Na década de 1930, as

pectinases passaram a ser utilizadas para clarificação de suco; e no início dos anos

1940s a invertase começou a ser empregada na hidrólise de sacarose para produção

de xarope de açúcar invertido, aplicação pioneira de enzimas imobilizadas. A

aplicação de enzimas em larga escala começou na década de 1960, quando a

glicosidase foi utilizada para hidrólise de amido na produção xaropes de glicose

(Fernandes, 2010). Este processo substituiu a hidrólise ácida devido às suas muitas

vantagens, isto é, maiores rendimentos do produto, maior grau de pureza,

cristalização, menor geração de resíduos, entre outras.

13

A procura por produtos inovadores como tendência para um mercado sustentável

inspirou o desenvolvimento tecnológico, estimulando, por sua vez, a criação de novas

aplicações para enzimas em diferentes setores industriais nos últimos anos. Os

problemas ambientais contemporâneos aumentaram a importância e há, atualmente,

um crescente interesse pelo uso eficiente de vários resíduos agroindustriais. Esta

preocupação resultou em uma fonte importante para a produção de novos materiais,

produtos químicos e energia (Rosa et al., 2011). Como resultado, uma extensa gama

de produtos com maior valor agregado pode ser obtida a partir do que antes era

considerado “lixo”. Diversas pesquisas têm mostrado o enorme potencial econômico

da reutilização de resíduos (Figura 1) (Singh Nee Nigam & Pandey, 2009; White,

2015).

Figura 1. Representação simplificada do conceito de uma biorefinaria e exemplos de

possíveis produtos. Adaptado de (White, 2015).

A biomassa vegetal é o recurso orgânico renovável mais abundante, sendo produzida

a partir da fotossíntese das plantas diretamente de luz, gás carbônico e água. A

lignocelulose é composta por celulose, hemicelulose, lignina, pectina e outras

substâncias em menores quantidades (Ghaffar & Fan, 2013; Kumar, Barrett, Delwiche,

& Stroeve, 2009). Quando submetidos à degradação enzimática, os polissacarídeos

celulose e hemicelulose são convertidos em glicose e outros açúcares

14

fermentescíveis, os quais poderão ser convertido a combustíveis líquidos e diversos

outros produtos de valor agregado (Kamm, Kamm, Schmidt, Hirth, & Schulze, 2006).

Em geral, a conversão de materiais lignocelulósicos a açúcares fermentescíveis

envolve as etapas de pré-tratamento e degradação enzimática. O pré-tratamento

(químico, físico e/ou biológico) auxilia a ação enzimática na celulose, ao alterar ou

remover a hemicelulose e/ou a lignina, aumentar a área superficial e diminuir o grau

de polimerização e cristalinidade da celulose (Canilha et al., 2013).

Durante a etapa de degradação enzimática da celulose, três tipos de enzimas

hidrolíticas constituem o complexo celulolítico: (I) exo-1,4-β-D-glicanases que

hidrolisam a cadeia celulósica a partir de suas extremidades liberando celobiose, (II)

endo-1,4-β-D- glicanases que hidrolisam a cadeia celulósica internamente de maneira

aleatória, e (III) 1,4-β-D-glicosidases que promovem a hidrólise da celobiose em

glicose e podem também liberar unidades glicosídicas a partir de

celooligossacarídeos. Essas enzimas atuam em sinergia na degradação da celulose,

criando sítios acessíveis umas para as outras e aliviando problemas de inibição por

produtos (Figura 2) (Canilha et al., 2013; Glass, Schmoll, Cate, & Coradetti, 2013).

Além destas, hemicelulases podem ser adicionadas à biomassa durante a etapa

enzimática, sendo que estas enzimas constituem um grupo de caráter bastante

diverso, o que está diretamente relacionado caráter heterogêneo dos polímeros que

compõem a classe das hemiceluloses: (I) endo-1,4-β-D- xilanases que hidrolisam

ligações glicosídicas internas aleatoriamente na cadeia de xilana, (II) 1,4-β-D-

xilosidases que atuam em xilobiose e/ou xilooligossacarídeos a partir da extremidade

não redutora liberando xilose, (III) endo-1,4-β-D-mananases que clivam ligações

internas na cadeia de manana, (IV) 1,4-β-D-manosidases que clivam

manooligossacarídeos em manose, e (V) enzimas acessórias que removem os grupos

substituintes laterais (ramificações), como α-D-galactosidases, α-L-

arabinofuranosidases, α-D- glicuronidases, acetil xilana esterases e feruloil esterases

(Figura 2) (Canilha et al., 2013; Decker, Siika-Aho, & Viikari, 2009; Scheller & Ulvskov,

2010). Essas enzimas envolvidas na clivagem de carboidratos complexos, bem como

aquelas relacionadas à sua biossíntese, são atualmente conhecidas como enzimas

ativas em carboidratos (CAZymes) (Cantarel et al., 2009; Levasseur, Drula, Lombard,

Coutinho, & Henrissat, 2013; Lombard, Golaconda Ramulu, Drula, Coutinho, &

Henrissat, 2014)

15

Figura 2. Degradação enzimática da celulose e hemicelulose até a formação de

monossacarídeos. Enzimas necessárias para a desconstrução da biomassa vegetal

representadas atuando em seu respectivo substrato. Imagem extraída de (Segato,

Damásio, de Lucas, Squina, & Prade, 2014).

Apesar de eficientes, as etapas de pré-tratamento e degradação enzimática

apresentam custos elevados. É estimado que o uso de microrganismos que secretam

enzimas que degradam a biomassa vegetal, eliminando assim a etapa de pré-

tratamento, poderia reduzir o custo do processo em cerca de 40% (Chung, Cha, Guss,

& Westpheling, 2014). Exemplos de microrganismos capazes de degradar a biomassa

lignocelulósica são os fungos filamentosos dos gêneros Trichoderma e Aspergillus.

Esses fungos celulolíticos são a maior fonte comercial de celulases sendo também

considerados com maior capacidade de produzir e secretar essas enzimas (Gusakov,

2011).

Na década de 1980 os avanços na biotecnologia com o desenvolvimento da

tecnologia do DNA recombinante, que consiste em introduzir o gene de um organismo

em uma célula hospedeira, permitiram estudos e a produção em larga escala de

16

enzimas de interesse (Alvarez-Leefmans & Delpire, 2010; Pasternak, 2005).

Atualmente, a biotecnologia aprimorou a manipulação genética permitindo a produção

de proteínas recombinantes em diversos microrganismos e tipos celulares. As

aplicações envolvendo enzimas aumentaram em quantidade e aplicabilidade

seguindo a demanda do mercado global (Fleiβner & Dersch, 2010; Owen P. Ward,

2012). De acordo com a empresa Ameri Research Inc., o mercado global de enzimas

está em constante crescimento, sendo estimada a movimentação de US$ 11,1 bilhões

em 2018 e podendo atingir US$16,9 bilhões em 2024.

É possível realizar a produção de enzimas recombinantes em sistemas procarióticos

e eucarióticos, os quais apresentam suas especificidades conforme mostrado na

Tabela 1. No geral, os sistemas eucarióticos têm como vantagem a capacidade de

secretar proteínas ao meio externo e realizar modificações pós-traducionais (MPTs).

Dentre os sistemas eucarióticos destacam-se os fungos por serem capazes de

produzir elevados níveis de proteínas com baixo custo, apresentando assim melhor

custo-benefício. Apesar das similaridades entre os fungos filamentosos e

leveduriformes, este último leva desvantagem por produzir proteínas hiper-

glicosiladas o que pode afetar negativamente a atividade das proteínas produzidas

(Fleiβner & Dersch, 2010; Tang et al., 2016). Além disso, os fungos filamentosos

apresentam maior capacidade de secreção do que os demais sistemas de expressão

eucarióticos (Fleiβner & Dersch, 2010).

Produção de enzimas de interesse por Aspergillus spp.

Dentre os microrganismos utilizados em processos industriais, os fungos filamentosos

do gênero Aspergillus são de grande destaque. Este gênero compreende cerca de

350 espécies as quais podem viver numa grande variedade de ambientes, como no

solo e parasitando plantas e animais, resultado da diversidade metabólica e da

capacidade natural de secreção de diferentes enzimas no meio externo (Varga et al.,

2014; O.P. Ward, Qin, Dhanjoon, Ye, & Singh, 2005). Tais enzimas degradam os

compostos e permitem que os fungos absorvam os nutrientes do ambiente (Fleiβner

& Dersch, 2010). Dentre as principais enzimas produzidas por esses fungos, podem

ser citadas celulases, xilanases e proteases (Vries & Visser, 2001).

17

Tabela 1. Características de diferentes sistemas de expressão para a produção de proteínas recombinantes.

Características E. coli Fungos filamentosos Leveduras Células de inseto Células de

mamíferos

Cultura

celular de

plantas

Crescimento celular horas a dias dias a 1 semana dias a 1 semana dias a 1 semana Semanas Meses

Custo do meio de

cultura baixo a médio baixo a médio baixo a médio alto alto médio a alto

Nível de expressão baixo a alto baixo a alto baixo a alto baixo a alto baixo a alto baixo

Capacidade de

Secreção Secreção via periplasma Secreção para o meio de

cultura

Secreção para o meio de

cultura

Secreção para o meio

de cultura

Secreção para o

meio de cultura

Secreção

para o meio

de cultura

Modificações pós-traducionais

Enovelamento da

proteína

Reenovelamento

geralmente necessário

Reenovelamento pode

ser necessário

Reenovelamento pode

ser necessário Enovelamento correto

Enovelamento

correto

Enovelamento

correto

N-glicosilação

Nenhuma

Core igual ao de

mamíferos, sem ácido

siálico, sem açúcares

humanos

High mannose, sem

ácido siálico, sem

açúcares humanos

Complexo, sem ácido

siálico, sem açúcares

humanos

Complexo, sem

açúcares humanos,

e.g. por células de

murinos

Complexo,

sem ácido

siálico, sem

açúcares

humanos

O-glicosilação Não Sim Sim Sim Sim Sim

Fosforilação Não Sim Sim Sim Sim Sim

Acetilação Não Sim Sim Sim Sim Sim

Adaptado de (Fernandez, J.M. & Hoeffler, J.P., 1999; K. M. H. Nevalainen, Te’o, & Bergquist, 2005).

18

Os fungos possuem excelentes sistemas para expressão e secreção de proteínas

homólogas e heterólogas. Muitas proteínas possuem MPTs como glicosilações,

sulfatações e fosforilações, as quais são necessárias para sua correta funcionalidade,

sendo que esta característica representa uma grande vantagem na utilização dos

fungos como modelo de expressão e secreção de proteínas (G. Liu, Qin, Li, & Qu,

2013). A facilidade de se separar da biomassa e o crescimento rápido em meios de

cultivo de baixo custo, representam ainda mais vantagens para a utilização de

Aspergillus como produtores de enzimas (Fleiβner & Dersch, 2010; K. M. H.

Nevalainen et al., 2005). Além disso, as enzimas produzidas por Aspergillus niger e

Aspergillus oryzae, por exemplo, podem ser utilizadas na indústria de maneira segura,

o que resultou com a classificação de status GRAS (Generally Regarded As Safe) (R

J Gouka, Punt, & van den Hondel, 1997).

Ainda que Aspergilli apresentem características ótimas para serem utilizados como

produtores de enzimas em escala industrial, espécies de ocorrência natural não as

produzem em altas quantidades. Com o desenvolvimento da engenharia genética e

da biologia molecular, o melhoramento de linhagens fúngicas visando a alta produção

de enzimas heterólogas e homólogas, pôde se tornar uma realidade. Muitos estudos

envolvendo fungos do gênero Aspergillus modificados para serem utilizados como

hospedeiros na produção de enzimas homólogas e heterólogas têm sido relatados

nas últimas décadas (Devchand & Gwynne, 1991; Jeenes, Mackenzie, Roberts, &

Archer, 1991; Lubertozzi & Keasling, 2009; Nayak et al., 2006; Yoon, Maruyama, &

Kitamoto, 2011).

Apesar dos fungos filamentosos possuírem um sistema de secreção de alta

capacidade, estes têm falhado na produção de grandes quantidades de proteínas

heterólogas, quando comparados com proteínas homólogas. Estes problemas

parecem estar relacionados a múltiplos fatores: (I) baixa eficiência de transformação;

(II) altos níveis de proteases ou substâncias tóxicas produzidos por algumas espécies;

(III) alterações pós-traducionais promovidas por proteases ou por baixo pH (R J Gouka

et al., 1997). Estes fatores, que influenciam negativamente a maturação das proteínas

no retículo endoplasmático (RE), parecem ser a chave para obtenção do aumento nas

taxas secreção de proteínas homólogas e heterólogas (Owen P. Ward, 2012).

19

Aspergillus nidulans se destaca dentro do gênero Aspergillus, pois é a espécie mais

bem caracterizada geneticamente (Owen P. Ward, 2012). Tal espécie é alvo de

pesquisas há mais de 60 anos, o que permitiu o avanço nos conhecimentos sobre a

fisiologia celular eucariótica, contribuindo assim para a compreensão da regulação

metabólica, controle do ciclo celular, estrutura da cromatina, controle de pH, dentre

outros (Galagan et al., 2005; Pontecorvo, Roper, Chemmons, Macdonald, & Bufton,

1953).

Secreção de proteínas recombinantes em fungos filamentosos

Nas últimas décadas, um grande esforço foi realizado para compreender os “gargalos”

da secreção de proteínas heterólogas em fungos filamentosos e como melhorar o seu

rendimento quando comparado ao de proteínas homólogas. Nevalainen e Peterson

elegantemente apresentaram a seguinte pergunta: “Produzir proteínas recombinantes

em fungos filamentosos – estamos esperando demais? (H. Nevalainen & Peterson,

2014).

Na maquinaria celular eucariótica, após tradução do mRNA maduro, as proteínas

destinadas à secreção são translocadas para o lúmen do RE, onde sofrem MPTs e

são enoveladas corretamente passando por um rígido controle de qualidade. Uma vez

corretamente enovelada, é então encaminhada ao Golgi através de vesículas de

transporte, onde sofrerá modificações como o refinamento da N-glicana (Conesa,

Punt, van Luijk, & van den Hondel, 2001; Schwarz & Aebi, 2011). Os fungos

filamentosos, assim como em Saccharomyces cerevisiae, apresentam a N-glicana do

tipo high-mannose, mas em níveis reduzidos, não apresentando hiper-glicosilação

(Deshpande, Wilkins, Packer, & Nevalainen, 2008). Por fim a vesículas de secreção

encaminharão a proteína “madura” até a membrana plasmática, onde serão

secretadas para o meio extracelular (Alberts, B. Johnson, A. Lewis, J. Raff, M. Roberts,

K. Walter, 2008). Todos estes processos apresentados são fundamentais para a

secreção de proteínas em sua funcionalidade correta, porém todos os passos podem

apresentar problemas durante a secreção de proteínas recombinantes.

Após a translocação pelo ER, as proteínas devem ser corretamente enoveladas em

sua forma nativa e biologicamente ativa. Este processo de "maturação" envolve uma

série de chaperonas e foldases, tais como BiP (bipA), dissulfeto isomerases (pdiA,

tigA, prpA), peptidil-prolyl cis-trans isomerase (cypB) e calnexina (clxA). A correlação

20

entre a superprodução de proteínas fúngicas e a super-expressão de bipA ainda não

é clara, uma vez que os níveis de BipA permanecem inalterados ou podem aumentar

dependendo da proteína que está sendo produzida (Punt et al., 2002).

O nível de produção celular de proteínas pode-se alterar em condições naturais como

fase do ciclo de vida, diferenciação celular, e mudanças de condições ambientais. No

entanto, técnicas de biotecnologia podem ser aplicadas para elevar a produção

proteica (Ron & Walter, 2007). Nessas situações, a célula pode produzir uma grande

quantidade de proteínas que excede a capacidade de enovelamento pelo RE,

podendo levar ao acúmulo de proteínas mal enoveladas (C. Rubio et al., 2011). O

acúmulo é nocivo à célula, prejudica as funções celulares, podendo desencadear

morte celular prematura (Ron & Walter, 2007).

Pesquisadores têm observado que a super-expressão de genes que codificam

enzimas de interesse, ativa um sistema de resposta ao estresse chamado de unfolded

protein response (UPR) (Saloheimo, Lund, & Penttilä, 1999). O UPR é ativado quando

a demanda por proteínas na célula excede a capacidade de enovelamento do RE,

organela na qual as proteínas direcionadas para secreção devem passar para serem

corretamente enoveladas (McCracken & Brodsky, 2000; C. Rubio et al., 2011;

Ruggiano, Foresti, & Carvalho, 2014; Walter & Ron, 2011). Assim, pela ativação desse

sistema, maior quantidade de proteínas adquirem a conformação correta e podem

deixar o RE em direção ao meio extracelular, não sendo direcionadas à degradação.

Contudo, existe alguma relação entre glicosilação e UPR? Li et al. mostraram que a

diminuição dos níveis de glicosilação, a partir da redução da expressão de genes do

complexo da oligossacaril transferase, levam às condições de estresse na célula. O

estresse desenvolvido pela baixa glicosilação de algumas proteínas promove a super-

expressão de diversos genes, entre eles genes relacionados a biogênese de parede

celular, enovelamento e degradação de proteínas mal enoveladas, genes estes

característicos da ativação do UPR (K. Li et al., 2011).

Obstáculos para a produção de proteínas recombinantes em fungos

filamentosos

Durante séculos, os fungos filamentosos foram conhecidos por sua capacidade de

secretar grandes quantidades de proteínas. O interesse biotecnológico no gênero

Aspergillus e Trichoderma promoveram o aprimoramento de técnicas de biologia

21

molecular para a produção de proteínas homólogas e heterólogas. Desde meados do

século XX, a produção de proteínas heterólogas em fungos filamentosos apresentou

vários "gargalos". Problemas no rendimento de secreção de proteínas foram

resolvidos ao longo dos anos por diferentes abordagens que serão analisadas neste

tópico.

Embora a secreção de proteínas heterólogas tenham mostrado rendimentos mais

baixos, elas ainda apresentam algumas vantagens em relação à secreção de

proteínas homólogas. Os fungos filamentosos podem secretar quantidades maiores

de proteínas com MPTs (glicosilação, fosforilação, acetilação, metilação,

palmitoilação, ubiquitinação, formação de ligações de dissulfeto, proteólise e outros)

a baixo custo (Bhadauria et al., 2007; Leach & Brown, 2012; K. M. H. Nevalainen et

al., 2005; Liping Wang, Ridgway, Gu, & Moo-Young, 2005). As MPTs são processos

covalentes muito importantes para as propriedades funcionais de proteínas, afetando

atividade, estabilidade e localização (Bhadauria et al., 2007; Jensen, 2004). Mais de

300 tipos de MPTs são atualmente conhecidas e outras novas são constantemente

descobertas (Jensen, 2004). Os obstáculos existentes no processo de secreção de

proteínas recombinantes podem ocorrer em três etapas: protocolo de transformação

de fungos, nível de transcrição e nível de tradução (Figura 3).

“Gargalos” em protocolos de transformação de fungos filamentosos

O primeiro obstáculo observado na produção de proteínas heterólogas está no

protocolo de transformação. Os primeiros protocolos de transformação desenvolvidos

foram descritos no final dos anos 70 usando Neurospora crassa (Case et al., 1979)

como hospedeiro, logo seguido por A. nidulans (Tilburn et al., 1983). O protocolo que

utiliza protoplastos é o método de transformação mais comumente empregado, no

entanto, existem vários outros métodos, incluindo a técnica de acetato de lítio,

eletroporação, biolítica/biobalística, agitação com esferas de vidro, infiltração a vácuo,

22

Figura 3. Uma visão geral da via de secreção de proteínas em fungos

filamentosos. Os diferentes estágios podem apresentar problemáticas a nível

transcricional e/ou traducional. Os números presentes nas estruturas representam

seus respectivos “gargalos” na obtenção de proteínas recombinantes. 1)

processamento de pré-mRNA incorreto e baixos níveis de transcrição, 2) baixa

estabilidade do mRNA, 3) falhas no processo de tradução, MPTs e enovelamento, 4)

transporte intracelular e secreção, 5) processamento incorreto e 6) degradação por

proteases. Adaptado de (Rubio et al., 2015)

ondas de choque e mediada pela bactéria Agrobacterium tumefaciens (Casas-Flores,

Rosales-saavedra, & Herrera-Estrella, 2004; Chakraborty, Patterson, & Kapoor, 1991;

Dhawale, Paietta, & Marzluf, 1984; M. J. A. de Groot & Bundock, 1998; Hynes, 1996;

Ruiz-Díez, 2002; Owen P. Ward, 2012). Atualmente, muitas modificações têm sido

sugeridas nas técnicas padrão de transformação, sobretudo para aumentar sua

eficiência (Chai et al., 2013; Magaña-Ortíz et al., 2013; Rivera, Magaña-Ortíz, Gómez-

Lim, Fernández, & Loske, 2014). É importante lembrar que a seleção do protocolo a

ser utilizado depende do organismo hospedeiro e da acessibilidade dessas técnicas

(Tabela 2).

23

Tabela 2. Métodos padrão para a transformação de fungos.

Método Procedimento Vantagem Desvantagem

Eletroporação

Pulsos elétricos induzem a permeabilização

da membrana, fornecendo uma força motriz

local para o transporte iônico e molecular

através dos poros.

Pode ser aplicado a qualquer fungo

in vivo ou congelado. Protocolos

eficientes: simples, rápidos e

facilmente otimizados.

Depende das características

eletrofisiológicas do fungo. Baixa

eficiência. Custo médio.

Biolítica/Biobalística Pequenas partículas cobertas de genes são

aceleradas para penetrar na parede celular.

Simples. Não é necessário um pré-

tratamento da parede celular.

Independente das propriedades

fisiológicas dos fungos.

Transformação com transgênese

múltipla possível.

DNA pode ser danificado. Produz

múltiplas cópias dos genes

introduzidos. Protocolos complexos

devido à preparação do projétil.

Baixa eficiência. Custo elevado.

Agitação com

esferas de vidro

A agitação das células fúngicas com

esferas de vidro na presença de carreador

e DNA plasmidial permite a absorção do

material genético.

Protocolo simples, rápido e seguro.

Baixo custo.

Pode causar a interrupção celular.

As células requerem suporte

osmótico. Baixa eficiência.

Infiltração a vácuo

Vácuo gera pressão atmosférica negativa

que faz com que os espaços de ar entre as

células diminuam, permitindo a infiltração

de bactérias, como Agrobacterium.

Simples e rápido. Regeneração de

fungos in vitro. Eficiência média.

Requer o uso de bactérias que

podem ter consequências

indesejadas.

24

Ondas de choque

Cavitação acústica altera a permeabilidade

da membrana, facilitando a absorção de

DNA.

Simples, boa reprodutibilidade e

segurança. Alta eficiência. Baixos

custos operacionais.

Custo relativamente alto da fonte

de onda de choque. Necessário

conhecimento em física de ondas

de choque.

Protoplastos

Fina membrana dos protoplastos permite

absorção do DNA. Solução de PEG

facilita a absorção.

Simples, boa reprodutibilidade.

Regeneração de fungos in vitro.

Eficiência media.

Requer controle osmótico e

manipulação de protoplastos.

Adaptado de (Rivera et al., 2014).

25

“Gargalos” a nível transcricional

A produção de proteínas heterólogas pode ser limitada em nível transcricional, por

uma série de fatores tais como: a instabilidade do mRNA, o processamento incorreto

do pré-mRNA e baixos níveis de transcrição (Sharma, Katoch, Srivastava, & Qazi,

2009). A estabilidade do mRNA é afetada por alguns componentes estruturais: o cap

5' de 7-metilguanosina trifosfato, a cauda 3'-poli (A), o comprimento do mRNA, as

modificações pós-transcricionais de bases, tais como a metilação de resíduos de

adenina ou a conversão de adeninas em inosinas e sequências estabilizadoras ou

desestabilizadoras de mRNA (R J Gouka et al., 1997; Hentze, 1991).

As falhas no processo de transcrição podem gerar estruturas incorretas de mRNA. O

processamento incorreto do pré-mRNA pode produzir transcritos truncados como

mostrado na produção de α-galactosidase heteróloga por Aspergillus awamori (Robin

J Gouka, Punt, & van den Hondel, 1997). O pré-mRNA sofre alterações estruturais em

células eucarióticas, sendo que este processamento implica no reconhecimento de

regiões de poliadenilação (ricas de AU) (R J Gouka et al., 1997). Regiões de

poliadenilação que não a cauda 3'-poli (A) podem resultar em interrupção prematura

da transcrição do mRNA, produzindo mRNAs truncados como no exemplo com α-

galactosidase. Dessa maneira, os baixos níveis de RNAs podem ser resultado da

degradação devido à baixa estabilidade, bem como do processamento e conformação

incorretos.

“Gargalos” a nível traducional

Além de MPTs e o controle de qualidade do RE, algumas proteínas são submetidas à

cisão, i.e. há uma proenzima que quando clivada, resulta em uma enzima na forma

ativa (Bell & Malmberg, 1990; Hoyt, Williams-Abbott, Pitkin, & Davis, 2000). Hoyt et al.

mostrou o processamento da S-adenosil metionina descarboxilase de N. crassa

quando comparado com outros organismos. Na ausência ou falha deste

processamento, as proteínas permaneceram como proenzima afetando sua atividade

(Hoyt et al., 2000). A baixa taxa de códons no organismo hospedeiro está diretamente

relacionada ao baixo nível de tRNA para esta sequência, o que pode interromper a

transcrição prematuramente, resultando em alterações no quadro de leitura e falhas

(M. Tanaka, Tokuoka, & Gomi, 2014).

26

Apesar dos problemas de tradução descritos acima, as proteínas heterólogas ainda

precisam superar a presença de proteases nativas. Mesmo quando as proteínas

heterólogas são secretadas com sucesso, as proteases fúngicas nativas presentes

nos meios de cultura podem diminuir o seu rendimento por degradação (Archer &

Peberdy, 1997). Para compreender e regular as proteases extracelulares, algumas

foram clonadas e estudadas individualmente, através do desenvolvimento de cepas

com genes de proteases deletados ou silenciados. Estudos relataram maiores

rendimentos de proteína heteróloga usando cepas de hospedeiro com suas proteases

deletadas (Sharma et al., 2009; O.P. Ward et al., 2005). Fungos filamentosos,

geralmente, apresentam grande quantidade de genes de proteases em seu genoma;

A. nidulans, por exemplo, possui em torno de 80 genes (Sharma et al., 2009).

Estratégias para superar os principais “gargalos”

Nível transcricional

Os “gargalos” transcricionais são a baixa estabilidade do mRNA, processamento

incorreto do mRNA e o nível de transcritos heterólogos. A baixa estabilidade de mRNA

pode ser superada pela introdução de uma sequência de íntron endógena na

sequência de cDNA do gene heterólogo. Esta estratégia foi projetada para promover

o splicing correto e para aumentar a estabilidade do mRNA. Outra maneira de

melhorar a estabilidade do mRNA é a fusão do gene alvo com genes endógenos

altamente expressos. O gene heterólogo pode ser fusionado em um sinal eficiente de

expressão fúngica ou na extremidade 3' de um gene endógeno altamente expresso.

Tanaka et al. relataram aumento de 10 a 90 vezes na atividade de uma beta-

glicosidase em arroz transgênico ao usar um íntron endógeno, porém esta estratégia

ainda não foi descrita em fungos filamentosos (A. Tanaka et al., 1990).

O processamento incorreto causado por regiões ricas em AT ou códons raros pode

ser evitado otimizando-se a sequência do gene alvo. Nos genes sintéticos, as regiões

ricas em AT e os códons raros podem ser eliminados pela otimização de códons. As

otimizações de códons são realizadas com base na frequência de uso do códon do

organismo hospedeiro. Esta técnica é amplamente utilizada para expressar proteínas

heterólogas em fungos filamentosos de forma bem-sucedida (Gustafsson,

Govindarajan, & Minshull, 2004). Elevados níveis de mRNA são obtidos com a

otimização de códons, pois geralmente melhora a eficiência da transcrição. Essa

27

técnica tem sido utilizada para elevar os níveis de mRNA desde 2012, quando foi

descrita por Takada et al. em Aspergillus oryzae (M. Tanaka, Tokuoka, Shintani, &

Gomi, 2012). Chen et al. observaram que a presença de A ou U na terceira posição

de códons de baixa frequência é comum em Aspergillus spp. e outros fungos

filamentosos (Wanping Chen, Xie, Shao, & Chen, 2012). Portanto, a otimização de

códons tende a elevar o conteúdo de CG (Tokuoka et al., 2008) e o tempo de meia-

vida (M. Tanaka et al., 2012), eliminando a poliadenilação prematura. Com o objetivo

de criar um banco de dados para acadêmicos, Nakamura et al. analisaram o uso de

códons com base nas sequências de codificação de proteínas completas do GenBank

criando o “Codon Usage Database” (Nakamura, Gojobori, & Ikemura, 1998).

O número de cópias de genes pode influenciar os níveis de transcrição. Por cerca de

três décadas, ferramentas genéticas moleculares foram usadas para expressar cópias

extras de genes heterólogos de interesse em fungos filamentosos para elevar a sua

produção (Punt et al., 2002; Liping Wang et al., 2005). As cópias de genes de interesse

são geralmente expressas sob um promotor homólogo apropriado (O.P. Ward et al.,

2005). Na produção de proteínas heterólogas por Aspergillus, a álcool desidrogenase

I (alcA) de A. nidulans ou a glucoamilase (glaA) de A. niger são, geralmente, utilizados

como promotores fortes (Lubertozzi & Keasling, 2009). Veredoes et al. mostraram que

múltiplas cópias do gene heterólogo é capaz de melhorar a produção de proteínas em

A. niger, no entanto, a expressão pôde ser inativada por metilação quando grandes

quantidades (>200) do gene heterólogo foram induzidas (Archer & Peberdy, 1997;

Verdoes et al., 1993).

Nível traducional

Os problemas na iniciação da tradução são geralmente corrigidos de duas maneiras:

através da fusão do gene heterólogo à extremidade 3' de um gene endógeno

altamente expresso; ou pela fusão a um fragmento promotor endógeno. A

identificação da região endógena melhora a translocação da proteína recombinante,

o enovelamento e também evita a degradação por proteases. Além disso, a

interrupção ao longo da síntese da proteína pode ser evitada usando genes sintéticos

ou através de códons otimizados para o organismo hospedeiro. Portanto, erros no

quadro de leitura causados por códons raros não irão ocorrer e, consequentemente,

28

a eficiência da tradução será aprimorada (Fleiβner & Dersch, 2010; R J Gouka et al.,

1997).

Os fungos filamentosos são capazes de promover diversas MPTs com eficácia, sendo

que algumas delas estão descritas na Tabela 3. As modificações estão diretamente

relacionadas às propriedades funcionais e estruturais das proteínas as quais, dessa

maneira, podem ser prejudicadas caso estas sejam realizadas incorretamente. A N-

glicosilação é uma MPT muito importante e, embora esteja envolvida no correto

enovelamento de proteínas, seu reconhecimento permite a secreção de proteínas de

acordo com a via clássica. Como alternativa à via clássica de secreção de proteínas,

Sagt et al. criaram a chamada peroxisecretion. O método foi desenvolvido para

secretar proteínas intracelulares nativas, pois estas não contêm sinais de glicosilação

para o tráfego pela via secretória clássica. A técnica fusiona a proteína da membrana

peroxissomal com a proteína heteróloga. Dessa maneira, a proteína alvo enovelada

adquire a capacidade de ser transportada em uma vesícula e, posteriormente,

transferida para o citosol. A composição da membrana lipídica, semelhante às

vesículas secretoras do ER, permite a fusão com a membrana plasmática e

consequentemente sua secreção ao meio extracelular (Cees M J Sagt et al., 2009).

Os processos relacionados a via de secreção em fungos filamentosos, bem como o

controle de qualidade do enovelamento pelo ciclo da calnexina e o UPR, também

podem ser manipulados para aumentar a eficiência da secreção. Assim, a super-

expressão de genes relacionados ao UPR, como hacA, foldases e chaperonas , tem

resultado em maior produção de proteínas heterólogas em fungos filamentosos (K. M.

H. Nevalainen et al., 2005). A super-expressão de calnexina resultou no aumento da

secreção da manganês peroxidase de Phanerochaete chrysosporium (Conesa,

Jeenes, Archer, van den Hondel, & Punt, 2002). No caso de Bip, chaperona

relacionada ao UPR, a sua super-expressão resultou em um aumento de cinco vezes

da produção de eritropoietina por S. cerevisiae (R J Gouka et al., 1997).

29

Tabela 3. Tipos de modificações pós-traducionais em fungos filamentosos. Adaptado de (Rubio et al., 2015).

Modificações pós-traducionais Mecanismos Funções

Glicosilação

N-Glicosilação

O-Glicosilação

N-Glicosilação:

Anexação de uma glicana a resíduos de

asparagina em proteínas alvo através de uma

ligação amida

O-Glicosilação:

Anexação de glicanas lineares curtas através de

ligações a resíduos de serina ou treonina.

Secreção, estabilidade, localização e

reconhecimento ambiental (Deshpande et al.,

2008)

Formação de ligação dissulfeto

As ligações dissulfeto são formadas entre os

átomos de enxofre de pares de resíduos de

cisteína dentro ou entre proteínas

Estabilidade (Bulaj, 2005)

Ubiquitinação Ligação covalente da ubiquitina Estabilidade, localização e atividade proteica

(Pickart & Eddins, 2004)

Proteólise Processo de quebrar ligações peptídicas em

proteínas, realizadas por peptidases e proteases

Ativação, inativação, função proteica alterada

e regulação (Rogers & Overall, 2013)

Fosforilação Adição de um ou mais grupo fosfato a motivos

específicos, consistindo frequentemente em

Ativação e inativação da atividade enzimática

e transdução de sinal (Seo & Lee, 2004)

30

alguns resíduos-chave que envolvem o

aminoácido alvo

Palmitoilação A ligação do tioéster de palmitato a resíduos de

cisteína em proteínas

Modulação da atividade proteica, tráfico e

interações de membrana.(Smotrys & Linder,

2004)

Sumoilação O SUMO é ligado covalentemente através de uma

ligação isopeptídica ao grupo amino de resíduos

de lisina alvo em substratos de proteínas

específicos

Atividade proteica (Wong et al., 2008)

Neddilação A adição covalente do polipeptídio NEDD8 às

proteínas alvo através de uma ligação isopeptídica

entre a glicina C-terminal de NEDD8 e uma lisina

na proteína alvo

Regulação da estrutura e da função celular

(Mathewson et al., 2013)

Miristoilação Anexação de ácido mirístico, um ácido graxo

saturado de 14 carbono, a Glicina N-terminal das

proteínas

Regulação da estrutura e da função celular

(Moriya et al., 2013)

Âncora de GPI A ancoragem de GPI é um mecanismo para fixar

as proteínas à superfície da célula através de uma

ligação amida; tem sido amplamente revisado em

leveduras

Viabilidade celular (Mayor & Riezman, 2004)

31

Desde a década de 90 cepas deficientes em proteases têm sido utilizadas para

superar problemas de rendimento resultantes da ação de proteases endógenas.

Atualmente, algumas abordagens moleculares desenvolvidas visam silenciar ou

deletar esses genes. Os resultados na literatura mostraram uma melhora nos

rendimentos das proteínas heterólogas, mas essa estratégia varia de acordo com a

sensibilidade de proteínas heterólogas às proteases hospedeiras (Sharma et al.,

2009). Apesar de espécies do mesmo gênero apresentarem proporções similares de

proteases, cada fonte de carbono é capaz de induzir diferentes níveis de proteases

extracelulares (Liping Wang et al., 2005). Yoon et al. compararam rendimentos de

produção de proteínas heterólogas em uma cepa selvagem A. oryzae e cepas

knockout para cinco e dez genes de protease. A produção de proteínas heterólogas

foi 30% maior na cepa apresentando dez genes deletados quando comparado com a

cepa com cinco proteases deletadas e foi 3,8 vezes maior do que no tipo selvagem

(Yoon et al., 2011). Sharma et al. mostrou que a deleção de apenas uma protease de

A. niger é capaz de elevar a produção heteróloga de uma lacase em 42% (Sharma et

al., 2009).

Glicosilação de proteínas

Após mais de três bilhões de anos de evolução, toda célula viva livre e cada tipo de

célula dentro de organismos multicelulares permanece coberta por uma camada

densa e complexa de glicanas (Colley, Varki, & Kinoshita, 2015). A evolução tem

repetida e consistentemente selecionado glicanas como as moléculas mais diversas

e flexíveis, que estão posicionadas na interface entre a célula e o ambiente

extracelular. Os possíveis motivos para isso incluem a sua relativa hidrofilia,

flexibilidade e mobilidade em ambientes aquosos e sua extrema diversidade,

permitindo adaptações fáceis a curto e longo prazo a ambientes em mudança e

regimes patogênicos (Colley et al., 2015; Jacobs & Callewaert, 2009; Schwarz & Aebi,

2011).

O processo de glicosilação é uma das MPTs mais importantes que ocorrem na

estrutura da maioria das proteínas secretadas. O processo consiste na adição de

oligossacarídeos a proteínas ou lipídios por ligações covalentes (Helenius & Aebi,

2004; Spiro, 2002). Existem dois diferentes tipos de glicosilação em proteínas: O-

32

glicosilação, e a N-glicosilação. A N-glicosilação ocorre no RE e é extremamente

importante para diversos processos celulares tais como: resposta imune,

comunicação celular e transporte, secreção, estabilidade, enovelamento e função de

algumas proteínas.

A N-glicosilação é encontrada em todos os domínios da vida, sendo comum em

Eukaria, frequente em Archaea e raro em Bacteria (Schwarz & Aebi, 2011; Weerapana

& Imperiali, 2006). Em Bacteria, Archaea e Fungi, as glicanas apresentam papéis

estruturais críticos nas paredes celulares, oferecendo resistência a grandes diferenças

de osmolaridade entre o citoplasma e o ambiente circundante (Colley et al., 2015). Em

eucariotos, proteínas secretadas e de membrana, atravessam uma via de RE-Golgi,

sistema celular em que majoritariamente ocorrem reações de glicosilação

(Cherepanova, Shrimal, & Gilmore, 2016; Helenius & Aebi, 2004).

Para a N-ligação dos oligossacarídeos, um precursor com 14 monossacarídeos,

sintetizado na membrana do RE por diversas glicosiltransferases, é transferido ao

resíduo de asparagina alvo na cadeia polipeptídica da proteína. A estrutura desse

precursor é comum na maioria dos eucariotos e geralmente contém 3 moléculas

glicose (Glc), 9 moléculas de manose (Man) e 2 moléculas de N-acetilglicosamina

(GlcNAc) (Burda & Aebi, 1999; Helenius & Aebi, 2004; Spiro, 2002). No entanto, entre

eucariotos e procariotos pode-se encontrar diferentes composições de N-glicana

precursora devido a evolução do sistema de controle de qualidade de enovelamento

e degradação entre os diferentes organismos (Banerjee et al., 2007; Schwarz & Aebi,

2011). A biossíntese da N-glicana em eucariotos já é bem determinada, bem como os

genes envolvidos no processo (Figura 4 e Tabela 4).

A biossíntese se inicia com a transferência de grupamentos GlcNAc-fosfato a partir de

GlcNAc-UDP para o dolicol-fosfato. Em seguida, ocorre a transferência de manose a

partir de manose-GDP para GlcNAc-dolicol-difosfato. A cadeia de oligossacarídeo

formada é então translocada para o interior do RE onde ocorrerá a adição de mais

moléculas de manose e de glicose (Figura 4). Esta cadeia de oligossacarídeo é então

ligada por uma oligossacaril transferase (Ost) à asparagina da sequência consenso

Asn-Xaa-Ser/Thr (Xaa diferente de prolina), regenerando o grupo dolicol-fosfato

(Moremen, Tiemeyer, & Nairn, 2012).

33

Figura 4. Via de biossíntese da N-glicana e enzimas responsáveis em eucariotos.

As enzimas e seus respectivos produtos estão detalhados na Tabela 4 (adaptado de

Complex Carbohydrate Research Center).

Tabela 4. Genes relacionados a biossíntese da N-glicana (Asparagine-Linked

Glycosylation – ALG) em A. nidulans e seus respectivos produtos.

N Gene Locus tag EC

number Molecular function Product

Cytoplasm

1 Alg5 AN7715 2.4.1.117 Dolichol phosphate glucosyltransferase Dolichol phosphate

glucose

2 Dpm1 AN4947 2.4.1.83 Dolichol phosphate mannosyltransferase Dolichol phosphate

mannose

3 Sec59 AN11886 2.7.1.108 Dolichol kinase Dolichol phosphate

4 Alg7 AN5888 2.7.8.15 UDP-N-acetyl-D-glucosamine:dolichol

phosphate GlcNAcPP-Dol

5

6

Alg13/Alg

14

AN11802 /

AN5736 2.4.1.141

Beta-1,4-N-

acetylglucosaminyltransferase GlcNAc2PP-Dol

7 Alg1 AN5346 2.4.1.142 Beta-1,4-mannosyltransferase ManGlcNAc2PP-Dol

8 Alg2 AN6874 2.4.1.132 Alpha-1,3/alpha-1,6-

mannosyltransferase Man3GlcNAc2PP-Dol

9 Alg11 AN5725 2.4.1.- Alpha-1,6-mannosyltransferase Man5GlcNAc2PP-Dol

10 Rft1 AN7425 - Oligosaccharidyl-lipid flippase family Man5GlcNAc2PP-Dol

34

ER

11 Alg3 AN0104 2.4.1.130 Alpha-1,3-mannosyltransferase Man6GlcNAc2PP-Dol

12 Alg9 AN10118 2.4.1.- Alpha-1,2-mannosyltransferase Man7GlcNAc2PP-Dol

11 Alg12 AN3588 2.4.1.130 Alpha-1,3/alpha-1,6-

mannosyltransferase Man8GlcNAc2PP-Dol

13 Alg9 AN10118 2.4.1.- Alpha-1,2-mannosyltransferase Man9GlcNAc2PP-Dol

14 Alg6 AN4864 2.4.1.- Alpha-1,3-glucosyltransferase GlcMan9GlcNAc2PP-

Dol

15 Alg8 AN7301 2.4.1.- Alpha-1,2-glucosyltransferase Glc2Man9GlcNAc2PP-

Dol

16 Alg10 AN5902 2.4.1.- Alpha-1,2-glucosyltransferase Glc3Man9GlcNAc2PP-

Dol

17 Ost1-

alpha AN7472 2.4.1.119 Oligosaccharyltransferase Glc3Man9GlcNAc2

17 Wbp1-

beta AN4683 2.4.1.119 Oligosaccharyltransferase Glc3Man9GlcNAc2

17 Stt3 AN1455 2.4.1.119 Oligosaccharyltransferase Glc3Man9GlcNAc2

Dol: Dolicol; PP: difosfato; GlcNAc: N-acetilglicosamina; Glc: glicose; Man: manose.

O tempo de meia vida da N-glicoproteína prematura é de apenas alguns segundos,

dessa forma, duas glicoses são imediatamente removidas após a adição do

oligossacarídeo. A N-glicana contendo um único resíduo de glicose com ligação α1-3

(GlcMan9GlcNAc2) é o sinal para associar-se com a calnexina (transmembrana) e ou

calreticulina (solúvel), iniciando o controle de qualidade do enovelamento. A calnexina

possui um domínio de ligação a carboidrato e um domínio rico em prolina

responsáveis, respectivamente, pelo reconhecimento da glicana e recrutamento da

oxidoredutase associada a lectina ERp57. A ERp57 é uma dissulfeto isomerase

multifuncional responsável por catalisar a formação de pontes de dissulfeto nativas no

enovelamento da proteína (Maattanen, Kozlov, Gehring, & Thomas, 2006). A

glicoproteína, então enovelada, é liberada da calnexina por meio da remoção do

resíduo de glicose remanescente gerando a estrutura Man9GlcNAc2 (Figura 5) (Aebi,

Bernasconi, Clerc, & Molinari, 2010).

35

Figura 5. Etapas da N-glicosilação e controle de qualidade. Durante a tradução da

proteína, o complexo translocon (SEC61) transloca a proteína para o lúmen do RE,

onde ocorre a transferência de uma glicana ligada a um lipídeo (dolicol-P) para

sequencia passível de glicosilação (Asn-Xaa-Ser/Thr). Adicionada à glicana

precursora, Glc3Man9GlcNAc2, duas glicoses são removidas e a glicana remanescente

é reconhecida por lectinas, calnexina ou calreticulina, entrando no controle de

qualidade. A liberação das proteínas das lectinas se dá através da clivagem da glicose

presente na glicana. As proteínas enoveladas corretamente são encaminhadas ao

complexo de Golgi e as proteínas mal enoveladas retornam ao ciclo de controle de

qualidade por meio de uma re-glicosilação. As proteínas que não atingem o

enovelamento correto são direcionadas ao proteassoma, sinal iniciado pela ação de

α-manosidase. Antes da proteína mal enovelada ser efetivamente degradada ocorre

a remoção da N-glicana pela atividade da enzima PNGase (Moremen et al., 2012).

36

A maturação correta das glicoproteínas pode requerer mais de uma associação com

o ciclo da calnexina. Dessa maneira, o RE de eucariotos possui um sensor de

enovelamento, denominado UGGT (UDP-glucose:glycoprotein glycosyltransferase)

(Samuelson & Robbins, 2015). Esse sensor possui um domínio N-terminal capaz de

ligar em proteínas com estruturas não nativas e um domínio de carboidrato transferase

na porção C-terminal. Assim, essa enzima reconhece glicoproteínas mal enoveladas

contendo o Man9GlcNAc2 e adiciona novamente uma glicose na manose terminal,

permitindo seu retorno ao ciclo na calnexina (Aebi et al., 2010; Moremen et al., 2012).

Portanto, o ciclo da calnexina juntamente com a UGGT determinam quando as

glicoproteínas estão corretamente enoveladas.

Durante processo de adquirir a conformação correta através do ciclo da calnexina e

UGGT, as N-glicanas estão susceptíveis a ação de α-manosidases do RE que podem

remover os resíduos de manose terminais. A remoção desses resíduos dificulta o

retorno das proteínas mal enoveladas ao ciclo da calnexina e direciona esses

polipeptídios para a via de degradação associada ao RE (ER-associated degradation

- ERAD) (Banerjee et al., 2007; Ruggiano et al., 2014). Essa via tem como função

remover do RE os peptídeos e os componentes que não foram corretamente

incorporados durante a via de secreção, impedindo um estresse de RE. A N-glicana

reduzida é, então, reconhecida pela lectina Yos9, que auxilia na translocação ao

citosol via complexo SEL1L (Aebi et al., 2010). Posteriormente, as N-glicanas são

removidas pela ação da peptídeo-N-glicosidase F (PNGase F) e a proteína é

direcionada a degradação via proteassomo (Smith, Ploegh, & Weissman, 2011).

As glicoproteínas que adquiriram a conformação correta após o ciclo da calnexina são

direcionadas à via de secreção com o auxílio de algumas lectinas, tais como ERGIC-

53, VIP36, e VIPL (Helenius & Aebi, 2004). Essas lectinas são capazes de interagir

com COPI e COPII possibilitando o transporte vesicular entre o RE e o compartimento

cis-Golgi (Duden, 2003). No interior do Golgi alguns açúcares da N-glicana poderão

ser removidos e/ou adicionados, aumentando a complexidade dessa estrutura

(Stanley, Taniguchi, & Aebi, 2017). Ao contrário da biossíntese da N-glicana, as

modificações promovidas no Golgi são bastante variáveis até mesmo entre diferentes

tipos celulares (P. Wang et al., 2017). A evolução da diversidade de heterogeneidade

37

das N-glicanas pode estar relacionada com o desenvolvimento de um mecanismo de

defesa à patógenos (Gagneux, Aebi, & Varki, 2015). Em suma, as alterações

promovidas ao longo da via de secreção as glicoproteínas até a obtenção da proteína

funcional estão representadas na Figura 6.

Figura 6. Efeitos da glicosilação em uma proteína. Após a tradução (A) a proteína

é N-glicosilada (B) no interior do RE, auxiliando o seu enovelamento ao entrar no ciclo

da calnexina (C). Ao ser transportada ao Golgi a N-glicana é modificada (D) e a

proteína é O-glicosilada (E). Essas glicosilações auxiliam no direcionamento e

secreção (F). Após a secreção, as glicosilações aumentam a solubilidade (G), a

resistência a proteases, bem como a estabilidade (H). Além disso, a glicosilação

regula a ligação de: ativadores (I), cofatores (J), oligômeros (K), inibidores (L) e

substratos (M); eventualmente, as glicosilações são capazes de modular parâmetros

cinéticos em reações enzimáticas. Adaptado de (Goettig, 2016)

Diversos estudos têm provado que a N-glicosilação é determinante na secreção,

atividade, especificidade ao substrato e estabilidade de algumas enzimas. Na maioria

dos casos, a remoção de todos os sítios de N-glicosilação de uma proteína reduz

consideravelmente seu nível de secreção. No entanto, a remoção individual de sítios

de glicosilação diminui a atividade enzimática, e a deglicosilação resulta, geralmente,

em proteínas com atividade extremamente reduzida (Skropeta, 2009; Yoneda et al.,

2014). Apesar de alguns estudos relatarem alterações na secreção e nas

propriedades biofísicas das proteínas pouco se sabe sobre os mecanismos que geram

38

esse comportamento, tanto em relação aos sítios de glicosilação quanto para a

composição da glicana.

N-glicosilação e biotecnologia

Desde 1805 as glicoproteínas têm sido estudadas a fim de se compreender sua

estrutura e função (Peter-Katalinić, 2005). Dado os avanços na biotecnologia, algumas

estratégias de estudos da N-glicosilação foram desenvolvidas, tais como:

desenvolvimento de cepas knockdown ou knockout; expressão de genes da via de N-

glicosilação; e glicosilação sintética. Os avanços das “ômicas” facilitaram os estudos

envolvendo o processo de N-glicosilação a partir das abordagens de N-

glicoproteômicas e glicômicas (Weixuan Chen, Smeekens, & Wu, 2014; Dam et al.,

2013; Geyer & Geyer, 2006; Lee et al., 2016; Thaysen-Andersen & Packer, 2012; Lu

Wang et al., 2012), bem como o desenvolvimento de ferramentas de bioinformática

(Cooper, Gasteiger, & Packer, 2001).

Diferentes estratégias de biotecnologia utilizando genes relacionados ao processo de

N-glicosilação permitiram desenvolver microrganismos de grande interesse

biotecnológico e econômico. Em 2002 Wacker et al. expressaram o loci de

Campylobacter jejuni responsável pela via de N-glicosilação em E. coli com sucesso

desenvolvendo a primeira E. coli capaz de produzir glicoproteínas (Valderrama-Rincon

et al., 2012; Wacker et al., 2002; Weerapana & Imperiali, 2006). Além disso, em 2008

Kainz et al. desenvolveram cepas de Aspergillus capaz de produzir glicoproteínas

humanizadas a fim de produzir glicoproteínas de interesse biomédico (Kainz et al.,

2008). Uma vez que as N-glicanas influenciam na meia-vida na circulação, na

distribuição dos tecidos e a atividade biológica, cada glicoforma possui seu próprio

perfil farmacocinético, farmacodinâmico e de eficiência.

Estratégias empregadas para estudos de N-glicosilação

Knockdown ou knockout

A redução de atividades indesejáveis de glicosiltransferases em células foi conseguida

por estratégias de silenciamento de genes. Apesar de ter sido bem-sucedido em

plantas e Drosophila, o silenciamento não foi muito adotado, pois a baixa eficiência de

knockdown muitas vezes mantem a atividade de glicosiltransferases remanescente

39

(Nishihara et al., 2004). Knockout de genes envolvidos na biossíntese da N-glicana

tem sido aplicado, em sua maioria, em leveduras a fim de evitar a hiper-glicosilação.

(B. Liu et al., 2009; Tang et al., 2016). Nesses casos, manipular a composição da N-

glicana visa controlar a glicosilação não efetiva, pois esta pode diminuir o rendimento

de proteínas heterólogas produzidas por poder resultar em mal enovelamento da

proteína alvo (Cowcher et al., 2016; Sharma et al., 2009).

Expressão de genes da via de biossíntese de N-glicana

A adição de atividades desejáveis de glicosiltransferase pode ser obtida pela

transformação de genes da biossíntese de N-glicanas homólogos ou heterólogos. O

problema em torno dessa estratégia está no baixo controle na integração do genoma,

números de cópias e expressão gênica. A partir desse recurso, alguns trabalhos têm

detalhado a cinética enzimática das manosiltransferases Alg1, Alg2 e Alg11 (formam,

respectivamente, ManGlcNAc2, Man2GlcNAc2 e Man3GlcNAc2) e com isso

permitindo estudar o mecanismo de ação de enzimas da via de biossíntese de N-

glicanas (S. T. Li et al., 2017; Ramírez et al., 2017).

Glicosilação sintética

Sabe-se que a simples presença do motivo de N-glicosilação não garante que essa

região será glicosilada (aproximadamente 70% recebe a N-glicana (Stanley et al.,

2017)) uma vez que não existe controle genético para MPT. No entanto, a influência

que a N-glicosilação pode exercer sobre as propriedades funcionais e bioquímicas de

uma proteína são bem estudadas (Aebi, 2013; Burda & Aebi, 1999; Schwarz & Aebi,

2011; E. S. Trombetta, 2003). Dessa forma, foi desenvolvida a técnica de ligação

quimio-seletiva mediada por um grupamento tiol (Gamblin et al., 2004). Um resíduo

de cisteína é incorporado na posição desejada e o grupamento tiol de sua cadeia

lateral é subsequentemente convertido em selenil-sulfeto, seguido de uma exposição

de brometo de fenil selenil (Figura 7). Assim, a proteína é convertida em uma

glicoproteína homogênea com N-glicanas especificas em posições conhecidas (Davis,

Van Kasteren, Kramer, & Gamblin, 2007; Wright & Davis, 2017).

40

Figura 7. Exemplificação da metodologia de N-glicosilação sintética.

Os estudos envolvendo N-glicosilação foram realizados, inicialmente, para entender o

papel dos carboidratos em modificações biofísicas na comunicação celular, tinham

como objetivo desenvolver novas abordagens para o tratamento de doenças humanas

(Weixuan Chen et al., 2014; Eshghi, Yang, & Wang, 2014; Moremen et al., 2012). No

entanto, alguns estudos têm mostrado o efeito da glicosilação no enovelamento,

secreção e propriedades enzimáticas (Banerjee et al., 2007). O conhecimento de N-

glicosilação em CAZymes ainda são escassos e majoritariamente estão relacionados

com celobiohidrolases (Beckham et al., 2012b; Ruchi Gupta, Baldock, Fielden, &

Grieve, 2011; Jeoh, Michener, Himmel, Decker, & Adney, 2008).

A glicoengenharia de proteínas é uma ferramenta bastante promissora da

biotecnologia. Hanson et al. relataram que o core conservado da N-glicana,

ManGlcNAc2, são essenciais para a estabilidade, cinética e a termodinâmica de

enovelamento de proteínas apurando a via secretora (Hanson et al., 2009; Price et al.,

2012; Price, Powers, Powers, & Kelly, 2011; N. Wang, Li, Lu, Nakanishi, & Gao, 2017).

Segundo dados obtidos, a adição de uma única GlcNAc influencia em 65% da

estabilidade e 100% da cinética de enovelamento da proteína hCD2ad (Hanson et al.,

2009). Gusakov et al. mostrou que o processo de N-glicosilação é um componente

importante da atividade processiva de celobiohidrolases (Gusakov, Dotsenko,

41

Rozhkova, & Sinitsyn, 2017). Qi et al. descreveram a função de glicanas N-ligadas no

domínio catalítico da celobiohidrolase I de Trichoderma reesei, cujos locais de

remoção de N-glicosilação dificilmente afetariam secreção, estabilidade térmica e

atividade (Qi, Zhang, Zhang, Chen, & Liu, 2014). O mesmo efeito foi relatado em

outras enzimas, tais como celobiohidrolases (Amore et al., 2017; Goedegebuur et al.,

2017; Zoglowek, Lübeck, Ahring, & Lübeck, 2015), β-glicosidase (Wei et al., 2013), e

xilanase (Chang et al., 2017), entre outros.

Outros estudos têm demonstrado o efeito da composição de peptídeos ao redor dos

sítios de glicosilação a fim de compreender o mecanismo de N-glicosilação a nível de

reconhecimento da OST. Aproximadamente 70% dos motivos Asn-X-Ser/Thr são

glicosilados, pois existe a seleção pela OST de acordo com a estrutura do polipeptídio

nascente. Foi verificada a preferência pelos aminoácidos Phe, Gly, Ile, Ser, Tyr e Val

na posição ”X”, enquanto que os aminoácidos carregados e prolina foram encontrados

em níveis baixos quando analisado os sítios N-glicosilados validados

experimentalmente (Rao & Bernd, 2010). Somente os sítios de glicosilação acessíveis

ao lúmen do RE são conhecidos por serem N-glicosilados, no entanto a presença da

N-glicana foi relatada em muitas geometrias de superfície diferentes (Petrescu, Milac,

Petrescu, Dwek, & Wormald, 2004). A posição "X" pode reduzir a eficiência da

glicosilação, quando "X" for ácido (Asp ou Glu), ou aumentar a eficiência quando Phe

estiver em um loop reverso adjacente (Huang et al., 2017; Price et al., 2012, 2011;

Stanley et al., 2017).

Estudos voltados a composição e sequência da proteína alvo permite melhor

manipulação da sequência recombinante, bem como a escolha da melhor cepa

hospedeira. Baseado na não conservação dos sítios de glicosilação em proteínas

homólogas, Tan et al. verificaram quais as melhores mutações pontuais para substituir

uma N-glicosilação (Tan et al., 2014). Asn-Gln é a mutação sítio dirigida mais

empregada para avaliar a importância de determinados sítios de glicosilação no

enovelamento e função de glicoproteínas, porém as preferências conformacionais de

Gln são muito diferentes das de Asn, enquanto His teria conformação mais

semelhante a Asn. Apesar da semelhança conformacional entre His e Asn, essa

mutação pontual gera uma troca de natureza química e polaridade, de básico para

42

polar neutro. Foi demonstrado, também, que a substituição Asn-Asp pode suprir a

ausência da N-glicana recuperando a estabilidade da proteína (Tan et al., 2014).

Um problema importante na secreção de proteínas heterólogas é a falta ou a

inadequada N-glicosilação dentro do RE. A glicosilação é muito importante para o

enovelamento correto das proteínas e serve como informação para degradação e

controle de qualidade (Helenius & Aebi, 2004). Já foi demonstrado que fatores

externos também podem influenciar na composição e distribuição de N-glicosilação

ao longo da mesma proteína (Adav, Ravindran, & Sze, 2014; Goochee & Monica,

1990). Dessa forma, pode-se verificar o elevado nível de complexidade na produção

de proteínas recombinantes. Porém, com os avanços desses conhecimentos em

fungos filamentosos, incluindo espécies do gênero Aspergillus, será possível a

consolidação e estabelecimento de uma plataforma de alta performance para

produção de proteínas recombinantes. Pode-se assim, trazer genes heterólogos

otimizados tanto para a sequência gênica, quanto para a obtenção adequada de

MPTs.

43

Capítulo 2. Glicoproteômica e Glicômica de Aspergillus nidulans

Introdução

Neste capítulo estão detalhadamente descritos as metodologias e os resultados

obtidos e na N-glicoproteômica e glicômica de A. nidulans cultivado em glicose, xilano

e bagaço de cana-de-açúcar pré-tratado. Os experimentos realizados tiveram como

objetivo identificar a maior quantidade possível de sítios de N-glicosilação em

CAZymes. Por meio da N-glicoproteômica foi possível identificar 265 proteínas e 182

sítios de N-glicosilação. Identificou-se, também, a preferência de A. nidulans por sítios

de glicosilação compostos por N-X-T, os quais foram predominantemente encontrados

em regiões de resíduos de aminoácidos hidrofóbicos ou polares não carregados. As

mesmas proteínas secretadas foram submetidos a análise do perfil de N-glicanas

geral por meio da glicômica realizada por MALDI-TOF. As N-glicanas contendo cinco

hexoses foram prevalentes nos cultivos em glicose e bagaço de cana-de-açúcar,

enquanto, o cultivo de xilano apresentou quantidades semelhantes de 5 a 9 hexoses.

Dessa forma, esse capítulo descreve os esforços realizados para validar diferentes

sítios de N-glicosilação e composições de N-glicanas para compor o pilar inicial dos

estudos com N-glicoproteínas em nosso grupo de pesquisa. Os resultados desse

capítulo auxiliarão no estudo de produção de proteínas recombinantes em fungos

filamentosos. A determinação de uma preferência e a validação de sítios de N-

glicosilação em CAZymes, bem como a composição das N-glicanas favorecem o

engenheiramento de proteínas e otimização da produção de proteínas recombinantes.

Diversos problemas podem atrapalhar os processos de tradução, enovelamento,

transporte intracelular e secreção, no entanto a N-glicosilação correta é essencial para

esses processos.

O presente capitulo compõe o primeiro artigo desse trabalho de doutorado, o qual foi

publicado na revista Biotechnology for Biofuels em 2016 (DOI. 10.1186/s13068-016-

0580-4).

44

Mapping N-Linked Glycosylation of Carbohydrate-Active Enzymes in the

Secretome of Aspergillus nidulans Grown on Lignocellulose

Marcelo Ventura Rubio1,2, Mariane Palludeti Zubieta1,2, João Paulo Lourenço Franco

Cairo1,2, Felipe Calzado1,2, Adriana Franco Paes Leme3, Fabio Marcio Squina¹, Rolf

Alexander Prade4, André Ricardo de Lima Damásio1,2*

¹Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional

de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brasil.

²Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil

3Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em

Energia e Materiais (CNPEM), Campinas, SP, Brasil.

4Department of Microbiology and Molecular Genetics, Oklahoma State University,

Stillwater-OK, USA.

Running title: Glycoproteomics of Aspergillus nidulans

*To whom correspondence should be addressed:

André R. L. Damásio; Department of Biochemistry and Tissue Biology, Institute of

Biology, University of Campinas (UNICAMP). Rua Monteiro Lobato, 255, Cidade

Universitária Zeferino Vaz, 13083-862 - Campinas-SP, Brazil; E-mail:

[email protected]; phone number: +55 19 3521-1437

45

Abstract

Background: The genus Aspergillus includes microorganisms that naturally degrade

lignocellulosic biomass, secreting large amounts of carbohydrate-active enzymes

(CAZymes) that characterize their saprophyte lifestyle. Aspergillus has the capacity to

perform post-translational modifications (PTM), which provides an additional

advantage for the use of these organisms as a host for the production of heterologous

proteins. In this study, the N-linked glycosylation of CAZymes identified in the

secretome of Aspergillus nidulans grown on lignocellulose was mapped.

Results: A. nidulans was grown in glucose, xylan and sugarcane bagasse for 96 h,

after which glycoproteomics and glycomics were carried out on the extracellular

proteins (secretome). A total of 265 proteins were identified, with 153, 210 and 182

proteins in the glucose, xylan and sugarcane bagasse (SCB) substrates, respectively.

CAZymes corresponded to more than 50% of the total secretome in xylan and SCB. A

total of 182 N-glycosylation sites were identified, of which 121 were detected in 67

CAZymes. A prevalence of the N-glyc sequon N-X-T (72.2%) was observed in N-glyc

sites compared with N-X-S (27.8%). The amino acids flanking the validated N-glyc

sites were mainly composed of hydrophobic and polar uncharged amino acids.

Selected proteins were evaluated for conservation of the N-glyc sites in Aspergilli

homologous proteins, but a pattern of conservation was not observed. A global

analysis of N-glycans released from the proteins secreted by A. nidulans was also

performed. While the proportion of N-glycans with Hex5 to Hex9 was similar in the xylan

condition, a prevalence of Hex5 was observed in the SCB and glucose conditions.

Conclusions: The most common and frequent N-glycosylated motifs, an overview of

the N-glycosylation of the CAZymes and the number of mannoses found in N-glycans

were analyzed. There are many bottlenecks in protein production by filamentous fungi,

such as folding, transport by vesicles and secretion, but N-glycosylation in the correct

context is a fundamental event for defining the high levels of secretion of target

proteins. A comprehensive analysis of the protein glycosylation processes in A.

nidulans will assist with a better understanding of glycoprotein structures, profiles,

activities and functions. This knowledge can help in the optimization of heterologous

expression and protein secretion in the fungal host.

46

Keywords: glycoproteomics, Aspergillus nidulans, carbohydrate-active enzymes,

CAZy, glycoside hydrolases, N-glycosylation, heterologous expression

Background

The dependence on energy sources derived from fossil fuels and the environmental

impact caused by their use have generated special interest from researchers and

governments regarding the use of renewable energy sources. The use of renewable

sources for fuel production has become an important alternative because they

generate fewer pollutants and allow the sustainable development of the economy and

human society. Alternatively, the use of lignocellulosic biomass, mainly composed of

cellulose, hemicellulose and lignin, is a consensus worldwide because it is the most

abundant renewable energy source on Earth (Jouzani & Taherzadeh, 2015). However,

the use of this biomass in the biorefinery concept requires its depolymerization to

mono- and oligosaccharides, which are the building blocks used to produce biofuels

and biochemicals.

Plant biomass is a complex structure rich in glycoconjugates and poly- and oligo

saccharides, and a wide variety of enzymes are necessary for the complete

degradation of this biomass (Glass et al., 2013; Segato et al., 2014). Carbohydrate-

Active Enzymes (CAZymes) participate in the breakdown, biosynthesis and

modification of the glycoconjugates and oligo- and polysaccharides that constitute the

plant cell wall. In general, CAZymes are structurally constituted by a catalytic domain,

and some CAZy families have an additional carbohydrate-binding module (CBM).

Based on structural and homology features, the CAZy database currently covers five

enzyme classes, including glycoside hydrolases (GHs), glycosyltransferases (GTs),

polysaccharide lyases (PLs), carbohydrate esterases (CEs) and auxiliary activities

(AAs) (Lombard et al., 2014).

The genus Aspergillus includes microorganisms that naturally degrade lignocellulosic

biomass and secrete large amounts of CAZymes, which characterize their saprophyte

lifestyle (Bauer, Vasu, Persson, Mort, & Somerville, 2006). This complex biomass is

partially degraded, releasing simple carbohydrates that are readily taken up by the

fungal cells to provide energy for their growth and reproduction. Due to this capacity

for secretion of a large amount and variety of enzymes, along with the abilities to

47

tolerate extreme cultivation conditions in liquid and solid state fermentation, the

Aspergillus fungus has been a successful model for enzyme production on an industrial

scale (Meyer, Wu, & Ram, 2011).

Aspergillus has the capacity to perform post-translational modifications (PTM) such as

proteolytic cleavage, disulfide bond formation and glycosylation of proteins, providing

an additional advantage for the use of these organisms as a host for the production of

heterologous proteins (K. M. H. Nevalainen et al., 2005). Asparagine-linked protein N-

glycosylation is a prevalent PTM in eukaryotic systems, and has also been described

in prokaryotic systems (Weerapana & Imperiali, 2006). The N-glycosylation consists of

the co- or post-translational attachment of an oligosaccharide to proteins by covalent

bonds in the endoplasmic reticulum (ER) lumen (Helenius & Aebi, 2004; Spiro, 2002).

N-glycosylation of proteins is essential for a range of cellular processes such as

immune responses, cellular communication, intracellular trafficking, stability, secretion,

folding and protein activity (Helenius & Aebi, 2004; Jarrell et al., 2014; Skropeta, 2009;

Solá, Rodríguez-Martínez, & Griebenow, 2007). In eukaryotes, N-linked glycosylation

occurs at the Asn-X(aa)-Ser/Thr sequon and is a co-translational process catalyzed by

oligosaccharyltransferases (OST) in the lumen of the ER (Weerapana & Imperiali,

2006).

Glycoscience, which involves N-glycosylation studies that have been performed

primarily for an understanding of the role of carbohydrates on biophysical modifications

in cell communication, is aimed at developing new approaches for the treatment of

human diseases (Weixuan Chen et al., 2014; Eshghi et al., 2014; Moremen et al.,

2012). However, some recent studies have shown the effect of glycosylation on folding,

secretion and enzymatic properties (Banerjee et al., 2007). Knowledge of N-

glycosylation of CAZymes is scarce and mainly reported for cellobiohydrolases

(Beckham et al., 2012a; Ruchi Gupta et al., 2011; Jeoh et al., 2008). The correct

glycosylation of proteins becomes an essential feature in systems for the heterologous

expression of target genes using filamentous fungi as a host because the accumulation

of unfolded or misfolded proteins is a bottleneck in the secretion pathway and also in

the protein production yield (H. Nevalainen & Peterson, 2014; Skropeta, 2009).

48

Accumulation of misfolded proteins overloads the ER processing capacity, triggering a

response called the unfolded protein response (UPR). The UPR pathway activates a

large set of genes responsible for correct protein folding, degradation of misfolded

proteins and others to recover proteostasis (C. Rubio et al., 2011; Walter & Ron, 2011).

Thus, larger amounts of proteins acquire the correct folding, can leave the ER bound

for the extracellular environment and are not targeted for degradation. The decrease

in glycosylation levels by reducing the expression of oligosaccharyltransferase genes

leads to cell stress conditions. ER stress induced by the low levels of glycosylation of

some proteins leads to the overexpression of several UPR genes, including genes

related to cell wall biogenesis, protein folding and degradation of unfolded proteins (K.

Li et al., 2011).

There are a few studies mapping the global N-glycosylation of CAZymes in filamentous

fungi (Adav et al., 2014; Lu Wang et al., 2012). In this study, the N-linked glycosylation

of CAZymes identified in the secretome of Aspergillus nidulans grown on lignocellulose

was mapped. Therefore, A. nidulans was grown in glucose, xylan and pretreated

sugarcane bagasse (SCB), followed by glycoproteomics and glycomics on the

extracellular proteins (secretome). The most common and frequent N-glycosylated

motifs, an overview of CAZymes’ N-glycosylation and the number of mannose residues

found in N-glycans were analyzed. A comprehensive analysis of protein glycosylation

processes in A. nidulans will assist with a better understanding of glycoprotein

structures, profiles, activities and functions. This knowledge can help in the

optimization of heterologous expression and protein secretion in the fungal host.

Results

Prediction of N-glycosylated CAZymes in the Aspergillus nidulans genome

In order to identify all the putative A. nidulans glycoproteins involved in lignocellulose

degradation, a comprehensive analysis of the A. nidulans ORFs (10678 entries)

downloaded from the Aspergillus Genome Database (AspGD) was performed

(Cerqueira et al., 2014). First, 428 CAZymes (4% of the A. nidulans ORFs) were

annotated by dbCAN (automated CAZymes annotation) (Yin et al., 2012). Second, 359

out of 428 CAZymes were predicted to contain at least one N-glycosylation site (N-glyc

site) by the NetNGlyc 1.0 Server. Finally, the predicted N-glycosylated CAZymes were

49

analyzed for the presence of signal peptide cleavage sites using the SignalP 4.1 Server

(Figure S1).

The majority (73%) of the 190 N-glycosylated CAZymes identified in the secretomes

were classified as glycoside hydrolases (GHs), and 7% had a C-terminal-associated

carbohydrate-binding module (CBM). The other CAZymes were predicted as auxiliary

activities (AAs; 9%), carbohydrate esterases (CEs; 7%), polysaccharide lyases (PLs;

7%) and glycosyltransferases (GTs; 4%). The number of predicted N-glyc sites in the

190 secreted CAZymes varied from 1 to 21 sites and approximately 40% of proteins

had one or two N-glyc sites (Figure S2).

Proteomics overview of A. nidulans grown on glucose, xylan and alkali

pretreated sugarcane bagasse (SCB)

A. nidulans was grown in three different substrates for 96 hours (glucose, xylan and

SCB in biological triplicates), and the secretome of each condition was evaluated by

SDS-PAGE stained with Coomassie blue for the total protein profile and with Pro-Q

Emerald for glycoprotein detection (Figure 1A).

To identify the glycoproteins occurring in each cultivation condition, the secretomes

were first enriched by ConA and then analyzed by LC-MS/MS (see the Methods

section). A total of 265 proteins was identified using one unique peptide and 0.1% of

FDR (False Discovery Rate). From the glucose, xylan and SCB conditions, 153, 210

and 182 total proteins were identified, respectively, with 99 proteins common to all

three conditions (Figure 1B). Regarding the CAZymes, 59, 111 and 107 proteins were

identified in the glucose, xylan and SCB conditions, respectively, and CAZymes

corresponded to more than 50% of the total secretome in the xylan and SCB conditions

(Table S1). Glycoside hydrolase was the most abundant class at 84%, followed by

AAs at 8% and CEs at 7% (Figure 1C). In the glucose condition, 61.5% of the proteins

were assigned as non-CAZymes. In addition, a high variation in the proportion of

CAZyme classes and families throughout the three substrates was observed, with A.

nidulans secreting the highest diversity of CAZymes in the SCB condition. A further

examination of the proteins that were exclusively identified in the SCB condition

showed a high abundance of GHs linked to CBMs. These results are directly

50

associated with the greater complexity of sugarcane bagasse and thus the requirement

for a higher range of enzymes to degrade it (Figure 1D).

In addition to the variations in the proportions of the CAZyme classes among the

substrates (Figure 2A), different compositions were also observed at the family level

(Figure 2B-E). Regarding the CEs, family CE16, known as carbohydrate

acetylesterases active on various carbohydrate acetyl esters, was the most abundant

in the SCB condition, representing 58%, followed by CE1 (feruloyl esterases) and CE2

(acetyl xylan esterases). In the xylan condition, family CE10 was the most

representative, although the members of this family are esterases that act on non-

carbohydrate substrates (Levasseur et al., 2013). Thus, the most abundant

carbohydrate esterase family was CE1 (28%), a classical family for feruloyl esterases,

followed by CE4 (acetyl xylan esterases) and CE16 (acetyl esterases) (Figure 2B).

The AA8 (flavocytochromo - cellobiose dehydrogenases) and AA9 (former copper-

dependent lytic polysaccharide monooxygenases - LPMOs) families were the most

abundant oxidative enzymes in the SCB condition, at 48.5% and 23.7% of the total

AAs, respectively. Moreover, AA8 was exclusively reported in the SCB condition. Both

enzyme families are highly correlated with the oxidative degradation of cellulose in

fungi. However, in the xylan condition, the most representative families were AA7

(oligosaccharide oxidases), AA1 (laccases) and AA9 (LPMOs) (Figure 2C). Among

the PLs, family PL1 (pectin lyase) was the most abundant in the SCB condition (68%),

followed by PL4 (rhamnogalacturonan lyase), whereas PL4 was the most

representative family in the xylan condition at 76%, followed by PL3 (pectate lyase)

(Figure 2D). The analysis of the spectrum counts showed that GH7, a classical family

of the cellobiohydrolases/exoglucanases, was the most abundant GH family in the

SCB condition, which represented 35% of the GHs, followed by GH62 (α-L-

arabinofuranosidase) and GH3 (beta-gluco/xylosidase). Families such as GH5 (endo-

glucanases) and GH6 (exo-glucanasse) were exclusively identified in the SCB

condition (Figure 2E). GH3 was the most abundant family in the xylan condition,

accounting for 16% of the total spectrum counts of GHs, followed by GH20 (beta-

hexosaminidase), GH18 (chitinase) and GH43 (xylanase and alpha-L-

arabinofuranosidase) (Figure 2E).

51

Figure 1. Overview of secretomes from A. nidulans grown on glucose, xylan and

sugarcane bagasse. (A) A. nidulans secretomes were stained with coomassie brilliant

blue and Pro-Q Emerald for detection of glycoproteins in polyacrylamide gels. L:

ladder; Glu: glucose; SCB: sugarcane bagasse. The secretomes produced on xylan

and SCB are represented in duplicate, however the experiments were performed in

triplicate. (B) Mascot searches were carried out using the Aspergillus Genome

Database (AspGD). The data were analyzed by the Scaffold software and the Venn

diagram represent the number of proteins identified in each secretome. (C) Abundance

of CAZymes classes identified in each condition. (D) CAZymes diversity shared among

the growth conditions. The intersection symbol “∩” means that proteins are common

in two or more conditions. GH: glycoside hydrolases; PL: polysaccharide lyases; CE:

carbohydrate esterases; AA: auxiliary activities; CBM: carbohydrate binding module.

52

Figure 2. CAZymes annotation in the secretomes of A. nidulans grown on xylan

and sugarcane bagasse. CAZymes in the secretomes were annotated by an HMM-

based database (dbCAN). (A) Proteins were grouped in CAZy and Non-CAZy, and the

CAZymes were grouped according to enzyme classes in carbohydrate esterases-CEs

(B), auxiliary activities-AAs (C), polysaccharide lyases-PLs (D) and glycoside

hydrolases-GHs (E). The total number of proteins in each class of enzyme was set as

100% and families representing less than 2% of the total proteins were not shown.

SCB: alkali pretreated sugarcane bagasse.

53

At the individual protein level, a GH7 cellobiohydrolase (ANID_05176) was the most

abundant protein identified in this proteomics study, accounting for 1098 peptides in

the SCB condition (Figure 3). The GH3 (ANID_02828) was the most secreted beta-

glucosidase and showed the same spectrum counts in the xylan and SCB conditions

(Figure 3).

In addition, GH47 alpha-mannosidase (ANID_00787) and GH62 alpha-L-

arabinofuranosidase were also represented, both with more spectrum counts in the

SCB condition than in the xylan or glucose conditions. One GH11 (ANID_03613) and

two GH10 xylanases (ANID_01818; ANID_07401) were also more abundant in the

SCB condition than in the xylan condition.

Figure 3. Top ten proteins secreted by A. nidulans. The total spectrum counts of a

specific protein were summed and grouped in according to their functions. (A)

Cellulases; (B) Hemicellulases; (C) Carbohydrate Esterases; (D) Auxiliary

Activities/Oxidases; (E) Polysaccharides Lyases; (F) CBMs and (G) Others functions.

54

CE16 acetyl esterase (ANID_06422) was the most abundant CE found in the SCB

condition, whereas A. nidulans secreted primarily two CE10 (ANID_01320;

ANID_01433) in the xylan condition. Considering all conditions, an AA8 cellobiose

dehydrogenase (ANID_07230) was the most abundant AA but was only detected in

the SCB condition. The AA7 gluco-oligosaccharide oxidase (ANID_07269) and AA9

LPMO (ANID_02388) were the most “regular” enzymes, with equal secretion levels in

all the conditions. However, the AA9 LPMO (ANID_06428) had peptides only reported

in the SCB condition.

All the pectinases and polysaccharide lyases were more secreted in the xylan condition

by far than in the SCB or glucose conditions. The GH105 rhamnogalactoronyl

hydrolase (ANID_09383) was the most abundant pectinase, followed by the GH28 exo-

polygalacturonase (ANID_08761), both showing high levels of secretion in the xylan

condition. The PL4 rhamnogalaturonan lyase PL4 (ANID_12097) was the most

abundant enzyme among the PLs.

Among the enzymes classified as others, a serine protease (ANID_02954) was the

most abundant enzyme in SCB, followed by a hypothetical protein (ANID_06535) and

a chitinase (ANID_04871). In the xylan condition, the most representative enzymes

were N-acetylglucosaminidase (ANID_01502) followed by catalase (ANID_09339) and

chitinase (ANID_04871).

The enzymatic activities in the A. nidulans secretomes were also analyzed (Figure

S3). The highest activity was detected on beta-glucan and xylan using the SCB

secretome. Using the xylan secretome, the highest activity was reported on xylan from

beechwood, followed by beta-glucan and mannan. Non-significant activities were

found using the glucose-condition secretome. All these enzymatic activities were in

accord with the proteome profile found for each growth condition as described above.

N-glycosylated sites detected on CAZymes

As previously mentioned, 265 proteins were detected by LC-MS/MS after enrichment

by ConA, and at least one N-glyc site was validated in 103 proteins. Considering all

the N-glyc sites predicted by the NetNGlyc server, we defined three groups of sites in

this work: 1) validated sites: N-glyc sites confirmed by our LC-MS/MS data set using

55

the Mascot v.2.3.01 engine with GlcNAc tagged on an asparagine residue (N+203) as

a variable modification; 2) non-validated sites: N-glyc sites not confirmed by the LC-

MS/MS. Then, these sites are non-glycosylated based on our data. 3) non-covered

sites: peptides with this specific N-glyc site were not detected by the LC-MS/MS data.

A total of 182 N-glyc sites were validated, of which 121 were detected in 67 CAZymes

(Table S2). Table 1 shows the validated N-glyc sites of selected CAZymes. The AA8

cellobiose dehydrogenase (ANID_07230) was predicted to contain six N-glyc sites but

we validated five of them (N132, N299, N308, N620 and N709). Only one N-glyc site

(N679) was not covered in our data set. The protein ANID_02828 was the highest GH3

beta-glucosidase secreted by A. nidulans in the xylan and SCB conditions. Two out of

three predicted N-glyc sites in ANID_02828 were validated, N225 and N365, but the

peptide glycosylated at N340 was not covered.

Table 1. Total spectrum count and N-glycosylation sites of selected CAZymes.

Total Spectrum Count

Acession

number Identified Proteins

N-glycosylated

sites CAZy Glucose SCB Xylan

Auxiliary Activities (AAs)

ANID_07812 conserved hypothetical protein 444, 501 AA3 0 23 1

ANID_02574 conserved hypothetical protein 212, 330 AA7 0 1 29

ANID_07269 conserved hypothetical protein 133, 460 AA7 58 63 82

ANID_02387 FAD binding domain-containing

protein 260 AA7 11 5 23

ANID_07230 cellobiose dehydrogenase 132, 299, 308,

620, 709 AA8 0 275 0

ANID_02388 conserved hypothetical protein 93 AA9 39 38 47

ANID_06428 fungal cellulose binding domain-

containing protein 69 AA9 0 67 0

56

Carbohydrate Esterases (CEs)

ANID_06438 dipeptidyl-peptidase IV 496, 671 CE1 0 7 25

ANID_06093 acetylxylan esterase 263 CE1 0 53 15

ANID_01433 triacylglycerol lipase 374, 381 CE10 0 2 77

ANID_01320 conserved hypothetical protein 63 CE10 3 7 70

ANID_09130 Cholinesterase 79 CE10 2 8 14

Glycoside Hydrolases (GHs)

ANID_07401 endo-1,4-beta-xylanase 123 GH10 0 160 37

ANID_11143 Glucoamylase 428 GH15 1 10 9

ANID_08761 exo-polygalacturonase 113, 199, 292,

297 GH28 0 6 71

ANID_04102 beta-glucosidase 62, 491, 642,

713 GH3 1 39 73

ANID_08401 beta-xylosidase 63, 340, 408,

419 GH3 0 40 261

ANID_02828 beta-glucosidase 225, 365 GH3 8 238 208

ANID_07275 xylosidase/glycosyl hydrolase 40, 382 GH43 0 55 15

ANID_08007 endo-alpha-1,5-arabinanase 126 GH43 12 38 118

ANID_08477 Arabinofuranosidase 438 GH43 0 20 27

ANID_05176 1,4-beta-D-glucan-cellobiohydrolyase 284 GH7 0 1098 15

ANID_00472 endo-1,3-beta-glucanase Engl1 219, 240 GH81 0 120 147

Polysaccharide Lyases (PLs)

ANID_12097 rhamnogalacturonan lyase 231 PL4 0 0 22

57

We performed an additional validation of the N-glyc sites by using the Scaffold PTM

software with default statistical parameters pre-established by the program, based on

the presence and intensity of site-specific ions compared randomly (Beausoleil, Villén,

Gerber, Rush, & Gygi, 2006). From the 182 sites previously validated, 151 sites were

re-validated by the additional statistical filters, which increased the sensitivity to peptide

spectra matches (Beausoleil et al., 2006). We further analyzed the 151 re-validated N-

glyc sites to determine if there was a specific amino acid motif surrounding the N-glyc

sites. The amino acid sequence of all validated N-glycopeptides were aligned, and six

amino acid residues before and after the sequons (N-X-S/T) were analyzed. The

prevalence of the sequence N-X-T (72.2%) over N-X-S (27.8%) was observed.

Furthermore, the sequon N-X-T showed additional motif variations (Table 2 and Table

S3). In addition to the 182 N-glyc sites validated, 23 predicted N-glyc sites were not

validated by the LC-MS/MS data set. The sequon N-X-S (60.9%) was predominant for

those non-validated sites as opposed to the validated sites.

Table 2. Motifs report for the flanking sequences dataset of N-glycosylated sites.

Motif Dataset matches1 Dataset percentage2 Background percentage3

......n.S.... 42 27.8 6.60

......n.T.... 109 72.2 7.30

......nGT... 19 12.6 1.50

......nTT.... 12 7.90 0.92

......nST.... 14 9.30 0.69

......n.T.T.. 15 9.90 0.96

...P..n.T.... 15 9.90 0.80

T.....n.T.... 14 9.30 0.92

1The data set consists of the flanking sequences for N-glycosylated sites. 2Dataset percentage was

calculated based on the probability that a modification occurs in a given motif throughout all identified

peptides. 3Background percentage was calculated using all proteins loaded into the program as

background and measuring the probability that a specific amino acid appears with a motif. The dots

correspond to the amino acids flanking glycosylated asparagines (n). S: serine; T: threonine; P;

proline.

58

The amino acids flanking the validated N-glyc sites (from -6 to +6) were classified

according to the chemical properties of the side chains (Figure 4). These flanking

regions were mainly composed by hydrophobic and polar uncharged amino acids.

However, this profile was different for the non-validated N-glyc sites (Figure S4).

Figure 4. Amino acids flanking validated N-glycosylation sites. The relative

occurrence of amino acids is plotted versus sequence position -6 to +6 around an

occupied N-glyc site. Residues specified by the glycosylation sequon (0=Asn; +2=Ser

or Thr) are not plotted. Hydrophobic (Ala, Val, Leu, Ile, Met); Aromatic (Phe, Tyr, Trp);

Polar uncharged (Ser, Thr, Asn, Cys, Gln); Acidic (Asp, Glu); Basic (Lys, Arg, His);

Unique (Gly, Pro).

Conservation of N-glycosylated sites in Aspergilli

To investigate if the majority of N-glyc sites were conserved in homologous proteins,

we aligned selected proteins from A. nidulans with 19 Aspergilli genomes from the

AspGD (Table 3). Proteins were considered homologous when the E-value (Blastp)

was equal to or less than 1.00E-70. Two CAZyme sequences are shown in Figure 5.

The ANID_00472 is a GH81 endo-1,3-beta-glucanase Engl1 that was secreted by A.

nidulans in the xylan and SCB conditions. Four N-glyc sites were predicted for this

protein (N219, N240, N257, N499), two of which were validated by the

glycoproteomics. We found and aligned 20 sequences homologous to this GH81,

generating a sequence logo. The N-glyc sites N219 and N240 were highly conserved

59

throughout all the homologous sequences, 90% and 95%, respectively. Similarly,

ANID_05176 is a GH7 cellobiohydrolase with two predicted N-glyc sites (N284 and

N333), but the N333 was non-glycosylated according to our data. We found and

aligned 50 homologous sequences, and while the N284 site was conserved in 62% of

the homologous sequences, the N333 was present in only one homologous sequence.

The conservation of N-glyc sites ranges from 8 to 100% (Table 3), and therefore there

was no pattern of conservation of N-glyc sites in Aspergilli homologous sequences.

Table 3. Conservation of N-glycosylated sites of selected A. nidulans CAZymes in

homologous proteins.

Identified Proteins Accession

Number Domain

N-glyc

sites1 Conservation2

Homologous

in Aspergilli 3 Sequon4

endo-1,3-beta-glucanase

Engl1 ANID_00472 GH81 219 90,0% 20 NSS

240 95,0% 20 NAT

alpha-glucosidase AgdA ANID_02017 GH31 432 91,3% 22 NAS

beta-xylosidase ANID_02359 GH3 231 43,3% 30 NHS

673 55,9% 34 NFT

695 52,9% 34 NTT

beta-glucosidase ANID_02828 GH3 225 100% 50 NGT

365 34,0% 50 NGS

beta-glucosidase ANID_04102 GH3 62 98,0% 50 NLT

491 8,0% 50 NKT

642 92,0% 50 NQT

713 40,0% 50 NST

1,4-beta-D-glucan-

cellobiohydrolyase ANID_05176 GH7 284 62,0% 50 NTS

cellobiose

dehydrogenase ANID_07230 AA8 132 37,5% 24 NAT

299 47,4% 38 NGT

308 90,0% 40 NGT

620 7,9% 38 NVT

709 23,7% 38 NVS

60

beta-glucosidase ANID_07396 GH3 259 100% 50 NNS

438 72,0% 50 NGT

586 56,0% 50 NSS

endo-1,4-beta-xylanase ANID_07401 GH10 123 100% 11 NTT

beta-xylosidase ANID_08401 GH3 63 70,0% 30 NNT

340 30,0% 30 NET

408 46,7% 30 NGT

419 93,3% 30 NFT

arabinofuranosidase ANID_08477 GH43 438 13,6% 23 NGS

exo-polygalacturonase ANID_08761 GH28 113 62,1% 29 NDT

199 72,4% 29 NSS

292 100% 30 NIS

297 63,3% 30 NAS

exopolygalacturonase ANID_08891 GH28 65 21,9% 32 NDT

230 94,1% 17 NAS

alpha-glucuronidase ANID_09286 GH67 48 85,0% 20 NAT

315 95,0% 20 NRT

689 90,0% 20 NKS

769 15,0% 20 NST

exo-

rhamnogalacturonase B ANID_10274 GH28 34 53,3% 15 NET

340 100% 16 NCT

beta-glucosidase ANID_10482 GH3 73 100% 50 NLT

726 60,0% 50 NSS

¹N-glycosylated sites confirmed in the A. nidulans proteins by LC-MS/MS.

2Alignment gaps on the sequences shift the N-glycosylation sequons in homologous sequences. In spite of the

sequons are in different positions on primary sequence, the N-glycan is attached to similar positions at proteins

3D-level (see Figure 7).

3Proteins were considered homologous when the E-value (Blastp) was equal to or less than 1.00E-70.

4Sequon detected in A. nidulans glycoproteins by LC-MS/MS.

61

Figure 5. Conservation of glycosylation sites in selected proteins identified on

sugarcane bagasse-secretome. N-glyc sites of selected proteins were analyzed by

conservation in homologous proteins on AspGD. (A) AN0472 is a GH81 endo-1,3-beta-

glucanase Engl1 secreted on xylan and SCB. (B) AN5176 is a GH7 cellobiohydrolase

highly secreted in SCB.

Profile of N-glycans attached to proteins secreted by A. nidulans

A global analysis of N-glycans released from proteins secreted by A. nidulans was also

performed. The MALDI spectra of permethylated N-glycans released from each

replicate of the secretomes produced by A. nidulans in the glucose, SCB and xylan

media are shown in Figure 6. Mannose and galactofuranose are structural isomers,

have exactly the same mass and are non-distinguishable in MALDI/TOF-MS

oligosaccharide profiling. Thus, the peaks were labeled as “Hex5HexNAc2” instead of

“Man5GlcNAc2”. The relative proportion of each N-glycan component was slightly

different in the samples (Table S4) (Deshpande et al., 2008; Geysens, Whyteside, &

Archer, 2009; Maras, Van Die, Contreras, & van den Hondel, 1999). While the

proportion of the N-glycans with Hex5 to Hex9 was similar in the xylan condition, a

prevalence of Hex5 was observed in the SCB and glucose conditions. Moreover, traces

of N-glycans with Hex14 to Hex17 were only detected in the glucose condition.

62

Hex5H

exN

Ac2

Hex6H

exN

Ac2

Hex7H

exN

Ac2

Hex8H

exN

Ac2

Hex9H

exN

Ac2

Hex10H

exN

Ac2

Hex11H

exN

Ac2

Hex12H

exN

Ac2

Hex13H

exN

Ac2

Hex14H

exN

Ac2

Hex15H

exN

Ac2

Hex16H

exN

Ac2

Hex17H

exN

Ac2

0

2

4

6

8

1 0

2 0

4 0

6 0

8 0

1 0 0

G lu c o s e

S C B

X y la nR

ela

tiv

e p

ro

po

rti

on

(%

)

Figure 6. N-glycans profiling of glycoproteins secreted by A. nidulans cultured

in glucose, sugarcane bagasse and xylan. About 500 µg of total secretome was

incubated with PNGase F at 37°C overnight to release N-glycans. N-glycans were

permethylated and profiled by MALDI/TOF-MS.

Discussion

The enzymatic repertoire secreted by A. nidulans matches well to the

composition of the substrate

The N-glycoproteomic analysis of A. nidulans revealed that the abundance and the

repertoire of CAZymes for each grown condition was directly linked to substrate

composition. Our data suggested that sugar monomers and oligomers from xylan and

SCB induced the secretion of a complete repertoire of enzymes by A. nidulans. Delmas

et al. (2012) reported the transcriptional response of A. niger to complex substrates

(Delmas et al., 2012). In general, when A. niger is under starvation (no carbon source)

63

the transcription factor CreA, which act as glycoside hydrolases transcription

repressor, is derepressed allowing a basal expression of a set of GHs. After the initial

uptake of mono and oligosaccharides by the fungus, the transcription factor XlnR is

activated inducing the transcription of several CAZymes (Delmas et al., 2012). Souza

et al. (2011) also reported a complex transcriptional response of A. niger grown on

sugarcane bagasse (de Souza et al., 2011). Moreover, the transcriptional response of

ascomycetes to complex substrates, involves others activators such as AmyR, InuR,

AraR, GalR, GalX and RhaR (Daly, Munster, Raulo, & Archer, 2015).

In the xylan condition, the majority of proteins and peptides identified in the secretome

were correlated with xylan and xylooligosaccharides degradation, as previously

reported for A. fumigatus (Adav, Ravindran, & Sze, 2015). GH3 was the main family

identified in this condition, which is consistent with the secretome of Penicillium

purpurogenum grown on acetylated xylan (Navarrete, Callegari, & Eyzaguirre, 2012).

The identified GH3 enzymes were annotated as beta-xylosidases and beta-1,3/1,4-

glucosidases (Table S1), suggesting xylose production and uptake by A. nidulans. In

a secretome of A. fumigatus grown on xylan, the major families identified were GH10

and GH11, followed by GH3 (Adav et al., 2015).

Moreover, there was a higher abundance of peptides from families GH20 and GH18 in

the xylan condition, and both families are related to cell wall degradation/remodeling,

as well as to protein synthesis/degradation enzymes such as glutaminases,

tyrosinases and proteases (P. W. J. de Groot et al., 2009; Harris, 2008). In addition, a

high abundance of catalase was found in the xylan condition, an enzyme related to

fungal growth and hyphae development (Kawasaki et al., 1997). A set of proteins

related to fungi growth and development was also found in the SCB condition, which

was consistent with the secretome of A. nidulans grown on sorghum stover

(Saykhedkar et al., 2012). Adav et al. (2015) also reported a high abundance of

esterases in the secretome of A. fumigatus grown on xylan (Adav et al., 2015).

GH7, primarily composed of exo-processive cellobiohydrolases, has been described

as the major enzyme secreted by fungi to degrade cellulose and complex

lignocellulose (Glass et al., 2013; Segato et al., 2014). GH7 proteins were the most

abundant enzymes in the secretome of A. nidulans grown on sorghum stover

64

(Saykhedkar et al., 2012) and in the secretome of Trichoderma reesei grown on

sugarcane culms and bagasse, which, along with GH6, accounted for 80% of the

peptide counts (Borin et al., 2015). Ribeiro et al. (2012) reported that the GH7 family,

along with GH5 and GH6, represented the most important set of enzymes secreted by

Penicillium echinulatum grown on integral and pretreated sugarcane bagasse, as well

as on pure cellulose (Ribeiro et al., 2012).

The highest abundance of hemicellulase peptides was identified in the SCB condition

compared with the xylan condition (Table S1), such as GH3, GH62, GH10 and GH11.

This result was further validated by enzymatic activity assays with A. nidulans

secretomes, which reported higher hemicellulase activity in the SCB-derived

secretome than in the xylan secretome (Figure S3). The known composition of SCB

is 60% cellulose, 23% hemicelluloses, 8% lignin and 10% ashes, which suggest that

A. nidulans requires the secretion of different hemicellulases aimed at detaching the

xylan from the cellulose. Thus, the recalcitrant cellulose from SCB could be accessed

and degraded by a set of cellulases and oxidative enzymes.

LPMOs from families AA9 and AA10 have been reported as the major enzymes for

boosting lignocellulose breakdown in commercial cellulase cocktails (Phillips, Beeson,

Cate, & Marletta, 2011; Vaaje-kolstad et al., 2010); however, little is known regarding

their biological role in fungal and bacterial physiology (Gardner et al., 2014; Horn,

Vaaje-Kolstad, Westereng, & Eijsink, 2012). These enzymes require an electron donor

to oxidize lignocelluloses, which can be donated through a non-enzymatic donor, such

as lignin or a reducing agent, or using enzymes such as cellobiose dehydrogenases

(CDH) and oligosaccharide oxidases (GOOX) (Gardner et al., 2014; Horn et al., 2012).

Our results showed that the AA8 family (CDH) members were secreted only in the SCB

condition, whereas AA3 (CDH and GOOX) was reported in all conditions. These results

suggest that these enzymes were differentially regulated in response to substrate in A.

nidulans (Jagadeeswaran, Gainey, Prade, & Mort, 2016). AA7 (GOOX) enzymes were

the most abundant AA in the xylan condition. This family has been reported to be

glucooligosaccharide oxidases (GOO) capable of oxidizing the reducing end of

glycosyl residues of oligosaccharides (Vuong et al., 2013). Members of family AA7,

along with AA3 (GOOX), have been described as enzymes that generate hydrogen

65

peroxide as a co-product of the reactions they are involved in, which can act as a co-

factor for AA1 laccases, such as ANID_06635, another enzyme described in high

abundance in the xylan condition (van Hellemond, Leferink, Heuts, Fraaije, & van

Berkel, 2006). However, catalase B (ANID_09339) was also described in high

abundance in the xylan and SCB conditions. This type of enzyme is well known to

decompose hydrogen peroxide in biological systems. Thus, we suggest that there was

a fine control of this reactive oxygen species in the secretome, as H2O2 could be used

as a co-factor for laccases or a substrate to catalases.

Regarding the LPMOs, only one predicted AA10 enzyme (Pfam LPMO_10) was found

in the xylan and glucose conditions, suggesting AA3 and AA7 as electron donors. The

results also showed that the AA9 enzymes were found in all conditions but were most

abundant in the SCB condition, in which AA8 (CDH) could act as electron donor.

Interestingly, one AA9 (ANID_02388) was reported in all three conditions; however,

this specific enzyme was not reported in the time course secretome of A. nidulans

grown on sorghum stover for 14 days (Saykhedkar et al., 2012). The other four AA9

were only found in the SCB condition in high abundance and to a lower extent in the

glucose condition; however, they were not found in the xylan condition. These data

suggest that AA9 and AA10 enzymes were secreted according to the substrate

composition, as some AA9 enzymes were specific for certain growth conditions,

suggesting again a different regulation in the production of these enzymes, as well as

for AA3 and AA8. Although our data showed that partners LPMO/CDH-GOOX always

occurred together, we could not discard the role of lignin as electron donor for the

LPMOs (Dimarogona, Topakas, Olsson, & Christakopoulos, 2012; Rodriguez-Zuniga

et al., 2015). Aspergillus species employ significantly different approaches to degrade

plant biomass, despite their similar genomic potential. Benoit et al. (2015) showed that

the significant differences between the enzyme sets produced on wheat bran and

sugar beet pulp largely correlated with their polysaccharide composition. The data

suggest the conservation of beta-glucosidase, cellobiohydrolase, beta-galactosidase,

beta-xylosidase and alpha-arabinofuranosidase among eight species of Aspergillus,

highlighting the importance of this group of enzymes to the degradation mechanism in

this genus (Benoit et al., 2015).

66

N-glycosylation occurs preferentially at the N-X-T sequon

The sequons present in proteins are strictly targeted for glycosylation, as the majority

have an N-glycan attached (Skropeta, 2009). Thus, we asked if there were patterns or

preferences for N-glycosylation in the A. nidulans proteins. Mapping N-glyc sites is not

a trivial process and can be performed by glycoprotein- or glycopeptide-level

enrichment methods (Geyer & Geyer, 2006; Patel et al., 1993; Lu Wang et al., 2012).

In this study, the protein-level enrichment method allowed for the identification of 182

N-glyc sites. Nineteen (10.4%) out of 182 sites were previously predicted as non-

glycosylated by the NetNGlyc 1.0 Server (assuming a score <0.5). The NetNGlyc tool

was designed to discriminate what sequon will accept the N-glycan in human proteins,

validating 86% of glycosylated and 61% of non-glycosylated sites in all human proteins

tested (Ramneek Gupta & Brunak, 2002). Moreover, 23 N-glyc sites predicted by

NetNGlyc were not validated by our data set. This result suggests that there is some

inaccuracy in the prediction of N-glyc sites in fungal enzymes by NetNGlyc. Despite

this small divergence, our data show that the NetNGlyc server was a great tool for

predicting glycosylated sequons in A. nidulans proteins.

The 151 N-glyc sites with an acceptable “Ascore” (Beausoleil et al., 2006) clearly

showed the predominance of the consensus sequence N-X-T, representing 72.2% of

glycosylated sequons (Table 2), similarly to that described by Petrescu et al. (Petrescu

et al., 2004). Furthermore, there were variations of the NXT motif such as NGT

(12.6%), NST (9.3%) and NTT (7.9%). In 2010, Rao and Bernd elegantly asked if N-

glycoproteins have a preference for specific sequons. To answer this question, these

authors analyzed viral, archaeal and eukaryotic sequons with experimentally validated

N-glyc sites and detected a preference for some amino acids such as F, G, I, S, T and

V in the sequon “X” position, whereas the charged amino acids and proline were found

to be represented at a lower level (Rao & Bernd, 2010).

Hydrophobic and polar uncharged amino acids are predominant around N-

glycosylated sites

In nature, not all protein sequons (NXT/S) are glycosylated. In A. nidulans,

approximately 50% of the amino acids adjacent to N-glycosylated sites were

67

hydrophobic or polar uncharged (Figure 4). These amino acids are responsible for

producing a microenvironment able to receive the carbohydrate from the

oligosaccharyl transferase (OST). The N-glycan attached to asparagine affects the

local charge, exposing the motif region, and its interaction with the amino acid residues

is responsible for decreasing the enzyme’s dynamics and increasing the

thermostability, increasing the stability against proteolysis (Shental-Bechor & Levy,

2008; Tan et al., 2014).

The presence of hydrophilic N-glycans on the surface of hydrophobic proteins affects

primarily the thermostability, dynamics, solubility and secretion (Cheng, Edwards,

Jiang, & Gräter, 2010; Schwarz & Aebi, 2011; Shental-Bechor & Levy, 2008). Sagt et

al. (2000) showed the effect of insertion of N-glyc sites into hydrophobic proteins. The

addition of a consensus sequence in the N- or C-terminal region decreased the protein

aggregation in the ER and enhanced the secretion by 5- and 1.8-fold, respectively (C.

M J Sagt et al., 2000). Hence, the N-glycosylation in hydrophobic regions could be

related to an evolutionary process involving protein folding, stability and secretion (Lu,

Yang, & Liu, 2012).

Analyzing glycosylated sequons from proteins in the Protein Data Bank (PDB),

Petrescu and collaborators showed the presence of N-glycans attached on different

surface geometries (Petrescu et al., 2004). The surface diversity suggests that the N-

glycosylation process was carefully selected to occur depending on glycan

accessibility. Moreover, a predominance of hydrophobic followed by non-polar amino

acid residues was detected (Rao & Bernd, 2010), corroborating our data, despite the

fact that we did not clearly detect a higher frequency of aromatic amino acids before

the N-glyc site. The sequon neighborhood has also been studied to improve the

stability of target enzymes through biotechnological approaches, for example, by the

addition of an aromatic amino acid before the N-glycosylated sequon to increase

glycoprotein stability (Price et al., 2012, 2011).

The amino acids flanking the non-validated N-glyc sites (Figure S4) were interestingly

different from the validated ones.

68

The N-glycosylation sites are not completely conserved in homologous

sequences

We asked if the N-glyc sites validated in our data were conserved among Aspergilli

homologous proteins. This is a central question driving the prediction of N-

glycosylation patterns in heterologous proteins to increase heterologous secretion by

Aspergilli hosts. The analysis of selected N-glyc sites showed variable profiles of

conservation at the primary sequence level (Table 3). However, this variation can be

a consequence of the alignment, which creates some gaps in the sequences, shifting

the sequons among the homologous sequences (Thompson, Higgins, & Gibson,

1994). For example, the N-glyc sites N299 and N308 were validated by the LC-MS/MS

assay in the AA8 cellobiose dehydrogenase (AN7230), as shown in Table 3. AN7230

showed some variations at the N-glycosylated positions at the primary sequence level

in a homologous alignment, but at the tridimensional structural level, the glycosylation

position was quite similar and occurred in the same protein region (Figure 7). Several

studies have shown that the position of the N-glycan in each protein structure is

important due to the influence of the free energy in the region (Price et al., 2012, 2011).

Tan et al. showed that homologous sequences often have no conserved sequons (Tan

et al., 2014). The features that guide the N-glycan attachment to the target sequon are

extremely complex, and therefore, little is known about this phenomenon. Enzymes

that lack N-glycosylation sequons in homologous sequences most likely found different

evolutionary paths by acquiring mutations that allow for the maintenance of similar

characteristics in the microenvironment (Hanson et al., 2009). However, without a

broad study of glycoproteins, it is not possible to affirm if sequences evolved to acquire

N-glycosylation sequons or if the attachment of N-glycans was the original event and

the sequences are evolving to lack N-glycosylation sites.

69

Figure 7. Conservation of N-glycosylation sites in AN7230 and homologous

proteins. Four AN7230 homologous sequences were selected to represent the slight

differences into cellobiose dehydrogenase enzymes. The sequence alignment shows

variation of N-glycosylated sequon position at primary sequence-level in some

homologous sequences. However, the structures show that the N-glycans are attached

in the same loop at 3D-level (arrows). Selected proteins are from (A) A. nidulans

AN7230, (B) A. kawachii (Aspka1_0182079), (C) A. glaucus (Aspgl1_0179713), (D) A.

aculeatus (Aacu16872_054830) and (E) A. zonatus (Aspzo1_0090575). The 3D

protein structures were modeled using the SWISS-MODEL (Biasini et al., 2014) based

on Phanerochaete chrysosporium cellobiose dehydrogenase (PDB:1KDG).

70

A range of 5 to 9 mannose residues is predominant in A. nidulans N-glycans

We also analyzed the number of mannose residues in N-glycans released from the A.

nidulans-secreted proteins. The results show that high-mannose N-glycans were

predominant, as previously described in Aspergillus sp (Deshpande et al., 2008). It has

been reported that Aspergillus sp. can carry high-mannose type N-glycans with

galactofuranoses (Takayanagi, Kimura, Chiba, & Ajisaka, 1994). Mannose and

galactofuranose are structural isomers, have exactly the same mass and are not

distinguishable from oligosaccharide profiling by MALDI/TOF-MS. Thus, in this study,

the peaks were labeled as “Hex5HexNAc2,” but according to the literature, this is likely

to be Man5GlcNAc2 (Geysens et al., 2009; Maras et al., 1999). The genus Aspergillus

rarely displays hyperglycosylation, and the largest N-glycan was described with 18

mannose residues (Geysens et al., 2009), which is similar to our data. However, we

did not detect glucose or galactose residues in the high-mannose glycans as

previously reported for A. niger (Takayanagi et al., 1994).

A recent study showed that the difference in N-glycans composition is directly related

to the protein structure (Thaysen-Andersen & Packer, 2012). Despite the fact that N-

glycosylation occurs mainly in β-turns, the sequons could be present in a large variety

of structures with low to high accessibility (Petrescu et al., 2004; Thaysen-Andersen &

Packer, 2012). We found a total of 25, 19 and 40 exclusive proteins in the glucose,

SCB and xylan conditions, respectively. Therefore, these specific proteins found in

each secretome could explain the divergence of the N-glycans structures (Figure 6).

Recently, some studies have shown that different substrates can also influence the

composition of PTMs. Adav et al. (2014) detected changes in the N-glycosylation

profile in Phanerochaete chrysosporium when grown in glucose, cellulose and lignin.

The authors showed that the same protein had differences in the position and number

of glycosylation sites depending on the substrate (Adav et al., 2014). Moreover, Stals

et al. (2004) analyzed the N-glycosylation modification in Cel7A from T. reesei strains

(Stals et al., 2004). However, by analyzing the proteins common to all the three growth

conditions (99 proteins), we did not detect changes in the profile of N-glycosylation

when A. nidulans was cultivated in different carbon sources.

71

The knowledge of the N-glycosylation pattern of secreted proteins can assist in the

design of A. nidulans as a host for heterologous protein production. However,

understanding the N-glycosylation of wild type enzymes is important, as changes in N-

glycan composition can affect the main properties of these enzymes (Kruszewska et

al., 2008). The N-glycan profile of T. reesei has been reported because it is largely

used in industry due to its good protein secretion capabilities (Pentillä et al., 2003;

Peterson & Nevalainen, 2012). The T. reesei RUT-C30 strain was reported to have

one additional α-1,3-glucose residue in the N-glycan of the main cellobiohydrolase

(CBHI), suggesting an incorrect maturation process of the N-glycan (Peterson &

Nevalainen, 2012). The N-glycan composition could interfere at the level of protein

secretion. The enzyme secretion process is too complex to affirm that N-glycosylation

is the unique feature interfering in the level of protein secretion, although N-glycans

have been reported to contribute to the secretion process.

Conclusion

The knowledge regarding protein glycosylation in a model host such as A. nidulans is

fundamental to improving the success of heterologous protein secretion. For example,

our personal laboratory experience using A. nidulans for this purpose has shown that

only 30% of all transformed recombinant genes were effectively expressed and

secreted (unpublished data). There are many bottlenecks in protein production by

filamentous fungi, such as folding, transport by vesicles, and secretion, but N-

glycosylation at the correct sites is a fundamental event to ensure a high level of

secretion of target proteins (Lubertozzi & Keasling, 2009; H. Nevalainen & Peterson,

2014; K. M. H. Nevalainen et al., 2005; Punt et al., 2002). Our data may assist attempts

for the design of glycosylation sites of recombinant genes to be expressed in

filamentous fungal hosts. A. nidulans is a model filamentous fungus with an excellent

protein secretion system and with a GRAS (generally regarded as safe) status.

Although A. nidulans is not the main strain used for industrial biomass degradation, it

shows a specialized repertoire for biomass degradation compared with other

filamentous fungi (van Hellemond et al., 2006). Moreover, a large number of genes are

specific to A. nidulans, when compared with other Aspergillus species, and a study of

these enzymes could provide advantages (Benoit et al., 2015).

72

This is the first study to report the glycoproteomics of A. nidulans, with analysis of

proteins, N-glyc sites and N-glycans. Using glucose, xylan and SCB as substrates, we

detected 265 proteins strictly related to each substrate, as well as demonstrated

different patterns of total proteins, glycoproteins and N-glycan profiles. Glycosylation

studies rarely highlight the modifications in CAZymes, which was a focus in this study.

A. nidulans has a preference for the sequon NXT and specific variations. The results

of this study should allow for better manipulation of heterologous proteins using

Aspergillus spp. as a host.

Material and methods

Media and strain

Aspergillus nidulans strain A773 (pyrG89;wA3;pyroA4) was purchased from the Fungal

Genetics Stock Center (FGSC). A. nidulans minimal medium (MM) contained salts

solution (Pontecorvo et al., 1953) (NaNO3 6 g/L, KCl 0.52 g/L, MgSO4.7H2O 0.52 g/L,

KH2PO4 1.52 g/L), trace elements (H3BO3 0.011 g/L, MnCl2.4H2O 0.005 g/L,

FeSO4.7H2O 0.005 g/L, CoCl2.6H2O 0.0016 g/L, CuSO4.5H2O 0.0016 g/L,

Na2MoO4.4H2O 0.0011 g/L, ZnSO4.7H2O 0.022 g/L, Na2EDTA 0.050 g/L) and was

supplemented with pyridoxine (1 mg/L) and uracil/uridine (1.2 g/L each) (Segato et al.,

2012). 10 g/L of glucose, xylan from beechwood or NaOH-pretreated sugarcane

bagasse (SCB) were used as carbon source in different conditions as needed, and pH

was adjusted to 6.5 buffered with 200 mM HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) (Segato et al., 2012).

Growth conditions

A. nidulans A773 was cultivated in solid minimal media with glucose for 3-4 days,

spores were harvest and filtered using Miracloth (Merck Millipore). 106 spores were

inoculated into 100 ml MM glucose for 24 hours, 37 ºC and 180 rpm (Segato et al.,

2012). The mycelium was collected by filtration, washed using deionized water and

transferred to MM containing glucose, SCB (60% cellulose, 23% hemicellulose, 8%

lignin and 10% ash) or xylan for 4 days at the same conditions. Extracellular proteins

(secretome) were obtained by filtration of supernatant through one layer of Miracloth.

A triplicate was prepared to each secretome. The pretreatment of sugarcane bagasse

73

was carried out as previously described by Rocha et al. (2012) (Rocha, Gonçalves,

Oliveira, Olivares, & Rossell, 2012).

Enzymatic assays

The polysaccharides xylan from beechwood, xyloglucan from tamarind, mannan,

lichenan, beta-glucan from barley, carboxymethyl cellulose (CMC) and starch were

hydrolyzed by A. nidulans secretomes produced on sugarcane bagasse and xylan.

The enzymatic microassay were carried out using 50 μL of the substrates (0.5 %w/v),

50 mM of ammonium acetate buffer at pH 5.5 and 0.5 µg of total protein at 50°C for

120 min. The reactions were stopped using 100 μL of 3,5-dinitrosalicylic acid (DNS)

boiled at 99°C for 5 minutes and the reducing sugars were measured at 550 nm. The

FPAse activity was performed as recommended by Eveleigh et al. (2009) following the

modifications proposed by Camassola and Dillon (2012) (Camassola & J.P. Dillon,

2012; Eveleigh, Mandels, Andreotti, & Roche, 2009). All the enzymatic assays were

performed in triplicate.

Glycoprotein Enrichment and Deglycosylation

The secreted proteins (secretome) were concentrated using centrifugal filters with 10

kDa of pore size to obtain 700 ug to 1 mg of total proteins. Glycoproteins in the

secretomes were enriched by interaction in Concanavalin A (ConA - GE Healthcare)

for 2 hours. The glycoproteins were eluted using a buffered-solution of 500 mM methyl

α-D-glucopyranoside and the eluted proteins were loaded into a 10% SDS-PAGE for

30 min at 110V. The gel bands were excised and treated with 10 units of

endoglycosidase-H (Endo H; New England Biolabs) at 37 ºC during 24 hours for

deglycosylation under denaturing conditions.

Sample preparation for LC-MS/MS analysis

Proteins deglycosylated in-gel were reduced (5 mM dithiothreitol, 30 min, at room

temperature), alkylated (14 mM iodoacetamide, 30 min at room temperature in the

dark), and digested with 20 mg/ml trypsin (Promega). After peptide extraction, the

samples were dried in a vacuum concentrator. 4.5 µL of the peptide mixture was

analyzed on an ETD-enabled LTQ Velos Orbitrap mass spectrometer (Thermo Fisher

74

Scientific) coupled with LC-MS/MS by an EASY-nLC system (Proxeon Biosystems)

through a Proxeon nanoelectrospray ion source. The peptides were separated by a 2-

90% acetonitrile gradient in 0.1% formic acid using a PicoFrit Column analytical column

(20 cm x ID75 μm, 5 μm particle size, New objective) at a flow rate of 300 nL/min over

60 min. The nanoelectrospray voltage was set to 2.2 kV, and the source temperature

was 275°C. The instrument method for the LTQ Velos Orbitrap were set up in the data-

dependent acquisition mode. The full scan MS spectra (m/z 300-1,600) were acquired

in the Orbitrap analyzer after accumulation to a target value of 1e6. Resolution in the

Orbitrap was set to r = 60,000, and the 20 most intense peptide ions with charge states

≥ 2 were sequentially isolated to a target value of 5,000 and fragmented in the linear

ion trap by low-energy CID (normalized collision energy of 35%). The signal threshold

for triggering an MS/MS event was set to 1,000 counts. Dynamic exclusion was

enabled with an exclusion size list of 500, exclusion duration of 60 s, and repeat count

of 1. An activation q of 0.25 and an activation time of 10 ms were used.

The raw data files were converted to a peak list format (mgf) using the Mascot Distiller

v.2.3.2.0 software (Matrix Science Ltd.). These spectra were searched against the A.

nidulans genome from AspGD (10.560 entries) using the Mascot v.2.3.01 engine

(Matrix Science Ltd.) with oxidation of methionine and N-acetylglucosamine (GlcNAc)

tagged on asparagine residue (N+203) as variable modifications, and

carbamidomethylation as fixed modification. Additional parameters were one trypsin-

missed cleavage, a tolerance of 10 ppm for precursor ions and 1 Da for fragment ions.

Data analysis

All datasets processed using the workflow feature in the Mascot software were further

analyzed in the software ScaffoldQ+ (Proteome Software) to validate the MS/MS-

based peptide and protein identifications. Peptide identifications were accepted if they

could be established at greater than 95% probability as specified by the Peptide

Prophet algorithm (Keller, Nesvizhskii, Kolker, & Aebersold, 2002). Peptide

identifications were also required to exceed specific database search engine

thresholds. Mascot identifications required at least both the associated identity scores

and ion scores to be p<0.05. Protein identifications were accepted if they could be

established at greater than 99% probability for protein identification. Protein

75

probabilities were assigned using the Protein Prophet algorithm (Nesvizhskii, Keller,

Kolker, & Aebersold, 2003). Proteins that contained similar peptides and could not be

differentiated based on the MS/MS analysis alone were grouped to satisfy the

principles of parsimony. The scoring parameter (Peptide Probability) in the ScaffoldQ+

software obtained a false discovery rate (FDR) of 0.73%. Using the number of total

spectra output from the ScaffoldQ+ software, we identified the differentially expressed

proteins using spectral counting. Quantitative value was applied to normalize the

spectral counts. The Scaffold PTM (Proteome Software) was used to further validate

glycosylated sites assignments with confidence, based in their pre-established

parameters (Beausoleil et al., 2006; Schwartz & Gygi, 2005).

Glycomics

Around 700 ug of each secretome were treated with a mixture of chloroform and

methanol by four times, to extract lipids. The extracts were incubated at room

temperature with end-over-end agitation. After each lipid extraction procedure, the

insoluble protein-containing materials were collected by centrifugation. The final

insoluble protein pellets were further washed with cold-acetone/water (4:1, v/v) to

eliminate polysaccharides from culture media. Pellets were finally washed with cold-

acetone and dried under a stream of nitrogen. The dried samples were dissolved in

0.1 M Tris-HCl buffer, pH 8.2 containing 10mM CaCl2 and denatured by heating for 5

min at 100 °C. After cooling, the samples were digested with trypsin (37 ºC, overnight).

The samples were heated at 100º C for 5 min to inactivate trypsin and centrifuged at

3000 rpm in a refrigerated centrifuge for 15 min. The supernatants were collected and

dried. Samples were then passed through a C18 sep-pak cartridge and washed with

5% acetic acid to remove contaminants (salts, free sugar, etc.). Peptides and

glycopeptides were eluted in series with 20% iso-propanol in 5% acetic acid, 40% iso-

propanol in 5% acetic acid and 100% iso-propanol and dried in a speed vacuum

concentrator. The dried samples were combined and incubated with PNGase F at 37

ºC overnight to release N-glycans. After digestion, the samples were passed through

a C18 sep-pak cartridge and the released N-glycans was eluted with 5% acetic acid

and dried by lyophilization, and then permethylated based on the method of Anumula

and Taylor (1992) (Anumula & Taylor, 1992) and profiled by mass spectrometry.

76

MALDI/TOF-MS was performed in the reflector positive ion mode using α-

dihyroxybenzoic acid (DHBA, 20 mg/mL solution in 50% methanol:water) as a matrix.

The spectrum was obtained by using a TOF/TOF™ 5800 System (AB SCIEX).

Acknowledgment

This research was supported in part by FAPESP (grant # 2012/20549-4 to ARLD,

2014/06923-6 to FMS and 2009/54067-3 to AFPL), and by the National Institutes of

Health (NIH/NCRR) (grant # P41GM10349010) entitled ‘Integrated Technology

Resource for Biomedical Glycomics’ coordinated by Dr. Parastoo Azadi at the Complex

Carbohydrate Research Center). We are grateful to the National Council for Scientific

and Technological Development (CNPq) for the financial support (441912/2014-1 to

ARLD; 310186/2014-5 and 442333/2014-5 to FMS). MVR, MPZ and FC received

FAPESP fellowships (2013/24988-5; 2014/15403-6; 2014/23051-2). We thank the

LNBio Mass Spectrometry staff and Mayumi Ishihara from CCRC for the assistance

with LC-MS/MS and MALDI-TOF experiments, respectively.

Competing interests

The authors declare that they have no competing interests.

Authors´ contributions

Conceived and designed the experiments: ARLD and AFPL. Performed the

experiments: MVR, MPZ and FC. Analyzed the data: MVR, MPZ, FC, JPFC and ARLD.

Wrote the paper: MVR, JPFC and ARLD. Revised the manuscript: ARLD, RAP and

FMS. All authors read and approved the final manuscript.

77

Additional files

Figure S1. Aspergillus nidulans CAZymes inventory.

(A) The annotation of A. nidulans FGSC A4 CAZymes genes were determined

according to CAZy database (www.cazy.org/e185.html). The prediction of N-

glycosylation sites was carried out using NetNGlyc 1.0 Server that examine the

sequence context of Asn-Xaa-Ser/Thr sequons with threshold 0.5. CAZymes predicted

with N-glycosylation sites were analyzed for signal peptide using SignalP 4.1 Server.

(B) The 190 proteins predicted with N-glycosylation sites and signal peptide were

grouped and shown as CAZy families percentage.

A

B

78

Figure S2. Counts of A. nidulans extracellular CAZymes predicted with N-

glycosylation. The number of N-glycosylation sites of each CAZyme predicted with

signal peptide were analyzed by NetNGlyc 1.0 server.

79

Figure S3. Enzymatic repertoire in A. nidulans secretomes. Secretomes produced

on sugarcane bagasse and xylan were assayed for the hydrolysis of polysaccharides.

All the enzymatic assays were carried out at 50°C for 120 min, using 0.5 µg of total

protein. The hydrolysis were performed in triplicate.

80

Oc

cu

re

nc

e (

%)

S e q u e n c e p o s itio n

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

1 5

3 0

H y d ro p h o b ic

N S /T

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

1 5

3 0

A ro m a tic

N S /T

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

1 5

3 0

B a s ic

N S /T

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

1 5

3 0

U n iq u e

g ly c o s y la te d

n o n -g ly c o s y la te d

N S /T

N S /T

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

1 5

3 0

A cid ic

N S /T

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0

1 5

3 0

P o la r u n c h a rg e d

Figure S4. Amino acids distribution around N-glycosylation sites. The relative

ocurrence of amino acids is plotted versus sequence position -6 to +6 around

validated or predicted N-glyc site. Glycosylated: N-glyc sites validated by LC-MS/MS;

non-glycosylated: N-glyc sites predicted by NetNGlyc Server but not validadted by

LC-MS/MS data set. Hydrophobic (Ala, Val, Leu, Ile, Met); Aromatic (Phe, Tyr, Trp);

Polar uncharged (Ser, Thr, Asn, Cys, Gln); Acidic (Asp, Glu); Basic (Lys, Arg, His);

Unique (Gly, Pro).

81

Table S1. Identified proteins and spectrum counts.

Total Spectrum Count

Acession

number Identified Proteins Domain 1 Domain 2

Domain

3

N-X-

S/T

sites

¹

N-glyc

Position

Protei

n

covera

ge

Gluco

se A

Gluco

se B

Gluco

se C

SCB

A

SCB

B

SCB

C

Xylan

A

Xylan

B

Xylan

C

ANID_00221 | ANID_00221 | Aspergillus nidulans FGSC A4 chitinase (392 aa) GH18 6% 0 0 0 1 0 2 0 0 0

ANID_00224 | ANID_00224 | Aspergillus nidulans FGSC A4 microsomal dipeptidase (416 aa) Peptidase_M

19 38% 8 2 3 4 3 5 8 7 3

ANID_00231 | ANID_00231 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (332

aa) Tyrosinase 1 284 43% 5 9 5 41 25 31 25 18 44

ANID_00241 | ANID_00241 | Aspergillus nidulans FGSC A4 superoxide dismutase (155 aa) Sod_Cu 32% 0 0 0 1 1 1 5 0 2

ANID_00245 | ANID_00245 | Aspergillus nidulans FGSC A4 endo-1,3(4)-beta-glucanase (343 aa) GH16 12% 0 0 0 2 0 1 1 1 2

ANID_00392 | ANID_00392 | Aspergillus nidulans FGSC A4

endonuclease/exonuclease/phosphatase (435 aa)

Exo_endo_p

hos 1 272 24% 3 5 2 0 0 2 0 4 0

ANID_00393 | ANID_00393 | Aspergillus nidulans FGSC A4 glycosyl hydrolase family 76 protein

(465 aa) GH76 1 205 11% 0 0 1 1 1 0 0 2 1

ANID_00472 | ANID_00472 | Aspergillus nidulans FGSC A4 endo-1,3-beta-glucanase Engl1 (908

aa) GH81 2 219, 240 44% 0 0 0 60 27 33 46 53 48

ANID_00484 | ANID_00484 | Aspergillus nidulans FGSC A4 glycerophosphoryl diester

phosphodiesterase (410 aa) GDPD 20% 2 0 1 0 0 0 1 0 4

ANID_00494 | ANID_00494 | Aspergillus nidulans FGSC A4 1,4-beta-D-glucan-cellobiohydrolyase

(531 aa) GH7 CBM1 25% 0 0 0 50 35 24 1 0 0

ANID_00543 | ANID_00543 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (509

aa) CBM50 (5X) 8% 0 0 0 52 0 10 0 0 0

ANID_00558 | ANID_00558 | Aspergillus nidulans FGSC A4 beta glucanosyltransferase Gel2p

(474 aa) GH72 2 313, 341 22% 5 5 3 4 2 2 0 0 0

ANID_00567 | ANID_00567 | Aspergillus nidulans FGSC A4 choline dehydrogenase (625 aa) AA3 22% 0 0 0 0 0 0 7 1 4

ANID_00779 | ANID_00779 | Aspergillus nidulans FGSC A4 exo-1,3-beta-D-glucanase (965 aa) GH55 19% 3 4 1 15 12 12 13 13 2

ANID_00787 | ANID_00787 | Aspergillus nidulans FGSC A4 alpha-1,2-mannosidase (506 aa) GH47 1 88 53% 50 37 35 97 125 156 40 85 100

ANID_00933 | ANID_00933 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (405

aa) GH16 52% 34 40 37 39 2 1 16 2 3

ANID_00941 | ANID_00941 | Aspergillus nidulans FGSC A4 alpha-glucosidase (874 aa) GH31 1 713 22% 6 0 0 2 4 0 2 2 1

ANID_01058 | ANID_01058 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (315

aa) 1 166 11% 23 41 36 7 1 0 0 0 0

82

ANID_01131 | ANID_01131 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (208

aa) Sod_Cu 2 49, 116 28% 0 0 0 0 4 1 5 0 5

ANID_01142 | ANID_01142 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (606

aa) AA7 25% 2 5 6 1 0 2 1 4 4

ANID_01218 | ANID_01218 | Aspergillus nidulans FGSC A4 phosphoglycerate mutase (407 aa) His_Phos_1 1 186 29% 3 0 0 3 1 3 3 4 1

ANID_01263 | ANID_01263 | Aspergillus nidulans FGSC A4 S-adenosylhomocysteine hydrolase

(450 aa)

AdoHcyase_

NAD AdoHcyase 2% 0 1 0 0 0 0 0 0 0

ANID_01273 | ANID_01273 | Aspergillus nidulans FGSC A4 glycosyl hydrolase family 6 protein

(405 aa) GH6 43% 0 0 0 83 6 6 0 0 0

ANID_01285 | ANID_01285 | Aspergillus nidulans FGSC A4 endo-beta-1,4-glucanase (327 aa) GH5 8% 0 0 0 2 1 2 0 0 0

ANID_01318 | ANID_01318 | Aspergillus nidulans FGSC A4 tyrosinase (385 aa) Tyrosinase 1 229 22% 4 2 0 0 0 0 0 0 0

ANID_01320 | ANID_01320 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (256

aa) CE10 1 63 58% 1 0 2 2 4 1 15 28 27

ANID_01338 | ANID_01338 | Aspergillus nidulans FGSC A4 hypothetical protein (172 aa) 23% 0 1 2 3 0 3 5 1 0

ANID_01342 | ANID_01342 | Aspergillus nidulans FGSC A4 aminotransferase (387 aa) Aminotran_5 6% 0 0 0 1 0 0 3 0 0

ANID_01426 | ANID_01426 | Aspergillus nidulans FGSC A4 carboxypeptidase S1 (555 aa) Peptidase_S

10 8% 1 0 1 2 0 1 0 0 0

ANID_01433 | ANID_01433 | Aspergillus nidulans FGSC A4 triacylglycerol lipase (541 aa) CE10 2 374, 381 43% 0 0 0 0 2 0 12 16 49

ANID_01502 | ANID_01502 | Aspergillus nidulans FGSC A4 N-acetylglucosaminidase (604 aa) GH20 1 503 45% 3 0 0 3 10 12 109 69 207

ANID_01602 | ANID_01602 | Aspergillus nidulans FGSC A4 endoglucanase B (358 aa) AA9 CBM1 21% 0 0 2 6 2 0 0 0 0

ANID_01719 | ANID_01719 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (384

aa) 9% 0 6 4 0 0 0 0 0 0

ANID_01772 | ANID_01772 | Aspergillus nidulans FGSC A4 feruloyl esterase (528 aa) CE1 Tannase 3 86, 139, 356 55% 1 0 8 9 8 12 13 33 33

ANID_01792 | ANID_01792 | Aspergillus nidulans FGSC A4 GDSL Lipase/Acylhydrolase (342 aa) CE16 29% 0 0 0 0 2 2 9 11 18

ANID_01799 | ANID_01799 | Aspergillus nidulans FGSC A4 secretory lipase (451 aa) LIP 24% 1 0 7 0 0 0 0 1 0

ANID_01813 | ANID_01813 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (160

aa) 31% 5 0 1 0 0 0 3 0 1

ANID_01818 | ANID_01818 | Aspergillus nidulans FGSC A4 xylanaseF1 (310 aa) GH10 69% 1 0 0 57 40 64 43 12 10

ANID_01855 | ANID_01855 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (382

aa) 12% 2 1 2 1 1 1 0 1 0

ANID_01870 | ANID_01870 | Aspergillus nidulans FGSC A4 xylanase D (308 aa) GH43 1 87 31% 2 2 3 1 1 3 4 3 5

ANID_02017 | ANID_02017 | Aspergillus nidulans FGSC A4 alpha-glucosidase AgdA (993 aa) GH31 1 432 21% 0 1 2 4 6 5 9 3 3

ANID_02018 | ANID_02018 | Aspergillus nidulans FGSC A4 alpha-amylase AmyA (492 aa) GH13 2 39, 390 11% 0 0 0 1 0 2 0 1 2

ANID_02060 | ANID_02060 | Aspergillus nidulans FGSC A4 exo-arabinanase abnx-Penicillium

chrysogenum (379 aa) GH93 44% 0 0 1 1 2 0 5 3 11

83

ANID_02112 | ANID_02112 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (410

aa) Lactonase 2 45, 220 64% 2 0 1 23 21 30 17 21 81

ANID_02119 | ANID_02119 | Aspergillus nidulans FGSC A4 patched sphingolipid transporter

(1272 aa) Patched 6% 1 0 1 0 0 0 4 3 2

ANID_02217 | ANID_02217 | Aspergillus nidulans FGSC A4 beta-glucosidase (780 aa) GH3 17% 0 0 0 2 10 6 2 1 5

ANID_02227 | ANID_02227 | Aspergillus nidulans FGSC A4 beta-glucosidase (839 aa) GH3 9% 0 0 0 3 1 3 0 0 0

ANID_02237 | ANID_02237 | Aspergillus nidulans FGSC A4 carboxypeptidase S1 (612 aa) Peptidase_S

10 1 494 19% 1 2 0 2 6 4 1 2 1

ANID_02325 | ANID_02325 | Aspergillus nidulans FGSC A4 glycosyl hydrolase, family 92 protein

(755 aa) GH92 4

105, 112, 118,

261 29% 0 0 0 1 3 0 7 11 17

ANID_02359 | ANID_02359 | Aspergillus nidulans FGSC A4 beta-xylosidase (801 aa) GH3 3 231, 673, 695 42% 0 0 0 18 30 33 9 15 15

ANID_02360 | ANID_02360 | Aspergillus nidulans FGSC A4 acid phosphatase (498 aa) Metallophos Metallophos_

C 2 112, 166 28% 0 0 1 0 1 0 2 1 7

ANID_02366 | ANID_02366 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (255

aa) Trypsin 58% 63 62 59 6 0 0 1 0 0

ANID_02385 | ANID_02385 | Aspergillus nidulans FGSC A4 GPI anchored endo-1,3(4)-beta-

glucanase (627 aa) GH16 24% 3 25 13 5 0 0 0 0 0

ANID_02387 | ANID_02387 | Aspergillus nidulans FGSC A4 FAD binding domain-containing

protein (503 aa) AA7 1 260 37% 5 4 2 0 2 3 1 9 13

ANID_02388 | ANID_02388 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (436

aa) AA9 1 93 32% 13 8 18 10 11 17 4 16 27

ANID_02395 | ANID_02395 | Aspergillus nidulans FGSC A4 hydrolase (614 aa) GH2 1 293 33% 0 1 0 17 26 15 14 26 27

ANID_02463 | ANID_02463 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (1024

aa) GH2 7% 0 0 0 0 0 0 2 1 6

ANID_02569 | ANID_02569 | Aspergillus nidulans FGSC A4 pectin lyase (380 aa) PL1 18% 0 0 0 9 0 3 0 0 0

ANID_02572 | ANID_02572 | Aspergillus nidulans FGSC A4 secreted dipeptidyl peptidase DppV

(723 aa) CE10 10% 0 0 0 0 0 0 2 0 2

ANID_02574 | ANID_02574 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (517

aa) AA7 2 212, 330 39% 0 0 0 1 0 0 2 11 16

ANID_02582 | ANID_02582 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (442

aa) 8% 2 5 4 0 0 0 0 0 0

ANID_02648 | ANID_02648 | Aspergillus nidulans FGSC A4 isoamyl alcohol oxidase (567 aa) AA7 1 47 23% 4 1 0 1 1 0 2 11 6

ANID_02659 | ANID_02659 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (831

aa) 5% 0 0 0 1 0 2 0 4 0

ANID_02702 | ANID_02702 | Aspergillus nidulans FGSC A4 predicted protein (228 aa) 19% 2 17 16 0 1 0 0 1 0

ANID_02704 | ANID_02704 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (579

aa) AA3 8% 0 0 3 0 0 0 0 0 0

84

ANID_02790 | ANID_02790 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (397

aa) 1 356 16% 0 0 1 0 4 1 0 0 1

ANID_02828 | ANID_02828 | Aspergillus nidulans FGSC A4 beta-glucosidase (738 aa) GH3 2 225, 365 45% 0 1 7 83 81 74 61 61 86

ANID_02834 | ANID_02834 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (251

aa) CE12 12% 0 0 0 0 0 0 0 2 0

ANID_02875 | ANID_02875 | Aspergillus nidulans FGSC A4 fructose-bisphosphate aldolase (361

aa)

F_bP_aldola

se 4% 0 0 0 0 0 0 1 0 0

ANID_02903 | ANID_02903 | Aspergillus nidulans FGSC A4 pepsinogen (395 aa) Asp 28% 0 0 0 0 0 0 7 9 7

ANID_02928 | ANID_02928 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (731

aa) 8% 12 0 0 0 0 0 0 0 0

ANID_02936 | ANID_02936 | Aspergillus nidulans FGSC A4 alpha-mannosidase (1096 aa) GH38 13% 0 0 0 0 0 0 9 0 4

ANID_02954 | ANID_02954 | Aspergillus nidulans FGSC A4 extracellular serine-rich protein (802

aa) 1 300 35% 146 44 38 234 87 207 24 71 80

ANID_03057 | ANID_03057 | Aspergillus nidulans FGSC A4 prenylcysteine lyase (555 aa) Prenylcys_ly

ase

NAD_binding

_8 1 292 11% 0 0 0 0 0 0 0 1 1

ANID_03083 | ANID_03083 | Aspergillus nidulans FGSC A4 FAD binding domain-containing

protein (532 aa) AA7 4% 0 0 0 0 0 0 0 1 0

ANID_03091 | ANID_03091 | Aspergillus nidulans FGSC A4 peptidase family M13 protein (785

aa)

Peptidase_M

13

Peptidase_M

13_N 1 640 5% 0 0 0 0 0 0 1 3 0

ANID_03112 | ANID_03112 | Aspergillus nidulans FGSC A4 UDP-galactopyranose mutase (533

aa)

NAD_binding

_8 9% 0 2 3 0 0 0 0 0 0

ANID_03211 | ANID_03211 | Aspergillus nidulans FGSC A4 NPP1 domain-containing protein

(248 aa) NPP1 22% 1 0 2 2 1 1 1 1 0

ANID_03218 | ANID_03218 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (149

aa) 14% 0 0 0 0 0 0 2 0 0

ANID_03229 | ANID_03229 | Aspergillus nidulans FGSC A4 choline dehydrogenase (612 aa) AA3 2 187, 272 17% 0 0 0 0 0 0 5 1 6

ANID_03246 | ANID_03246 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (199

aa) 11% 0 0 0 0 0 0 2 0 0

ANID_03262 | ANID_03262 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (393

aa) 1 305 32% 1 2 2 1 1 2 5 5 6

ANID_03297 | ANID_03297 | Aspergillus nidulans FGSC A4 endo-beta-1,4-mannanase (410 aa) GH5 4% 0 0 0 0 1 0 0 0 0

ANID_03351 | ANID_03351 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (487

aa) AA7 3 48, 259, 275 44% 4 0 6 2 5 3 1 5 3

ANID_03390 | ANID_03390 | Aspergillus nidulans FGSC A4 pectin methyl esterease (326 aa) CE8 50% 31 20 3 2 0 2 1 2 0

ANID_03402 | ANID_03402 | Aspergillus nidulans FGSC A4 alpha-amylase (624 aa) GH13 CBM20 25% 6 0 1 0 0 0 7 18 12

ANID_03418 | ANID_03418 | Aspergillus nidulans FGSC A4 endo-1,4-beta-glucanase (426 aa) GH7 40% 0 0 0 265 134 240 4 3 1

ANID_03469 | ANID_03469 | Aspergillus nidulans FGSC A4 histone H2B (141 aa) Histone 11% 1 0 0 0 0 0 0 0 0

85

ANID_03592 | ANID_03592 | Aspergillus nidulans FGSC A4 calnexin (562 aa) Calreticulin 1 235 16% 1 0 0 0 0 0 1 5 2

ANID_03613 | ANID_03613 | Aspergillus nidulans FGSC A4 xylanase (226 aa) GH11 40% 0 0 0 110 75 125 77 13 128

ANID_03790 | ANID_03790 | Aspergillus nidulans FGSC A4 alpha-1,3-glucanase/mutanase (494

aa) GH71 8% 0 0 0 0 3 1 1 1 3

ANID_03860 | ANID_03860 | Aspergillus nidulans FGSC A4 endoglucanase (251 aa) AA9 14% 0 0 0 5 5 5 0 0 0

ANID_03918 | ANID_03918 | Aspergillus nidulans FGSC A4 aminopeptidase (503 aa) PA Peptidase_M

28 22% 2 3 1 9 6 3 7 12 25

ANID_04041 | ANID_04041 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (194

aa) 34% 0 1 0 5 2 6 4 3 13

ANID_04055 | ANID_04055 | Aspergillus nidulans FGSC A4 acid phosphatase PHOa (407 aa) Phosphoeste

rase 5

119, 150, 186,

315, 382 41% 0 1 2 14 26 21 13 23 20

ANID_04102 | ANID_04102 | Aspergillus nidulans FGSC A4 beta-glucosidase (854 aa) GH3 4 62, 491, 642, 713 45% 1 0 0 11 20 8 18 22 33

ANID_04245 | ANID_04245 | Aspergillus nidulans FGSC A4 neutral/alkaline nonlysosomal

ceramidase (759 aa)

Ceramidase_

alk 20% 0 0 0 3 7 3 3 5 2

ANID_04260 | ANID_04260 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (196

aa) 5% 1 0 1 0 0 1 1 0 0

ANID_04376 | ANID_04376 | Aspergillus nidulans FGSC A4 nadp-specific glutamate

dehydrogenase (460 aa)

ELFV_dehyd

rog

ELFV_dehydr

og_N 41% 1 4 17 2 1 1 0 0 0

ANID_04379 | ANID_04379 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (285

aa) DPBB_1 12% 0 75 44 1 0 0 0 0 0

ANID_04381 | ANID_04381 | Aspergillus nidulans FGSC A4 GPI anchored cell wall protein (175

aa) 17% 3 12 9 0 0 0 0 0 0

ANID_04390 | ANID_04390 | Aspergillus nidulans FGSC A4 GPI-anchored cell wall organization

protein Ecm33 (397 aa) Ecm33 LRR_5 (2x) 2 78, 209 16% 7 18 12 0 1 0 0 0 0

ANID_04515 | ANID_04515 | Aspergillus nidulans FGSC A4 probable glycosidase crf2 (436 aa) GH16 CBM18 26% 3 21 12 0 0 0 0 0 0

ANID_04575 | ANID_04575 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (358

aa) 19% 62 17 13 1 0 3 0 1 0

ANID_04700 | ANID_04700 | Aspergillus nidulans FGSC A4 endo-beta-1,3-glucanase (650 aa) GH17 24% 0 4 5 1 0 1 2 4 1

ANID_04793 | ANID_04793 | Aspergillus nidulans FGSC A4 aspartate-semialdehyde

dehydrogenase (364 aa)

Semialdhyde

_dh

Semialdhyde_

dhC 12% 1 1 2 0 0 0 0 0 0

ANID_04807 | ANID_04807 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (327

aa) DUF946 13% 0 1 2 0 0 0 2 1 1

ANID_04809 | ANID_04809 | Aspergillus nidulans FGSC A4 glutaminase A (689 aa) DUF1793 1 506 42% 0 1 0 34 44 50 13 54 82

ANID_04825 | ANID_04825 | Aspergillus nidulans FGSC A4 LysM domain-containing protein (901

aa) GH55 34% 0 0 0 17 11 17 18 3 12

ANID_04845 | ANID_04845 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (376

aa) 9% 0 0 0 0 0 0 2 0 0

86

ANID_04852 | ANID_04852 | Aspergillus nidulans FGSC A4 exo-beta-1,3-glucanase (808 aa) GH55 14% 0 0 1 2 0 0 3 8 6

ANID_04860 | ANID_04860 | Aspergillus nidulans FGSC A4 pectin methylesterase (390 aa) CE8 4% 0 0 0 0 0 0 0 2 0

ANID_04871 | ANID_04871 | Aspergillus nidulans FGSC A4 chitinase (399 aa) GH18 73% 1 2 0 43 22 68 209 41 69

ANID_04874 | ANID_04874 | Aspergillus nidulans FGSC A4 ribonuclease T2-like protein (418 aa) Ribonucleas

e_T2 12% 0 0 0 0 0 0 0 3 0

ANID_04901 | ANID_04901 | Aspergillus nidulans FGSC A4 glutaminase (826 aa) DUF1793 7% 0 0 0 0 0 0 1 0 1

ANID_05130 | ANID_05130 | Aspergillus nidulans FGSC A4 coproporphyrinogen III oxidase (455

aa)

Coprogen_o

xidas 9% 1 0 1 0 0 0 2 0 0

ANID_05176 | ANID_05176 | Aspergillus nidulans FGSC A4 1,4-beta-D-glucan-cellobiohydrolyase

(447 aa) GH7 1 284 39% 0 0 0 565 263 270 13 1 1

ANID_05194 | ANID_05194 | Aspergillus nidulans FGSC A4 ABC transporter (1037 aa) ABC_tran ABC2_membr

ane 11% 1 0 0 0 0 0 7 9 6

ANID_05267 | ANID_05267 | Aspergillus nidulans FGSC A4 esterase (271 aa) CE1 23% 0 0 0 3 2 8 2 0 0

ANID_05282 | ANID_05282 | Aspergillus nidulans FGSC A4 beta-1,4-glucan-cellobiohydrolyase

(423 aa) GH6 CBM1 21% 0 0 0 17 21 27 0 0 0

ANID_05311 | ANID_05311 | Aspergillus nidulans FGSC A4 tyrosinase (384 aa) Tyrosinase 2 50, 228 40% 53 15 7 2 5 1 1 11 15

ANID_05320 | ANID_05320 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (402

aa) CE2 29% 0 0 0 11 6 13 0 0 0

ANID_05328 | ANID_05328 | Aspergillus nidulans FGSC A4 GPI anchored dioxygenase (397 aa) Dioxygenase

_C 8% 2 0 1 0 0 0 0 0 0

ANID_05463 | ANID_05463 | Aspergillus nidulans FGSC A4 starch binding domain-containing

protein (386 aa) CBM20 1 364 24% 10 8 1 0 0 1 3 2 1

ANID_05558 | ANID_05558 | Aspergillus nidulans FGSC A4 alkaline protease (404 aa) Peptidase_S

8 Inhibitor_I9 33% 0 2 0 6 1 2 9 4 1

ANID_05727 | ANID_05727 | Aspergillus nidulans FGSC A4 endo-beta-1,4-galactanase (351 aa) GH53 34% 5 0 4 7 3 11 3 3 2

ANID_05749 | ANID_05749 | Aspergillus nidulans FGSC A4 peptidase (421 aa) Peptidase_M

20 M20_dimer 8% 0 2 1 0 0 0 0 0 1

ANID_05879 | ANID_05879 | Aspergillus nidulans FGSC A4

phosphatidylglycerol/phosphatidylinositol transfer protein (170 aa)

E1_DerP2_D

erF2 11% 1 0 0 1 1 0 3 1 0

ANID_05939 | ANID_05939 | Aspergillus nidulans FGSC A4 5'-nucleotidase (583 aa) Metallophos 5_nucleotid_

C 3 145, 163, 215 15% 1 0 0 0 0 0 0 3 3

ANID_05942 | ANID_05942 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (157

aa) 24% 6 5 5 2 3 1 4 2 1

ANID_05944 | ANID_05944 | Aspergillus nidulans FGSC A4 acetylcholinesterase (537 aa) CE10 18% 1 1 0 1 0 0 4 5 5

ANID_05976 | ANID_05976 | Aspergillus nidulans FGSC A4 beta-glucosidase 2 (820 aa) GH3 3% 0 0 0 0 0 0 0 2 1

ANID_06037 | ANID_06037 | Aspergillus nidulans FGSC A4 glucose-6-phosphate isomerase (554

aa) PGI 21% 0 4 5 1 0 1 3 0 0

87

ANID_06093 | ANID_06093 | Aspergillus nidulans FGSC A4 acetylxylan esterase (307 aa) CE1 1 263 25% 0 0 0 25 3 25 7 2 6

ANID_06103 | ANID_06103 | Aspergillus nidulans FGSC A4 starch binding domain-containing

protein (329 aa)

Chitin_bind_

3 29% 4 0 2 0 0 0 2 4 1

ANID_06106 | ANID_06106 | Aspergillus nidulans FGSC A4 pectate lyase (234 aa) PL3 18% 0 0 0 3 0 0 1 1 2

ANID_06382 | ANID_06382 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (631

aa) 16% 0 0 0 2 2 2 10 1 2

ANID_06405 | ANID_06405 | Aspergillus nidulans FGSC A4 secreted glycosyl hydrolase (247 aa) GH25 1 183 32% 0 10 1 0 0 0 0 1 0

ANID_06422 | ANID_06422 | Aspergillus nidulans FGSC A4 fungal cellulose binding domain-

containing protein (306 aa) CE16 19% 0 0 0 56 89 98 0 1 0

ANID_06428 | ANID_06428 | Aspergillus nidulans FGSC A4 fungal cellulose binding domain-

containing protein (232 aa) AA9 1 69 33% 0 0 0 13 38 16 0 0 0

ANID_06438 | ANID_06438 | Aspergillus nidulans FGSC A4 dipeptidyl-peptidase IV (774 aa) CE1 2 496, 671 30% 0 0 0 4 3 0 5 11 9

ANID_06470 | ANID_06470 | Aspergillus nidulans FGSC A4 N,O-diacetylmuramidase (217 aa) GH25 24% 0 2 0 1 0 2 2 1 2

ANID_06473 | ANID_06473 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (693

aa) 1 459 10% 0 0 0 0 1 0 1 2 1

ANID_06476 | ANID_06476 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (135

aa) 29% 0 0 0 6 2 6 0 0 0

ANID_06525 | ANID_06525 | Aspergillus nidulans FGSC A4 NAD-dependent formate

dehydrogenase AciA/Fdh (366 aa) 2-Hacid_dh

2-

Hacid_dh_C 20% 1 1 2 0 0 1 0 0 0

ANID_06535 | ANID_06535 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (217

aa) 1 51 73% 61 65 69 92 10 55 65 34 97

ANID_06620 | ANID_06620 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (389

aa) GH16 1 166 31% 20 10 13 2 4 4 7 2 6

ANID_06621 | ANID_06621 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (384

aa)

Abhydrolase

_6 40% 9 11 2 2 4 1 1 3 6

ANID_06635 | ANID_06635 | Aspergillus nidulans FGSC A4 laccase (610 aa) AA1 Cu-oxidase

(3x) 1 403 38% 0 0 0 0 0 0 11 7 22

ANID_06673 | ANID_06673 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (808

aa) GH95 26% 0 0 0 1 4 1 4 11 9

ANID_06697 | ANID_06697 | Aspergillus nidulans FGSC A4 SUN domain-containing protein (411

aa) GH132 27% 15 7 14 0 0 0 0 0 0

ANID_06795 | ANID_06795 | Aspergillus nidulans FGSC A4 antigenic cell wall

galactomannoprotein (189 aa) HsbA 13% 0 0 0 0 0 2 0 0 0

ANID_06819 | ANID_06819 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (308

aa) GH16 37% 11 12 13 27 15 45 15 20 14

ANID_06927 | ANID_06927 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (206

aa) WSC 12% 0 3 2 0 0 0 0 0 0

ANID_07041 | ANID_07041 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (822

aa) 3% 1 1 2 0 0 0 0 0 0

88

ANID_07046 | ANID_07046 | Aspergillus nidulans FGSC A4 carboxylesterase (580 aa) CE10 9% 0 0 0 0 0 0 2 5 2

ANID_07087 | ANID_07087 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (274

aa) 62% 1 0 0 11 7 16 11 2 2

ANID_07102 | ANID_07102 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (173

aa) 34% 2 0 0 0 1 2 0 2 1

ANID_07135 | ANID_07135 | Aspergillus nidulans FGSC A4 rhamnogalacturonase B (531 aa) PL4 12% 0 0 0 3 2 2 0 0 0

ANID_07151 | ANID_07151 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (879

aa) GH78 CBM67 3 36, 58, 586 24% 0 0 0 0 0 0 3 12 11

ANID_07152 | ANID_07152 | Aspergillus nidulans FGSC A4 alpha-galactosidase (641 aa) GH27 1 532 35% 0 0 0 16 21 18 5 8 8

ANID_07159 | ANID_07159 | Aspergillus nidulans FGSC A4 tripeptidyl-peptidase (605 aa) Peptidase_S

8

Pro-

kuma_activ 17% 1 2 1 0 0 1 0 1 0

ANID_07181 | ANID_07181 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (453

aa) 27% 0 1 1 3 0 3 1 1 5

ANID_07214 | ANID_07214 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (464

aa)

NAD_binding

_8 10% 1 3 1 0 0 0 0 0 0

ANID_07230 | ANID_07230 | Aspergillus nidulans FGSC A4 cellobiose dehydrogenase (797 aa) AA8 5 132, 299, 308,

620, 709 47% 0 0 0 45 190 40 0 0 0

ANID_07231 | ANID_07231 | Aspergillus nidulans FGSC A4 extracelular serine carboxypeptidase

(520 aa)

Peptidase_S

28 4

282, 294, 309,

312 42% 2 0 4 3 6 5 6 13 6

ANID_07269 | ANID_07269 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (497

aa) AA7 2 133, 460 61% 27 10 21 19 25 19 21 29 32

ANID_07275 | ANID_07275 | Aspergillus nidulans FGSC A4 xylosidase/glycosyl hydrolase (517

aa) GH43 2 40, 382 32% 0 0 0 24 7 24 4 7 4

ANID_07307 | ANID_07307 | Aspergillus nidulans FGSC A4 DUF1237 domain-containing protein

(538 aa) GH125 1 68 26% 0 0 4 2 8 8 5 4 8

ANID_07331 | ANID_07331 | Aspergillus nidulans FGSC A4 cyanate hydratase (161 aa) Cyanate_lya

se 34% 0 0 0 1 0 0 4 0 1

ANID_07345 | ANID_07345 | Aspergillus nidulans FGSC A4 alpha/beta-glucosidase (895 aa) GH31 1 536 3% 0 0 0 0 1 0 0 0 1

ANID_07349 | ANID_07349 | Aspergillus nidulans FGSC A4 mutanase (432 aa) GH71 13% 0 0 0 0 0 0 4 2 0

ANID_07389 | ANID_07389 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (581

aa) AA1

Cu-oxidase

(3x) 2 55, 472 18% 0 0 0 4 14 7 0 2 3

ANID_07396 | ANID_07396 | Aspergillus nidulans FGSC A4 beta-glucosidase (773 aa) GH3 3 259, 438, 586 24% 0 0 0 2 7 6 3 4 5

ANID_07401 | ANID_07401 | Aspergillus nidulans FGSC A4 endo-1,4-beta-xylanase (382 aa) GH10 CBM1 1 123 43% 0 0 0 39 65 56 26 5 6

ANID_07402 | ANID_07402 | Aspergillus nidulans FGSC A4 glucan 1,4-alpha-glucosidase (635

aa) GH15 CBM20 24% 15 3 0 2 0 0 0 3 0

ANID_07511 | ANID_07511 | Aspergillus nidulans FGSC A4 1,3-beta-glucanosyltransferase (540

aa) GH72 CBM43 2 36, 415 26% 9 7 4 12 7 10 3 16 9

89

ANID_07598 | ANID_07598 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (257

aa) GH131 1 72 18% 0 0 0 36 17 33 1 0 0

ANID_07619 | ANID_07619 | Aspergillus nidulans FGSC A4 antigenic thaumatin domain-

containing protein (172 aa) 19% 8 13 5 1 1 1 0 1 2

ANID_07624 | ANID_07624 | Aspergillus nidulans FGSC A4 alpha-galactosidase 1 (456 aa) GH27 23% 12 3 23 1 0 0 0 1 2

ANID_07646 | ANID_07646 | Aspergillus nidulans FGSC A4 pectate lyase (328 aa) PL1 26% 0 0 0 4 3 2 3 0 0

ANID_07657 | ANID_07657 | Aspergillus nidulans FGSC A4 glycolipid-anchored surface protein 5

(456 aa) GH72 2 249, 337 59% 120 119 106 20 21 22 27 41 32

ANID_07691 | ANID_07691 | Aspergillus nidulans FGSC A4 phosphoesterase superfamily protein

(455 aa)

Phosphoeste

rase 44% 0 1 1 17 31 36 4 9 13

ANID_07781 | ANID_07781 | Aspergillus nidulans FGSC A4 arabinosidase (341 aa) GH43 1 215 29% 2 0 0 3 2 2 4 8 4

ANID_07812 | ANID_07812 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (640

aa) AA3 2 444, 501 34% 0 0 0 10 5 8 0 0 1

ANID_07823 | ANID_07823 | Aspergillus nidulans FGSC A4 putative sterigmatocystin

biosynthesis peroxidase stcC (302 aa) AA2 Peroxidase_2 10% 0 0 0 0 1 2 1 0 1

ANID_07828 | ANID_07828 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (375

aa) GH105 22% 0 0 0 0 0 0 4 8 7

ANID_07832 | ANID_07832 | Aspergillus nidulans FGSC A4 choline dehydrogenase (648 aa) AA3 31% 4 5 4 0 2 1 1 0 2

ANID_07836 | ANID_07836 | Aspergillus nidulans FGSC A4 cysteine-rich secreted protein (343

aa) 11% 1 0 0 0 0 0 1 0 1

ANID_07891 | ANID_07891 | Aspergillus nidulans FGSC A4 endoglucanase IV (368 aa) AA9 13% 0 2 2 1 0 0 0 0 0

ANID_07900 | ANID_07900 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (477

aa)

NAD_binding

_8 3% 0 0 1 0 0 0 0 0 0

ANID_07908 | ANID_07908 | Aspergillus nidulans FGSC A4 alpha-L-arabinofuranosidase (326

aa) GH62 46% 0 0 0 222 43 170 74 50 27

ANID_07912 | ANID_07912 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (385

aa) Tyrosinase 30% 3 5 8 1 6 2 2 2 15

ANID_07949 | ANID_07949 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (837

aa) 9% 0 0 0 0 0 0 3 2 5

ANID_07950 | ANID_07950 | Aspergillus nidulans FGSC A4 beta-1,3-endoglucanase (466 aa) GH17 37% 195 148 131 95 17 48 74 54 29

ANID_07962 | ANID_07962 | Aspergillus nidulans FGSC A4 metalloproteinase (355 aa) Peptidase_M

35 7% 0 0 0 6 3 2 6 0 4

ANID_07987 | ANID_07987 | Aspergillus nidulans FGSC A4 polyhydroxybutyrate depolymerase

(378 aa) CE1 8% 0 0 0 0 0 0 1 0 2

ANID_07998 | ANID_07998 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (623

aa) AA3 1 480 25% 0 1 3 0 0 3 0 1 1

ANID_08007 | ANID_08007 | Aspergillus nidulans FGSC A4 endo-alpha-1,5-arabinanase (321 aa) GH43 1 126 30% 2 5 5 8 10 20 36 53 29

90

ANID_08068 | ANID_08068 | Aspergillus nidulans FGSC A4 extracellular endoglucanase (573 aa) GH5 CBM46 1 275 23% 0 0 0 5 16 13 0 0 0

ANID_08086 | ANID_08086 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (154

aa)

GPI-

anchored 2 43, 73 78% 22 11 10 3 10 9 14 24 36

ANID_08145 | ANID_08145 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (171

aa) Cupin_5 2 40, 46 25% 1 2 1 1 0 0 2 1 3

ANID_08218 | ANID_08218 | Aspergillus nidulans FGSC A4 sulphydryl oxidase Sox patent-A1-

Aspergillus niger (386 aa) Pyr_redox_2 50% 22 8 9 11 13 17 17 12 22

ANID_08265 | ANID_08265 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (234

aa) 1 62 20% 2 5 2 0 0 0 0 0 1

ANID_08333 | ANID_08333 | Aspergillus nidulans FGSC A4 PhiA protein (183 aa) 2 57, 107 56% 29 26 24 6 2 1 23 11 61

ANID_08389 | ANID_08389 | Aspergillus nidulans FGSC A4 histidine acid phosphatase (475 aa) His_Phos_2 1 356 14% 0 0 0 0 0 0 1 0 3

ANID_08401 | ANID_08401 | Aspergillus nidulans FGSC A4 beta-xylosidase (764 aa) GH3 4 63, 340, 408, 419 60% 0 0 0 11 18 11 41 101 119

ANID_08432 | ANID_08432 | Aspergillus nidulans FGSC A4 six-hairpin glycosidase (685 aa) 4 267, 283, 309,

552 23% 0 0 2 8 8 4 1 5 1

ANID_08445 | ANID_08445 | Aspergillus nidulans FGSC A4 aminopeptidase Y (504 aa) PA Peptidase_M

28 35% 1 2 7 13 22 10 27 73 86

ANID_08477 | ANID_08477 | Aspergillus nidulans FGSC A4 arabinofuranosidase (547 aa) GH43 1 438 34% 0 0 0 3 13 4 7 12 8

ANID_08484 | ANID_08484 | Aspergillus nidulans FGSC A4 predicted protein (483 aa) HsbA 4% 0 0 0 0 0 2 0 0 0

ANID_08544 | ANID_08544 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (265

aa) 17% 0 0 2 0 0 0 0 0 0

ANID_08546 | ANID_08546 | Aspergillus nidulans FGSC A4 phosphatidylglycerol specific

phospholipase (509 aa)

Phosphoeste

rase 4% 0 0 0 0 0 0 0 1 1

ANID_08602 | ANID_08602 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (438

aa) 7% 1 5 1 2 2 5 1 7 3

ANID_08730 | ANID_08730 | Aspergillus nidulans FGSC A4 N-acetylMuramoyl-L-alanine amidase

(371 aa) 1 29 12% 0 1 2 0 0 0 0 0 0

ANID_08761 | ANID_08761 | Aspergillus nidulans FGSC A4 exo-polygalacturonase (435 aa) GH28 4 113, 199, 292,

297 27% 0 0 0 1 4 1 9 27 35

ANID_08891 | ANID_08891 | Aspergillus nidulans FGSC A4 exopolygalacturonase (441 aa) GH28 2 65, 230 27% 0 0 0 0 0 0 3 7 4

ANID_08908 | ANID_08908 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (279

aa) CE14 7% 0 0 0 0 0 0 2 0 0

ANID_08953 | ANID_08953 | Aspergillus nidulans FGSC A4 alpha-glucosidase B (956 aa) GH31 3 188, 191, 843 39% 22 1 0 0 0 0 21 49 46

ANID_08977 | ANID_08977 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (354

aa) SGL 28% 0 0 0 0 4 0 4 4 4

ANID_09042 | ANID_09042 | Aspergillus nidulans FGSC A4 mutanase (643 aa) GH71 CBM24 16% 0 0 0 17 4 11 5 9 7

ANID_09130 | ANID_09130 | Aspergillus nidulans FGSC A4 cholinesterase (729 aa) CE10 1 79 22% 1 0 1 2 6 0 3 7 4

91

ANID_09156 | ANID_09156 | Aspergillus nidulans FGSC A4

endonuclease/exonuclease/phosphatase (607 aa) 17% 1 0 0 1 0 0 0 6 1

ANID_09183 | ANID_09183 | Aspergillus nidulans FGSC A4 beta-glucosidase (606 aa) GH1 1 369 8% 0 0 0 0 0 0 1 3 1

ANID_09276 | ANID_09276 | Aspergillus nidulans FGSC A4 endo-1,4-beta-mannosidase (404 aa) GH5 CBM1 26% 0 0 0 7 4 11 0 1 0

ANID_09286 | ANID_09286 | Aspergillus nidulans FGSC A4 alpha-glucuronidase (848 aa) GH67 4 48, 315, 689, 769 45% 0 0 0 1 1 0 28 40 71

ANID_09287 | ANID_09287 | Aspergillus nidulans FGSC A4 lipolytic enzyme (433 aa) CE3 31% 0 0 0 1 15 1 11 15 10

ANID_09339 | ANID_09339 | Aspergillus nidulans FGSC A4 catalase B (723 aa) Catalase Catalase-rel 2 118, 611 12% 15 2 7 22 49 33 63 112 190

ANID_09340 | ANID_09340 | Aspergillus nidulans FGSC A4 acid trehalase (1055 aa) GH65 4 493, 644, 803,

903 13% 0 0 1 0 0 1 5 3 3

ANID_09361 | ANID_09361 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (602

aa) 13% 0 5 1 3 0 4 1 6 0

ANID_09380 | ANID_09380 | Aspergillus nidulans FGSC A4 chitin deacetylase (238 aa) CE4 37% 0 0 0 1 2 3 40 2 16

ANID_09383 | ANID_09383 | Aspergillus nidulans FGSC A4 cell wall glycosyl hydrolase YteR

(379 aa) GH105 2 55, 188 49% 1 0 2 6 4 2 31 57 155

ANID_09388 | ANID_09388 | Aspergillus nidulans FGSC A4 monoxygenase (341 aa) Tyrosinase 24% 6 4 3 0 3 1 6 12 7

ANID_09402 | ANID_09402 | Aspergillus nidulans FGSC A4 Ser/Thr protein phosphatase (607

aa) Metallophos 18% 0 0 0 0 0 0 3 4 7

ANID_10030 | ANID_10030 | Aspergillus nidulans FGSC A4 cerevisin (478 aa) Peptidase_S

8 Inhibitor_I9 47% 27 14 14 10 3 5 37 27 11

ANID_10150 | ANID_10150 | Aspergillus nidulans FGSC A4 1,3-beta-glucanosyltransferase Bgt1

(305 aa) GH17 48% 2 14 6 0 0 2 0 0 0

ANID_10230 | ANID_10230 | Aspergillus nidulans FGSC A4 5'-methylthioadenosine

phosphorylase (331 aa) PNP_UDP_1 14% 0 0 0 0 0 0 2 1 2

ANID_10274 | ANID_10274 | Aspergillus nidulans FGSC A4 exo-rhamnogalacturonase B (425 aa) GH28 2 34, 340 18% 0 0 0 0 0 0 2 9 6

ANID_10277 | ANID_10277 | Aspergillus nidulans FGSC A4 alpha-rhamnosidase (662 aa) GH78 14% 0 0 0 0 0 0 2 3 4

ANID_10296 | ANID_10296 | Aspergillus nidulans FGSC A4 FAD dependent oxidoreductase (487

aa)

FAD_binding

_2 1 388 21% 6 1 1 0 0 0 0 0 0

ANID_10311 | ANID_10311 | Aspergillus nidulans FGSC A4 IgE-binding protein (120 aa) HsbA 61% 8 1 3 0 0 0 0 0 0

ANID_10318 | ANID_10318 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (131

aa) CFEM 17% 0 2 2 0 0 0 0 0 0

ANID_10351 | ANID_10351 | Aspergillus nidulans FGSC A4 aspartyl aminopeptidase (498 aa) Peptidase_M

18 27% 0 0 0 0 0 0 11 0 2

ANID_10419 | ANID_10419 | Aspergillus nidulans FGSC A4 endo-1,4-beta-glucanase (288 aa) AA9 27% 0 0 0 5 0 0 0 0 0

ANID_10444 | ANID_10444 | Aspergillus nidulans FGSC A4 gamma-glutamyltranspeptidase (636

aa)

G_glu_trans

pept 5

312, 372, 526,

597, 616 38% 4 4 2 7 20 19 11 13 7

ANID_10482 | ANID_10482 | Aspergillus nidulans FGSC A4 beta-glucosidase (869 aa) GH3 2 73, 726 31% 0 0 0 0 0 2 4 23 9

92

ANID_10563 | ANID_10563 | Aspergillus nidulans FGSC A4 alkaline phosphatase (607 aa) Alk_phospha

tase 1 248 46% 9 2 7 8 9 9 18 21 20

ANID_10577 | ANID_10577 | Aspergillus nidulans FGSC A4 dihydrolipoyl dehydrogenase (149

aa)

Pyr_redox_di

m 30% 0 0 0 0 0 0 1 0 0

ANID_10919 | ANID_10919 | Aspergillus nidulans FGSC A4 endo-1,4-beta-xylanase D (414 aa) GH43 CBM6 30% 0 0 0 26 13 36 17 28 30

ANID_10930 | ANID_10930 | Aspergillus nidulans FGSC A4 predicted protein (486 aa) AA7 21% 0 0 0 0 0 0 7 7 9

ANID_11070 | ANID_11070 | Aspergillus nidulans FGSC A4 aspartyl aminopeptidase (520 aa) Peptidase_M

18 29% 0 0 1 1 2 0 4 0 5

ANID_11121 | ANID_11121 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (729

aa)

Abhydrolase

_1

Abhydrolase_

4 1 161 5% 0 0 1 0 0 0 0 0 0

ANID_11143 | ANID_11143 | Aspergillus nidulans FGSC A4 glucoamylase (696 aa) GH15 CBM20 1 428 13% 0 1 0 3 5 2 0 5 4

ANID_11152 | ANID_11152 | Aspergillus nidulans FGSC A4 1,3-beta-glucanosyltransferase (525

aa) GH72 CBM43 2 54, 253 20% 3 2 6 0 0 0 0 0 0

ANID_11698 | ANID_11698 | Aspergillus nidulans FGSC A4 tripeptidyl peptidase SED3 (592 aa) Peptidase_S

8

Pro-

kuma_activ 4% 0 0 0 0 0 0 0 0 2

ANID_11714 | ANID_11714 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (162

aa) DUF3237 1 69 48% 0 0 0 1 3 4 0 0 9

ANID_11778 | ANID_11778 | Aspergillus nidulans FGSC A4 fructan beta-fructosidase (548 aa) GH32 2 403, 465 40% 27 22 20 6 12 8 10 63 66

ANID_11897 | ANID_11897 | Aspergillus nidulans FGSC A4 ribonuclease T2 (261 aa) Ribonucleas

e_T2 31% 2 0 0 2 1 3 1 8 4

ANID_11920 | ANID_11920 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (354

aa) Tyrosinase 27% 5 3 4 0 0 0 0 1 0

ANID_11979 | ANID_11979 | Aspergillus nidulans FGSC A4 extracellular cell wall glucanase

Crf1/allergen Asp F9 (329 aa) GH16 13% 2 1 0 0 0 0 0 0 0

ANID_11981 | ANID_11981 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (498

aa) AA7 1 33 40% 1 1 9 2 10 5 5 4 2

ANID_12097 | ANID_12097 | Aspergillus nidulans FGSC A4 rhamnogalacturonan lyase (660 aa) PL4 1 231 30% 0 0 0 0 0 0 5 9 8

ANID_12193 | ANID_12193 | Aspergillus nidulans FGSC A4 conserved hypothetical protein (327

aa) CE10 1 169 18% 0 0 0 3 0 2 0 0 0

ANID_12420 | ANID_12420 | Aspergillus nidulans FGSC A4 class V chitinase (443 aa) GH18 17% 0 0 0 0 0 0 4 2 1

ANID_12465 | ANID_12465 | Aspergillus nidulans FGSC A4 dihydrolipoamide dehydrogenase

(419 aa) Pyr_redox

Pyr_redox_di

m

Pyr_redo

x_2 24% 0 0 1 0 0 0 7 2 2

¹ Number of N-glycosylated sites confirmed by LC-MS/MS.

93

Table S2. Identified CAZymes and spectrum counts.

Total spectrum count

CAZymes (67)

Accession

Number

N-glyc

sites¹ Position (Asn)²

Domai

n 1

Domain

2

Glucos

e A

Glucos

e B

Glucos

e C

SCB

A

SCB

B

SCB

C

Xyla

n A

Xyla

n B

Xyla

n C

| ANID_00393 | Aspergillus nidulans FGSC A4 glycosyl hydrolase family 76

protein (465 aa) ANID_00393 1 205 GH76 0 0 1 1 1 0 0 2 1

| ANID_00472 | Aspergillus nidulans FGSC A4 endo-1,3-beta-glucanase

Engl1 (908 aa) ANID_00472 2 219, 240 GH81 0 0 0 60 27 33 46 53 48

| ANID_00558 | Aspergillus nidulans FGSC A4 beta glucanosyltransferase

Gel2p (474 aa) ANID_00558 2 313, 341 GH72 5 5 3 4 2 2 0 0 0

| ANID_00787 | Aspergillus nidulans FGSC A4 alpha-1,2-mannosidase

(506 aa) ANID_00787 1 88 GH47 50 37 35 97 125 156 40 85 100

| ANID_00941 | Aspergillus nidulans FGSC A4 alpha-glucosidase (874 aa) ANID_00941 1 713 GH31 6 0 0 2 4 0 2 2 1

| ANID_01320 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (256 aa) ANID_01320 1 63 CE10 1 0 2 2 4 1 15 28 27

| ANID_01433 | Aspergillus nidulans FGSC A4 triacylglycerol lipase (541

aa) ANID_01433 2 374, 381 CE10 0 0 0 0 2 0 12 16 49

| ANID_01502 | Aspergillus nidulans FGSC A4 N-acetylglucosaminidase

(604 aa) ANID_01502 1 503 GH20 3 0 0 3 10 12 109 69 207

| ANID_01772 | Aspergillus nidulans FGSC A4 feruloyl esterase (528 aa) ANID_01772 3 86, 139, 356 CE1 Tannase 1 0 8 9 8 12 13 33 33

| ANID_01870 | Aspergillus nidulans FGSC A4 xylanase D (308 aa) ANID_01870 1 87 GH43 2 2 3 1 1 3 4 3 5

| ANID_02017 | Aspergillus nidulans FGSC A4 alpha-glucosidase AgdA

(993 aa) ANID_02017 1 432 GH31 0 1 2 4 6 5 9 3 3

| ANID_02018 | Aspergillus nidulans FGSC A4 alpha-amylase AmyA (492

aa) ANID_02018 2 39, 390 GH13 0 0 0 1 0 2 0 1 2

| ANID_02325 | Aspergillus nidulans FGSC A4 glycosyl hydrolase, family

92 protein (755 aa) ANID_02325 4

105, 112, 118,

261 GH92 0 0 0 1 3 0 7 11 17

| ANID_02359 | Aspergillus nidulans FGSC A4 beta-xylosidase (801 aa) ANID_02359 3 231, 673, 695 GH3 0 0 0 18 30 33 9 15 15

| ANID_02387 | Aspergillus nidulans FGSC A4 FAD binding domain-

containing protein (503 aa) ANID_02387 1 260 AA7 5 4 2 0 2 3 1 9 13

| ANID_02388 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (436 aa) ANID_02388 1 93 AA9 13 8 18 10 11 17 4 16 27

94

| ANID_02395 | Aspergillus nidulans FGSC A4 hydrolase (614 aa) ANID_02395 1 293 GH2 0 1 0 17 26 15 14 26 27

| ANID_02574 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (517 aa) ANID_02574 2 212, 330 AA7 0 0 0 1 0 0 2 11 16

| ANID_02648 | Aspergillus nidulans FGSC A4 isoamyl alcohol oxidase

(567 aa) ANID_02648 1 47 AA7 4 1 0 1 1 0 2 11 6

| ANID_02828 | Aspergillus nidulans FGSC A4 beta-glucosidase (738 aa) ANID_02828 2 225, 365 GH3 0 1 7 83 81 74 61 61 86

| ANID_03229 | Aspergillus nidulans FGSC A4 choline dehydrogenase (612

aa) ANID_03229 2 187, 272 AA3 0 0 0 0 0 0 5 1 6

| ANID_03351 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (487 aa) ANID_03351 3 48, 259, 275 AA7 4 0 6 2 5 3 1 5 3

| ANID_04102 | Aspergillus nidulans FGSC A4 beta-glucosidase (854 aa) ANID_04102 4 62, 491, 642,

713 GH3 1 0 0 11 20 8 18 22 33

| ANID_05176 | Aspergillus nidulans FGSC A4 1,4-beta-D-glucan-

cellobiohydrolyase (447 aa) ANID_05176 1 284 GH7 0 0 0 565 263 270 13 1 1

| ANID_05463 | Aspergillus nidulans FGSC A4 starch binding domain-

containing protein (386 aa) ANID_05463 1 364

CBM2

0 10 8 1 0 0 1 3 2 1

| ANID_06093 | Aspergillus nidulans FGSC A4 acetylxylan esterase (307

aa) ANID_06093 1 263 CE1 0 0 0 25 3 25 7 2 6

| ANID_06405 | Aspergillus nidulans FGSC A4 secreted glycosyl hydrolase

(247 aa) ANID_06405 1 183 GH25 0 10 1 0 0 0 0 1 0

| ANID_06428 | Aspergillus nidulans FGSC A4 fungal cellulose binding

domain-containing protein (232 aa) ANID_06428 1 69, 143 AA9 0 0 0 13 38 16 0 0 0

| ANID_06438 | Aspergillus nidulans FGSC A4 dipeptidyl-peptidase IV (774

aa) ANID_06438 2 496, 671 CE1 0 0 0 4 3 0 5 11 9

| ANID_06620 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (389 aa) ANID_06620 1 166 GH16 20 10 13 2 4 4 7 2 6

| ANID_06635 | Aspergillus nidulans FGSC A4 laccase (610 aa) ANID_06635 1 403 AA1

Cu-

oxidase

(3x)

0 0 0 0 0 0 11 7 22

| ANID_07151 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (879 aa) ANID_07151 3 36, 58, 586 GH78 CBM67 0 0 0 0 0 0 3 12 11

| ANID_07152 | Aspergillus nidulans FGSC A4 alpha-galactosidase (641

aa) ANID_07152 1 532 GH27 0 0 0 16 21 18 5 8 8

95

| ANID_07230 | Aspergillus nidulans FGSC A4 cellobiose dehydrogenase

(797 aa) ANID_07230 5

132, 299, 308,

620, 709 AA8 0 0 0 45 190 40 0 0 0

| ANID_07269 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (497 aa) ANID_07269 2 133, 460 AA7 27 10 21 19 25 19 21 29 32

| ANID_07275 | Aspergillus nidulans FGSC A4 xylosidase/glycosyl

hydrolase (517 aa) ANID_07275 2 40, 382 GH43 0 0 0 24 7 24 4 7 4

| ANID_07307 | Aspergillus nidulans FGSC A4 DUF1237 domain-

containing protein (538 aa) ANID_07307 1 68 GH125 0 0 4 2 8 8 5 4 8

| ANID_07345 | Aspergillus nidulans FGSC A4 alpha/beta-glucosidase (895

aa) ANID_07345 1 536 GH31 0 0 0 0 1 0 0 0 1

| ANID_07389 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (581 aa) ANID_07389 2 55, 472 AA1

Cu-

oxidase

(3x)

0 0 0 4 14 7 0 2 3

| ANID_07396 | Aspergillus nidulans FGSC A4 beta-glucosidase (773 aa) ANID_07396 3 259, 438, 586 GH3 0 0 0 2 7 6 3 4 5

| ANID_07401 | Aspergillus nidulans FGSC A4 endo-1,4-beta-xylanase

(382 aa) ANID_07401 1 123 GH10 CBM1 0 0 0 39 65 56 26 5 6

| ANID_07511 | Aspergillus nidulans FGSC A4 1,3-beta-

glucanosyltransferase (540 aa) ANID_07511 2 36, 415 GH72 CBM43 9 7 4 12 7 10 3 16 9

| ANID_07598 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (257 aa) ANID_07598 1 72 GH131 0 0 0 36 17 33 1 0 0

| ANID_07657 | Aspergillus nidulans FGSC A4 glycolipid-anchored surface

protein 5 (456 aa) ANID_07657 2 249, 337 GH72 120 119 106 20 21 22 27 41 32

| ANID_07781 | Aspergillus nidulans FGSC A4 arabinosidase (341 aa) ANID_07781 1 215 GH43 2 0 0 3 2 2 4 8 4

| ANID_07812 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (640 aa) ANID_07812 2 444, 501 AA3 0 0 0 10 5 8 0 0 1

| ANID_07998 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (623 aa) ANID_07998 1 480 AA3 0 1 3 0 0 3 0 1 1

| ANID_08007 | Aspergillus nidulans FGSC A4 endo-alpha-1,5-arabinanase

(321 aa) ANID_08007 1 126 GH43 2 5 5 8 10 20 36 53 29

| ANID_08068 | Aspergillus nidulans FGSC A4 extracellular endoglucanase

(573 aa) ANID_08068 1 275 GH5 CBM46 0 0 0 5 16 13 0 0 0

| ANID_08401 | Aspergillus nidulans FGSC A4 beta-xylosidase (764 aa) ANID_08401 4 63, 340, 408,

419 GH3 0 0 0 11 18 11 41 101 119

96

| ANID_08477 | Aspergillus nidulans FGSC A4 arabinofuranosidase (547

aa) ANID_08477 1 438 GH43 0 0 0 3 13 4 7 12 8

| ANID_08761 | Aspergillus nidulans FGSC A4 exo-polygalacturonase (435

aa) ANID_08761 4

113, 199, 292,

297 GH28 0 0 0 1 4 1 9 27 35

| ANID_08891 | Aspergillus nidulans FGSC A4 exopolygalacturonase (441

aa) ANID_08891 2 65, 230 GH28 0 0 0 0 0 0 3 7 4

| ANID_08953 | Aspergillus nidulans FGSC A4 alpha-glucosidase B (956

aa) ANID_08953 3 188, 191, 843 GH31 22 1 0 0 0 0 21 49 46

| ANID_09130 | Aspergillus nidulans FGSC A4 cholinesterase (729 aa) ANID_09130 1 79 CE10 1 0 1 2 6 0 3 7 4

| ANID_09183 | Aspergillus nidulans FGSC A4 beta-glucosidase (606 aa) ANID_09183 1 369 GH1 0 0 0 0 0 0 1 3 1

| ANID_09286 | Aspergillus nidulans FGSC A4 alpha-glucuronidase (848

aa) ANID_09286 4

48, 315, 689,

769 GH67 0 0 0 1 1 0 28 40 71

| ANID_09340 | Aspergillus nidulans FGSC A4 acid trehalase (1055 aa) ANID_09340 4 493, 644, 803,

903 GH65 0 0 1 0 0 1 5 3 3

| ANID_09383 | Aspergillus nidulans FGSC A4 cell wall glycosyl hydrolase

YteR (379 aa) ANID_09383 2 55, 188 GH105 1 0 2 6 4 2 31 57 155

| ANID_10274 | Aspergillus nidulans FGSC A4 exo-rhamnogalacturonase B

(425 aa) ANID_10274 2 34, 340 GH28 0 0 0 0 0 0 2 9 6

| ANID_10482 | Aspergillus nidulans FGSC A4 beta-glucosidase (869 aa) ANID_10482 2 73, 726 GH3 0 0 0 0 0 2 4 23 9

| ANID_11143 | Aspergillus nidulans FGSC A4 glucoamylase (696 aa) ANID_11143 1 428 GH15 CBM20 0 1 0 3 5 2 0 5 4

| ANID_11152 | Aspergillus nidulans FGSC A4 1,3-beta-

glucanosyltransferase (525 aa) ANID_11152 2 54, 253 GH72 CBM43 3 2 6 0 0 0 0 0 0

| ANID_11778 | Aspergillus nidulans FGSC A4 fructan beta-fructosidase

(548 aa) ANID_11778 2 403, 465 GH32 27 22 20 6 12 8 10 63 66

| ANID_11981 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (498 aa) ANID_11981 1 33 AA7 1 1 9 2 10 5 5 4 2

| ANID_12097 | Aspergillus nidulans FGSC A4 rhamnogalacturonan lyase

(660 aa) ANID_12097 1 231 PL4 0 0 0 0 0 0 5 9 8

| ANID_12193 | Aspergillus nidulans FGSC A4 conserved hypothetical

protein (327 aa) ANID_12193 1 169 CE10 0 0 0 3 0 2 0 0 0

¹ Total number of N-glycosylated sites confirmed by LC-MS/MS.

² Position of N-glycosylated asparagine confirmed by LC-MS/MS.

97

Table S3. Identified motifs on N-glycosylated sites.

Modification Motif1 Motif Score Surrounding Sequence Accession N-glyc Site Best Ambiguity score2 Localization

Probability2

HexNAc ......n.S.... 25.13 WTFVWRNASDIST ANID_08730 N29 1000 100%

HexNAc ......n.S.... 25.13 WYQLVANSSDVLF ANID_08761 N199 1000 100%

HexNAc ......n.S.... 25.13 PYTVAKNSSDYGS ANID_07396 N586 1000 100%

HexNAc ......n.S.... 25.13 EQSFLYNASAPSA ANID_03351 N275 40.35 100%

HexNAc ......n.S.... 25.13 VRKNGVNSSNPIE ANID_00472 N219 22.45 99%

HexNAc ......n.S.... 25.13 WQPSSSNASAVTV ANID_09340 N903 64.95 100%

HexNAc ......n.S.... 25.13 ANTFRVNSSDSVL ANID_07151 N58 1000 100%

HexNAc ......n.S.... 25.13 QTYASHNGSLAEQ ANID_11143 N428 1000 100%

HexNAc ......n.S.... 25.13 EKHQPGNLSEATA ANID_07812 N444 1000 100%

HexNAc ......n.S.... 25.13 NDYPTGNYSLWLH ANID_08086 N73 28.13 100%

HexNAc ......n.S.... 25.13 CSYNRVNNSYACQ ANID_07396 N259 33.98 100%

HexNAc ......n.S.... 25.13 INAYSTNASAEPK ANID_08891 N230 61.26 100%

HexNAc ......n.S.... 25.13 VWESGPNRSYTVP ANID_05463 N364 1000 100%

HexNAc ......n.S.... 25.13 MNYGGGNTSADVR ANID_06635 N403 22.07 100%

HexNAc ......n.S.... 25.13 PNSATYNSSGSSY ANID_03351 N48 48.91 100%

HexNAc ......n.S.... 25.13 TEYPVGNVSVPGV ANID_08432 N552 1000 100%

HexNAc ......n.S.... 25.13 DIESWNNHSRLGN ANID_02359 N231 27.96 100%

HexNAc ......n.S.... 25.13 VHGHFSNGSTSGD ANID_12097 N231 21.91 100%

98

HexNAc ......n.S.... 25.13 KNVLVYNISMYNA ANID_08761 N292 14.19 98%

HexNAc ......n.S.... 25.13 ADAAVANSSKTYP ANID_10482 N726 121.98 100%

HexNAc ......n.S.... 25.13 WAYPKANVSMAEH ANID_07230 N709 118.88 100%

HexNAc ......n.S.... 25.13 TNLTIRNVSSVSL ANID_04390 N209 1000 100%

HexNAc ......n.S.... 25.13 YAPLHTNSSYVGG ANID_02237 N494 1000 100%

HexNAc ......n.S.... 25.13 RYSVLVNGSSPGP ANID_07389 N55 1000 100%

HexNAc ......n.S.... 25.13 DRISASNASQTSV ANID_00558 N341 1000 100%

HexNAc ......n.S.... 25.13 IECRTFNSSAVEQ ANID_07307 N68 1000 100%

HexNAc ......n.S.... 25.13 FTPENVNLSTHRL ANID_10444 N372 26.31 100%

HexNAc ......n.S.... 25.13 DRRASGNTSFDET ANID_11778 N465 1000 100%

HexNAc ......n.S.... 25.13 AATAHINSSTSGS ANID_07152 N532 1000 100%

HexNAc ......n.S.... 25.13 TATIHLNISSMAS ANID_07275 N382 1000 100%

HexNAc ......n.S.... 25.13 NSYRMGNTSFYGP ANID_05176 N284 1000 100%

HexNAc ......n.S.... 25.13 EEYALPNISYFEL ANID_06438 N496 1000 100%

HexNAc ......n.S.... 25.13 GYTTGDNASGPRN ANID_08333 N107 1000 100%

HexNAc ......n.S.... 25.13 MAVTTSNASEITL ANID_01772 N86 1000 100%

HexNAc ......n.S.... 25.13 RTEEFANYSVPVF ANID_11152 N253 34.87 100%

HexNAc ......n.S.... 25.13 NEAGLWNRSTFQY ANID_07151 N586 31.78 100%

HexNAc ......n.S.... 25.13 FLRIPANVSTVVD ANID_04055 N119 1000 100%

HexNAc ......n.S.... 25.13 VATFAANISDPKT ANID_02387 N260 1000 100%

HexNAc ......n.S.... 25.13 VKAAGYNASNTTL ANID_07231 N309 1000 100%

99

HexNAc ......n.S.... 25.13 HNVHRANHSSPDV ANID_01058 N166 1000 100%

HexNAc ......n.S.... 25.13 KHPAILNFSGIPW ANID_01870 N87 64.98 100%

HexNAc ......n.S.... 25.13 YNISMYNASDMAR ANID_08761 N297 55.37 100%

HexNAc ......n.T.... 36.45 FMLNTTNYTRTIY ANID_08953 N191 30.77 100%

HexNAc ......n.T.... 36.45 RFATLYNLTSELQ ANID_02574 N330 1000 100%

HexNAc ......n.T.... 36.45 KALQAANGTMTLE ANID_10444 N312 1000 100%

HexNAc ......n.T.... 36.45 ILEIVANKTGYVN ANID_04055 N315 120.62 100%

HexNAc ......n.T.... 36.45 GGDGLYNATANEI ANID_07389 N472 47.31 100%

HexNAc ......n.T.... 36.45 PGVEKQNGTGLDY ANID_01318 N229 74.39 100%

HexNAc ......n.T.... 36.45 YPTVDMNSTDFTE ANID_12193 N169 1000 100%

HexNAc ......n.T.... 36.45 PGPFTYNRTLADG ANID_09286 N315 139.62 100%

HexNAc ......n.T.... 36.45 RALKTANITFGAL ANID_01218 N186 1000 100%

HexNAc ......n.T.... 36.45 RIVNANNNTNVEL ANID_02574 N212 14.02 92%

HexNAc ......n.T.... 36.45 YSDPTWNATKWTI ANID_01772 N356 1000 100%

HexNAc ......n.T.... 36.45 LDREGTNSTTYLN ANID_01320 N63 54.91 100%

HexNAc ......n.T.... 36.45 FYVNNENVTYWDP ANID_08432 N283 40 100%

HexNAc ......n.T.... 36.45 SPVTEKNSTSVNA ANID_00941 N713 81.69 100%

HexNAc ......n.T.... 36.45 PSIGLWNGTMKPD ANID_07230 N299 1000 100%

HexNAc ......n.T.... 36.45 FDGTVSNWTQSAY ANID_07151 N36 87.68 100%

HexNAc ......n.T.... 36.45 GIPYYTNGTKDYY ANID_11121 N161 57.3 100%

HexNAc ......n.T.... 36.45 TSTGGANITSLSA ANID_04390 N78 1000 100%

100

HexNAc ......n.T.... 36.45 YSGPTENSTLTTG ANID_08086 N43 59.35 100%

HexNAc ......n.T.... 36.45 STRPFPNATRYWR ANID_01433 N381 1000 100%

HexNAc ......n.T.... 36.45 AVWQIRNETEVNR ANID_05939 N215 78.33 100%

HexNAc ......n.T.... 36.45 SEYKNPNSTLDEA ANID_07598 N72 18.58 99%

HexNAc ......n.T.... 36.45 DRMRALNGTTMYT ANID_00231 N284 23.83 100%

HexNAc ......n.T.... 36.45 AGLPKQNATCEGT ANID_08333 N57 1000 100%

HexNAc ......n.T.... 36.45 AAGSLSNKTMNTD ANID_07345 N536 107.16 100%

HexNAc ......n.T.... 36.45 TINPALNHTTIGR ANID_02360 N166 33.81 100%

HexNAc ......n.T.... 36.45 GTQPTYNYTSPFP ANID_04055 N382 1000 100%

HexNAc ......n.T.... 36.45 MTGRFPNTTVTYD ANID_03229 N187 101.26 100%

HexNAc ......n.T.... 36.45 ILSLPANSTRNLG ANID_11778 N403 1000 100%

HexNAc ......n.T.... 36.45 RGTVTINTTNTAD ANID_07812 N501 28.73 100%

HexNAc ......n.T.... 36.45 QQDYTTNSTSSSD ANID_11152 N54 1000 100%

HexNAc ......n.T.... 36.45 AIVTHPNGTTFFI ANID_10444 N526 1000 100%

HexNAc ......n.T.... 36.45 GRIQFTNDTDYWQ ANID_08761 N113 127.03 100%

HexNAc ......n.T.... 36.45 TIRSSHNDTDDVS ANID_08891 N65 1000 100%

HexNAc ......n.T.... 36.45 RRRQIKNFTHFDD ANID_04055 N186 1000 100%

HexNAc ......n.T.... 36.45 PRFSGNNGTGEEG ANID_06620 N166 11.06 93%

HexNAc ......n.T.... 36.45 MKPDWLNGTDLTR ANID_07230 N308 1000 100%

HexNAc ......n.T.... 36.45 QSLKTTNLTVYLH ANID_03229 N272 1000 100%

HexNAc ......n.T.... 36.45 FDQAIGNSTWRLF ANID_09286 N769 98.53 100%

101

HexNAc ......n.T.... 36.45 SPQEVQNDTPVAG ANID_06093 N263 55.21 100%

HexNAc ......n.T.... 36.45 TYTGSKNATYIDP ANID_09340 N493 1000 100%

HexNAc ......n.T.... 36.45 WALDKVNKTASES ANID_04102 N491 78.02 100%

HexNAc ......n.T.... 36.45 EGDGGYNKTGGAN ANID_07657 N337 189.46 100%

HexNAc ......n.T.... 36.45 NYDFTLNLTNAQA ANID_01502 N503 56.34 100%

HexNAc ......n.T.... 36.45 RANVQLNHTVTSI ANID_03057 N292 70.03 100%

HexNAc ......n.T.... 36.45 VQQYLWNTTFNHF ANID_08432 N267 47.31 100%

HexNAc ......n.T.... 36.45 TSGSWTNTTLTAA ANID_07401 N123 34.87 100%

HexNAc ......n.T.... 36.45 ASVTDTNTTKAIA ANID_02954 N300 1000 100%

HexNAc ......n.T.... 36.45 RSDLYKNGTLYVG ANID_07396 N438 14.66 92%

HexNAc ......n.T.... 36.45 RCHFLPNTTDGSC ANID_10563 N248 1000 100%

HexNAc ......n.T.... 36.45 SEVESLNETIKNY ANID_05939 N163 1000 100%

HexNAc ......n.T.... 36.45 FRHYCDNITSTEP ANID_07231 N282 52.1 100%

HexNAc ......n.T.... 36.45 TALVYVNTTAGPA ANID_02359 N695 1000 100%

HexNAc ......n.T.... 36.45 QKADAVNGTYGAY ANID_07511 N415 1000 100%

HexNAc ......n.T.... 36.45 AKWNALNSTVGGR ANID_02648 N47 54.7 100%

HexNAc ......n.T.... 36.45 CSYNKINGTWACE ANID_02828 N225 181.16 100%

HexNAc ......n.T.... 36.45 YYLQDVNSTRPFP ANID_01433 N374 1000 100%

HexNAc ......n.T.... 36.45 YKIVSTNSTVDHF ANID_02360 N112 1000 100%

HexNAc ......n.T.... 36.45 SPNLQPNWTDHGA ANID_08007 N126 35.13 100%

HexNAc ......n.T.... 36.45 WDQKVKNFTGYGL ANID_07657 N249 123.87 100%

102

HexNAc ......n.T.... 36.45 GANNGHNGTSGEP ANID_01772 N139 55.63 100%

HexNAc ......n.T.... 36.45 AGYNASNTTLLSS ANID_07231 N312 1000 100%

HexNAc ......n.T.... 36.45 RQGLISNETLDAA ANID_08401 N340 1000 100%

HexNAc ......n.T.... 36.45 IPIVGGNFTGPRL ANID_11714 N69 1000 100%

HexNAc ......n.T.... 36.45 SLLPKDNTTVYGG ANID_01131 N49 1000 100%

HexNAc ......n.T.... 36.45 TNAEGYNTTAIRH ANID_06438 N671 75.87 100%

HexNAc ......n.T.... 36.45 LTLKQSNNTYSLA ANID_02112 N45 14.02 99%

HexNAc ......n.T.... 36.45 PGTTFKNLTTFGI ANID_08265 N62 1000 100%

HexNAc ......n.T.... 36.45 DTPNLYNITVTLG ANID_02395 N293 36.81 100%

HexNAc ......n.T.... 36.45 FLGTQTNATFTHP ANID_00472 N240 1000 100%

HexNAc ......n.T.... 36.45 GPEACGNLTQLLG ANID_11981 N33 1000 100%

HexNAc ......n.T.... 36.45 TVVFNANRTQVTL ANID_07269 N133 26.67 100%

HexNAc ......n.T.... 36.45 SYGDFSNITAASF ANID_09339 N118 1000 100%

HexNAc ......n.T.... 36.45 QQKTLLNFTATVK ANID_02359 N673 1000 100%

HexNAc ......n.T.... 36.45 MAARGHNVTWMAP ANID_10444 N597 1000 100%

HexNAc ......n.T.... 36.45 AIRVLPNGTFEAA ANID_10444 N616 1000 100%

HexNAc ......n.T.... 36.45 TLAEKVNLTTGTG ANID_10482 N73 1000 100%

HexNAc ......n.T.... 36.45 LIGPFINFTTELQ ANID_08401 N419 33.87 100%

HexNAc ......n.T.... 36.45 GRTAFGNWTLSDP ANID_10296 N388 1000 100%

HexNAc ......n.T.... 36.45 PISAQSNYTHTVL ANID_09340 N803 1000 100%

HexNAc ......n.T.... 36.45 VKPRYFNSTCTPH ANID_05311 N50 101.61 100%

103

HexNAc ......n.T.... 36.45 PLYPANNATALLP ANID_07231 N294 11.1 96%

HexNAc ......n.T.... 36.45 TLPLKANGTLALI ANID_08401 N408 31.82 100%

HexNAc ......n.T.... 36.45 TLDEKVNLTTGTG ANID_04102 N62 1000 100%

HexNAc ......n.T.... 36.45 AFWKFKNSTVDPY ANID_03351 N259 83.51 100%

HexNAc ......n.T.... 36.45 ITNPLSNITVARN ANID_02325 N112 11.72 95%

HexNAc ......n.T.... 36.45 DGVTAQNGTGLDY ANID_05311 N228 24.78 100%

HexNAc ......n.T.... 36.45 TAIMMRNATIVNQ ANID_00787 N88 32.32 100%

HexNAc ......n.T.... 36.45 IDIIRVNDTFYYS ANID_07275 N40 43 100%

HexNAc ......n.T.... 36.45 ASAPAANRTELAH ANID_09130 N79 1000 100%

HexNAc ......n.T.... 36.45 LEYTTMNGTAAVK ANID_09340 N644 64.17 100%

HexNAc ......n.T.... 36.45 TLEEKINNTGHEA ANID_08401 N63 17.08 100%

HexNAc ......n.T.... 36.45 PSVYSGNATLTQI ANID_07230 N132 1000 100%

HexNAc ......n.T.... 36.45 KLFYSNNGTEFFI ANID_07511 N36 13.8 96%

HexNAc ......n.T.... 36.45 DASTNGNATETLP ANID_06428 N69 42.28 100%

HexNAc ......n.T.... 36.45 RDEVINNRTFVEG ANID_03262 N305 20 99%

HexNAc ......n.T.... 36.45 DGAAVKNGTLLED ANID_03592 N235 63.65 100%

HexNAc ......n.T.... 36.45 NACPSLNYTLGGG ANID_02112 N220 49.8 100%

HexNAc ......n.T.... 36.45 QVTGSDNVTRQLQ ANID_07230 N620 147.98 100%

HexNAc ......n.T.... 36.45 TYINLGNETAIDL ANID_07781 N215 14.08 96%

HexNAc ......n.T.... 36.45 SDSFMLNTTNYTR ANID_08953 N188 20.37 99%

HexNAc ......n.T.... 36.45 KSQSCANATDFVS ANID_06535 N51 1000 100%

104

HexNAc ......n.T.... 36.45 YMKPVANATSDNN ANID_02388 N93 71.64 100%

HexNAc ......n.T.... 36.45 FIYPWINSTDLKE ANID_04102 N713 1000 100%

HexNAc ......n.T.... 36.45 RHFDRTNQTPIYE ANID_04102 N642 1000 100%

HexNAc ......n.T.... 36.45 NITVARNGTDEAE ANID_02325 N118 1000 100%

HexNAc ......n.T.... 36.45 QRIESANTTTALR ANID_08953 N843 1000 100%

HexNAc ......n.T.... 36.45 FAGPLANQTNLAL ANID_04809 N506 15.26 97%

HexNAc ......n.T.... 36.45 GGVFSFNDTEVIS ANID_02325 N261 1000 100%

HexNAc ......n.T.T.. 44.96 FMLNTTNYTRTIY ANID_08953 N191 30.77 100%

HexNAc ......n.T.T.. 44.96 KALQAANGTMTLE ANID_10444 N312 1000 100%

HexNAc ......n.T.T.. 44.96 YSGPTENSTLTTG ANID_08086 N43 59.35 100%

HexNAc ......n.T.T.. 44.96 MTGRFPNTTVTYD ANID_03229 N187 101.26 100%

HexNAc ......n.T.T.. 44.96 RGTVTINTTNTAD ANID_07812 N501 28.73 100%

HexNAc ......n.T.T.. 44.96 RANVQLNHTVTSI ANID_03057 N292 70.03 100%

HexNAc ......n.T.T.. 44.96 TSGSWTNTTLTAA ANID_07401 N123 34.87 100%

HexNAc ......n.T.T.. 44.96 FRHYCDNITSTEP ANID_07231 N282 52.1 100%

HexNAc ......n.T.T.. 44.96 DTPNLYNITVTLG ANID_02395 N293 36.81 100%

HexNAc ......n.T.T.. 44.96 FLGTQTNATFTHP ANID_00472 N240 1000 100%

HexNAc ......n.T.T.. 44.96 QQKTLLNFTATVK ANID_02359 N673 1000 100%

HexNAc ......n.T.T.. 44.96 PISAQSNYTHTVL ANID_09340 N803 1000 100%

HexNAc ......n.T.T.. 44.96 VKPRYFNSTCTPH ANID_05311 N50 101.61 100%

HexNAc ......n.T.T.. 44.96 PSVYSGNATLTQI ANID_07230 N132 1000 100%

105

HexNAc ......n.T.T.. 44.96 DASTNGNATETLP ANID_06428 N69 42.28 100%

HexNAc ......nGT.... 62.11 KALQAANGTMTLE ANID_10444 N312 1000 100%

HexNAc ......nGT.... 62.11 PGVEKQNGTGLDY ANID_01318 N229 74.39 100%

HexNAc ......nGT.... 62.11 PSIGLWNGTMKPD ANID_07230 N299 1000 100%

HexNAc ......nGT.... 62.11 GIPYYTNGTKDYY ANID_11121 N161 57.3 100%

HexNAc ......nGT.... 62.11 DRMRALNGTTMYT ANID_00231 N284 23.83 100%

HexNAc ......nGT.... 62.11 AIVTHPNGTTFFI ANID_10444 N526 1000 100%

HexNAc ......nGT.... 62.11 PRFSGNNGTGEEG ANID_06620 N166 11.06 93%

HexNAc ......nGT.... 62.11 MKPDWLNGTDLTR ANID_07230 N308 1000 100%

HexNAc ......nGT.... 62.11 RSDLYKNGTLYVG ANID_07396 N438 14.66 92%

HexNAc ......nGT.... 62.11 QKADAVNGTYGAY ANID_07511 N415 1000 100%

HexNAc ......nGT.... 62.11 CSYNKINGTWACE ANID_02828 N225 181.16 100%

HexNAc ......nGT.... 62.11 GANNGHNGTSGEP ANID_01772 N139 55.63 100%

HexNAc ......nGT.... 62.11 AIRVLPNGTFEAA ANID_10444 N616 1000 100%

HexNAc ......nGT.... 62.11 TLPLKANGTLALI ANID_08401 N408 31.82 100%

HexNAc ......nGT.... 62.11 DGVTAQNGTGLDY ANID_05311 N228 24.78 100%

HexNAc ......nGT.... 62.11 LEYTTMNGTAAVK ANID_09340 N644 64.17 100%

HexNAc ......nGT.... 62.11 KLFYSNNGTEFFI ANID_07511 N36 13.8 96%

HexNAc ......nGT.... 62.11 DGAAVKNGTLLED ANID_03592 N235 63.65 100%

HexNAc ......nGT.... 62.11 NITVARNGTDEAE ANID_02325 N118 1000 100%

HexNAc ......nST.... 30.92 YPTVDMNSTDFTE ANID_12193 N169 1000 100%

106

HexNAc ......nST.... 30.92 LDREGTNSTTYLN ANID_01320 N63 54.91 100%

HexNAc ......nST.... 30.92 SPVTEKNSTSVNA ANID_00941 N713 81.69 100%

HexNAc ......nST.... 30.92 YSGPTENSTLTTG ANID_08086 N43 59.35 100%

HexNAc ......nST.... 30.92 SEYKNPNSTLDEA ANID_07598 N72 18.58 99%

HexNAc ......nST.... 30.92 ILSLPANSTRNLG ANID_11778 N403 1000 100%

HexNAc ......nST.... 30.92 QQDYTTNSTSSSD ANID_11152 N54 1000 100%

HexNAc ......nST.... 30.92 FDQAIGNSTWRLF ANID_09286 N769 98.53 100%

HexNAc ......nST.... 30.92 AKWNALNSTVGGR ANID_02648 N47 54.7 100%

HexNAc ......nST.... 30.92 YYLQDVNSTRPFP ANID_01433 N374 1000 100%

HexNAc ......nST.... 30.92 YKIVSTNSTVDHF ANID_02360 N112 1000 100%

HexNAc ......nST.... 30.92 VKPRYFNSTCTPH ANID_05311 N50 101.61 100%

HexNAc ......nST.... 30.92 AFWKFKNSTVDPY ANID_03351 N259 83.51 100%

HexNAc ......nST.... 30.92 FIYPWINSTDLKE ANID_04102 N713 1000 100%

HexNAc ......nTT.... 45.41 MTGRFPNTTVTYD ANID_03229 N187 101.26 100%

HexNAc ......nTT.... 45.41 RGTVTINTTNTAD ANID_07812 N501 28.73 100%

HexNAc ......nTT.... 45.41 VQQYLWNTTFNHF ANID_08432 N267 47.31 100%

HexNAc ......nTT.... 45.41 TSGSWTNTTLTAA ANID_07401 N123 34.87 100%

HexNAc ......nTT.... 45.41 ASVTDTNTTKAIA ANID_02954 N300 1000 100%

HexNAc ......nTT.... 45.41 RCHFLPNTTDGSC ANID_10563 N248 1000 100%

HexNAc ......nTT.... 45.41 TALVYVNTTAGPA ANID_02359 N695 1000 100%

HexNAc ......nTT.... 45.41 AGYNASNTTLLSS ANID_07231 N312 1000 100%

107

HexNAc ......nTT.... 45.41 SLLPKDNTTVYGG ANID_01131 N49 1000 100%

HexNAc ......nTT.... 45.41 TNAEGYNTTAIRH ANID_06438 N671 75.87 100%

HexNAc ......nTT.... 45.41 SDSFMLNTTNYTR ANID_08953 N188 20.37 99%

HexNAc ......nTT.... 45.41 QRIESANTTTALR ANID_08953 N843 1000 100%

HexNAc ...P..n.T.... 56.65 YSDPTWNATKWTI ANID_01772 N356 1000 100%

HexNAc ...P..n.T.... 56.65 YSGPTENSTLTTG ANID_08086 N43 59.35 100%

HexNAc ...P..n.T.... 56.65 STRPFPNATRYWR ANID_01433 N381 1000 100%

HexNAc ...P..n.T.... 56.65 AGLPKQNATCEGT ANID_08333 N57 1000 100%

HexNAc ...P..n.T.... 56.65 TINPALNHTTIGR ANID_02360 N166 33.81 100%

HexNAc ...P..n.T.... 56.65 GTQPTYNYTSPFP ANID_04055 N382 1000 100%

HexNAc ...P..n.T.... 56.65 SLLPKDNTTVYGG ANID_01131 N49 1000 100%

HexNAc ...P..n.T.... 56.65 LIGPFINFTTELQ ANID_08401 N419 33.87 100%

HexNAc ...P..n.T.... 56.65 PLYPANNATALLP ANID_07231 N294 11.1 96%

HexNAc ...P..n.T.... 56.65 ITNPLSNITVARN ANID_02325 N112 11.72 95%

HexNAc ...P..n.T.... 56.65 ASAPAANRTELAH ANID_09130 N79 1000 100%

HexNAc ...P..n.T.... 56.65 NACPSLNYTLGGG ANID_02112 N220 49.8 100%

HexNAc ...P..n.T.... 56.65 YMKPVANATSDNN ANID_02388 N93 71.64 100%

HexNAc ...P..n.T.... 56.65 FIYPWINSTDLKE ANID_04102 N713 1000 100%

HexNAc ...P..n.T.... 56.65 FAGPLANQTNLAL ANID_04809 N506 15.26 97%

HexNAc T.....n.T.... 37.4 TSTGGANITSLSA ANID_04390 N78 1000 100%

HexNAc T.....n.T.... 37.4 TINPALNHTTIGR ANID_02360 N166 33.81 100%

108

HexNAc T.....n.T.... 37.4 TIRSSHNDTDDVS ANID_08891 N65 1000 100%

HexNAc T.....n.T.... 37.4 TYTGSKNATYIDP ANID_09340 N493 1000 100%

HexNAc T.....n.T.... 37.4 TSGSWTNTTLTAA ANID_07401 N123 34.87 100%

HexNAc T.....n.T.... 37.4 TALVYVNTTAGPA ANID_02359 N695 1000 100%

HexNAc T.....n.T.... 37.4 TNAEGYNTTAIRH ANID_06438 N671 75.87 100%

HexNAc T.....n.T.... 37.4 TVVFNANRTQVTL ANID_07269 N133 26.67 100%

HexNAc T.....n.T.... 37.4 TLAEKVNLTTGTG ANID_10482 N73 1000 100%

HexNAc T.....n.T.... 37.4 TLPLKANGTLALI ANID_08401 N408 31.82 100%

HexNAc T.....n.T.... 37.4 TLDEKVNLTTGTG ANID_04102 N62 1000 100%

HexNAc T.....n.T.... 37.4 TAIMMRNATIVNQ ANID_00787 N88 32.32 100%

HexNAc T.....n.T.... 37.4 TLEEKINNTGHEA ANID_08401 N63 17.08 100%

HexNAc T.....n.T.... 37.4 TYINLGNETAIDL ANID_07781 N215 14.08 96%

109

Table S4. N-linked glycans from glycoproteins secreted by A. nidulans detected by MALDI TOF/TOF MS.

Assignment m/z

Glucose SCB1 Xylan

Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3

Hex5HexNAc2 1579.8 32.8% 40.7% 28.1% 21.8% 43.1% 56.4% 14.8% 23.7% 25.7%

Hex6HexNAc2 1783.9 28.2% 20.4% 26.6% 18.3% 21.2% 19.1% 17.3% 23.0% 20.0%

Hex7HexNAc2 1988.0 12.2% 13.2% 13.8% 14.0% 13.8% 10.5% 14.7% 15.2% 14.1%

Hex8HexNAc2 2192.0 14.5% 16.1% 16.4% 19.2% 11.9% 7.9% 22.0% 18.3% 18.2%

Hex9HexNAc2 2396.2 9.5% 7.8% 9.9% 20.0% 7.2% 4.6% 25.7% 15.2% 16.7%

Hex10HexNAc2 2600.3 2.0% 1.3% 2.8% 5.3% 2.2% 1.3% 5.0% 4.0% 4.6%

Hex11HexNAc2 2804.4 0.4% 0.4% 0.9% 0.9% 0.5% 0.2% 0.6% 0.5% 0.6%

Hex12HexNAc2 3008.4 0.2% 0.2% 0.6% 0.4% n.d 0.1% n.d 0.2% 0.2%

Hex13HexNAc2 3212.5 0.1% n.d 0.4% 0.2% n.d n.d n.d n.d 0.1%

Hex14HexNAc2 3416.5 n.d n.d 0.2% n.d n.d n.d n.d n.d n.d

Hex15HexNAc2 3620.6 n.d n.d 0.1% n.d n.d n.d n.d n.d n.d

Hex16HexNAc2 3824.6 n.d n.d 0.1% n.d n.d n.d n.d n.d n.d

Hex17HexNAc2 4028.7 n.d n.d 0.1% n.d n.d n.d n.d n.d n.d

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1 Sugarcane bagasse

110

Capítulo 3 – Influência da N-glicosilação na produção e função de uma β-

xilosidase de A. nidulans

Introdução

A N-glicosilação é um processo bastante complexo, influenciando desde a síntese do

polipeptídeo até suas propriedades estruturais e funcionais. No entanto, os efeitos

global e específico de cada N-glicosilação ainda não são totalmente compreendidos.

Com base nessas informações, esse capítulo visa contribuir na compreensão da

influência da N-glicosilação no enovelamento, na secreção, e na cinética enzimática

de uma CAZyme de A. nidulans.

Com base na proteômica apresentada no capítulo 2, a β-xilosidase BxlB da família

GH3 foi selecionada como modelo para compreender tais influências. β-xilosidases

catalizam a hidrólise de ligações β 1,4 da extremidade não redutora de

xilooligossacarídeos liberando resíduos de xilose. Assim, nesse capítulo estão

descritos os experimentos realizados no engenheiramento da N-glicosilação,

caracterização estrutural e funcional de BxlB. Os glicomutantes de BxlB foram

desenhados, incialmente, para contemplar as variantes: não glicosilada (BxlBDeglyc),

parcialmente glicosilada (BxlBN1;5;7), totalmente glicosilada (BxlBwt) e com um novo

padrão de sítios de glicosilação (BxlBCC). Posteriormente, para refinar a influência de

cada sítio, quatro novas variantes foram criadas: BxlBN1 BxlBN5, BxlBN7 e BxlBN5;7.

Com base nos experimentos conduzidos, observou-se que a alteração no perfil de N-

glicosilação pode influenciar negativamente na secreção enzimática mesmo havendo

elevados níveis de mRNA e os sítios N5 e N7 são muito importantes para secreção e

atividade enzimática de BxlB.

O presente capítulo irá compor o segundo artigo desse trabalho de doutorado, para

submissão ao periódico Journal of Biological Chemistry. Posteriormente, serão

adicionados experimentos de: dinâmica molecular dos glicomutantes BxlBN1;5;7,

BxlBN5;7 e BxlBCC; simulação computacional do glicomutante BxlBCC; novos

experimentos de Western blot dos glicomutantes de BxlB; e possivelmente a estrutura

cristalizada da BxlB. Estes experimentos têm como objetivo refinar a discussão sobre

a influência da N-glicosilação no enovelamento e secreção, e compreender como a

alteração nos padrões de glicosilação em BxlBCC afetaram sua secreção e atividade

enzimática.

111

Redesigning N-glycosylation sites in a GH3 β-xylosidase improves enzyme

efficiency in Aspergillus nidulans

Marcelo V. Rubio1, César R. F. Terrasan1, Fabiano J. Contesini1, Mariane P. Zubieta1,

Jaqueline A. Gerhardt1, André Damasio1*

1Department of Biochemistry and Tissue Biology, Institute of Biology, University of

Campinas (UNICAMP), Campinas, SP, Brazil. 13083-862

Running title: Mutation of N-glycosylation sites improves β-xylosidase kinetics

efficiency

*To whom correspondence should be addressed:

André Damasio; Department of Biochemistry and Tissue Biology, Institute of Biology,

University of Campinas (UNICAMP), Campinas-SP, Brazil Email:

[email protected]

Keywords: GH3, β-xylosidase, Aspergillus nidulans, N-glycosylation, enzyme

secretion, glycomutants

112

Abstract

β-xylosidases are glycoside hydrolases (GHs) that cleave xylooligosaccharides into

shorter oligosaccharides and xylose. Aspergillus nidulans is an established genetic

model and a good source of carbohydrate-active enzymes (CAZymes). N-glycosylation

of fungal proteins deserves attention in order to overcome bottlenecks in enzyme

secretion and application. In this study, a highly secreted A. nidulans GH3 with β-

xylosidase activity (BxlB) harboring several N-glycosylation sites was selected for N-

glycosylation engineering. Glycomutants were designed in order to investigate the

influence of glycosylation on β-xylosidase secretion and function. The deglycosylated

mutant (BxlBDeglyc) showed similar results regarding enzyme secretion and activity

compared to the wild-type (BxlBwt). Interestingly, a partially glycosylated mutant

(BxlBN1;5;7) showed increased activity and secretion levels. On the other hand, the

mutant BxlBCC, in which the glycosylation context was changed by the design of four

new N-glycosylation sites, was expressed but not secreted in A. nidulans. BxlBwt,

BxlBDeglyc and BxlBN1;5;7 showed similar secondary structure, although the mutants had

lower melting temperature compared to the wild-type. Moreover, an additional BxlB

glycomutant maintaining only two N-glycosylated sites (BxlBN5;7) showed improved

catalytic efficiency. This study showed the influence of N-glycosylation on β-xylosidase

function and production in A. nidulans, reinforcing that proteins glycoengineering is a

promising tool to enhance thermal stability, secretion and enzymatic activity. Our report

may also support N-glycosylation modification in CAZymes to biotechnological

applications.

Introduction

Filamentous fungi are important sources of carbohydrate-active enzymes (CAZymes)

since they hold several genes related to plant biomass degradation in the genome and

present high capability of proteins secretion (Benoit et al., 2015). However, an

important bottleneck in the production of plant cell wall degrading enzymes is the level

of protein secretion that still requires improvement to make enzymes application

economically feasible. Enzymes of the glycoside hydrolases family 3 (GH3) present a

variety of activities such as β-xylosidase, β-glucosidase, α-L-arabinofuranosidase and

exo-1,3-1,4-glucanase and are important enzymes produced by Aspergillus spp. GH3

enzymes with β-xylosidase activity (xylan 1,4-β-D-xylosidase, EC 3.2.1.37) are

113

responsible for completing hemicellulose degradation, by hydrolyzing non-reducing

ends of xylooligosaccharides releasing xylose. These enzymes play an important role

in plant biomass degradation, hence presenting different industrial applications in

biofuel, paper, food and animal feed industries (Jordan & Wagschal, 2010).

Several post-translational modifications (PTMs) occur in proteins produced by all types

of organisms, including bacteria and fungi. N-glycosylation is one of the most important

types because it can influence protein secretion, stability, activity, signalization and

provide protection from proteases (Larkin & Imperiali, 2011). In addition, this PTM

occurs in many proteins from filamentous fungi, including those secreted by Aspergillus

nidulans (M. V. Rubio et al., 2016). This modification is catalyzed by

oligosaccharyltransferases in the lumen of the endoplasmic reticulum (ER) and

involves the attachment of N-glycans to asparagine (Asn, N) residue, and it is found in

70% of the predicted N-glycosylation consensus sequence or sequons (Asn-X(aa)-

Ser/Thr) (Weerapana & Imperiali, 2006).

There are interesting examples regarding the influence of N-glycans on CAZymes

properties. A thermophilic GH10 xylanase from Aspergillus fumigatus was expressed

in Pichia pastoris, and the N-glycosylated enzyme showed improved activity and

thermal stability in relation to the non-glycosylated form (Chang et al., 2017). In

addition, the position of N-linked glycan can positively or negatively influence the

processivity of a GH6 cellobiohydrolase from Penicillium verruculosum (Gusakov et

al., 2017). Glycosylation sites engineering showed that N-glycans can improve the

thermal stability of the cutinase C from Aspergillus oryzae by inhibiting its thermal

aggregation behavior (Shirke et al., 2017).

A. nidulans is a model organism for studies regarding secretion of recombinant

enzymes (Lubertozzi & Keasling, 2009; Segato et al., 2012; Zubieta et al., 2018).

However, studies investigating the role of N-glycosylation in enzyme secretion in

filamentous fungi are scarce (Contesini et al., 2017b; Qi et al., 2014; Wei et al., 2013;

Yang et al., 2015). A recent study used N-glycoproteomics and glycomics approaches

in order to perform an overview of N-glycosylation in secreted proteins from A. nidulans

grown in glucose, xylan and NaOH-pretreated sugarcane bagasse. Within 265

identified N-glycoproteins, more than 50% were classified as CAZymes (M. V. Rubio

114

et al., 2016). Among them, some industrially relevant enzymes were highly secreted

representing relevant targets for an investigation regarding the influence of N-

glycosylation on enzymatic properties and secretion. Here a highly secreted GH3

(BxlBwt) from A. nidulans A773 with high activity towards p-nitrophenyl β-D-

xylopyranoside (ρNP-X) was selected as a model for N-glycosylation engineering.

BxlBwt harbored seven putative N-glycosylation sites, and five of them were validated

by LC-MS/MS. Site-directed mutagenesis was applied to design BxlB glycomutants

with different N-glycosylation profiles in order to investigate whether the absence or

the addition of specific N-glycosylation sites could influence enzyme

production/secretion, activity, kinetics and stability. We observed that two N-

glycosylation sites are effectively important for enzyme secretion catalytic efficiency.

In addition, the synthesis of the BxlB was completely impaired by changing the N-

glycosylation context.

Results

BxlBwt has seven predicted N-glycosylation sites

The BxlBwt was identified in the top five enzymes secreted by A. nidulans cultivated in

different polymeric substrates, and it was the most secreted hemicellulase when

cultivation was performed on beechwood xylan (M. V. Rubio et al., 2016). BxlBwt is a

highly N-glycosylated enzyme belonging to the GH3 family harboring seven predicted

N-glycosylation sites (NetNGlyc 1.0 Server). Five sites were validated by mass

spectrometry analysis. Furthermore, in silico analysis indicated that N-glycosylation

enhances the BxlBwt folding by the absence of one folding-stage in comparison to the

non-glycosylated enzyme (Figure S1 and S2). Based on these data, BxlBwt was

chosen as a model glycoprotein for studies regarding the influence of N-glycosylation

on enzyme production/secretion and function.

In order to design BxlB glycomutants, N-glycosylation sequons were mutated by

replacing asparagine to glutamine. Three BxlB N-glycomutants were designed: 1) all

N-glycosylation sites were replaced giving rise to the deglycosylated variant

(BxlBDeglyc); 2) a partially deglycosylated variant was designed by replacing the N340,

N408, N419 and N621 (BxlBN1;5;7); and 3) the N-glycosylation context was completely

changed by the addition of four new N-glycosylation sites using the BxlBDeglyc as

115

template (BxlBCC). The new sites were designed based on the homology with 33

Aspergilli sequences (Figure S3) and by calculating the accessible surface area (ASA)

for each new N-glycosylation site candidate (Figure 1 and Table S1). The design of

BxlBCC enabled to specifically verify the importance of the sequons position for the β-

xylosidase production/secretion and function.

Figure 1. Overview of BxlB glycomutants. Seven N-glycosylation sites were

predicted in the BxlBwt by the NetNGlyc server and five sites were confirmed by LC-

MS/MS (orange circles). Three glycomutants were designed by site-directed

mutagenesis: BxlBN1;5;7, N/Q mutation of four validated N-glycosylated sites; BxlBDeglyc,

N/Q mutation of the seven predicted N-glycosylation sites; BxlBCC, the N-glycosylation

context was changed (purple circles) by the addition of four new sites using BxlBDeglyc

as template, with N121 (A123T), Q163N, Q391N, and N448 (L450T). SP: signal

peptide, N: amino-terminus, C: carboxyl-terminus, grey circles: site non-covered by

LC-MS/MS.

Enzyme secretion analysis suggests that BxlBN1;5;7 was more secreted than the

BxlBwt

All the bxlB genes were cloned into the pEXPYR vector controlled by the glaA promoter

and the glucoamylase signal peptide (SP) from A. niger and then transformed into the

A. nidulans A773 parental strain (Segato et al., 2012). After cultivation on maltose, the

crude supernatants analysis revealed that the complete deglycosylation (BxlBDeglyc)

resulted in similar enzyme secretion and activity (Figure 2A). However, the BxlBN1;5;7

mutant showed higher enzymatic activity (1.5x) and secretion (2.5x) compared to the

wild-type enzyme, according to the protein band intensity quantification using the

Image Lab 5.2.1 Software (Bio-Rad) (data not shown). On the other hand, the BxlBCC

activity and secretion were not detected (Figure 2B), despite some peptides were

detected by mass spectrometry (Table S2).

116

Considering the absence of BxlBCC secretion, intracellular proteins were extracted to

evaluate the presence of BxlBCC. A very low BxlBCC intracellular activity was detected

(Figure S4), and an intermediate level of β-xylosidase activity was found for BxlBwt and

BxlBDeglyc. Furthermore, the intracellular activity of BxlBN1;5;7 was 4-fold higher than

BxlBwt. Moreover, real-time PCR revealed that all BxlB glycomutants were properly

expressed and there was no direct relationship between gene expression and enzyme

production (Figure S5).

Figure 2. Analysis of BxlB glycomutants secretion by homologous expression

in A. nidulans. (A) The secretion of BxlB glycomutants was quantified with the ρNP-

X assay. The reaction was carried out at 50 °C for 15 min and pH 5.0. (B) The

secretomes profile (20 µg of protein) were evaluated by SDS-PAGE stained with

Coomassie brilliant blue and the relative amount of BxlB was estimated using the

Image Lab 5.2.1 software (Bio-Rad). Arrows indicate the quantified band. L: ladder;

A773: A. nidulans parental strain. *ANOVA with Bonferroni post-test, p<0.05.

The removal of N-glycosylation sites decreased the BxlB thermal stability

BxlBwt, BxlBDeglyc and BxlBN1;5;7 were purified by sequential ion-exchange DEAE-

Sepharose and size exclusion Superdex 200 16/600 chromatographies and assayed

to determine the kinetic parameters (Figure 3). Circular dichroism (CD) showed that

the BxlBwt and the glycomutants had similar secondary structure composition,

corresponding to 39.4% α-helix and 11.5% β-strand, nevertheless, the temperature of

melting was reduced from 63.8 °C in the BxlBwt to 61.6 and 59.5 °C in BxlBN1;5;7-and

117

BxlBDeglyc, respectively. Enzymatic activity of purified enzymes showed no difference

between BxlBwt and BxlBDeglyc, however the BxlBN1;5;7 activity was 1.75x higher than

the wild-type.

Figure 3. Functional and structural analysis of BxlB glycomutants. (A) SDS-

PAGE (0.5 µg per lane) and enzymatic activity of BxlB glycomutants quantified by the

ρNP-X assay. The reaction was carried out with 0.1 µg of purified enzymes for 30 min

at 60 °C and pH 5.0. (B) Structural analysis was conducted by CD using a JASCO J-

815 Spectropolarimeter. *ANOVA p<0.05.

BxlBN1;5;7 presented a higher catalytic efficiency

The optimal temperature and pH were 60 °C and 5.0, respectively, for all the BxlB

glycomutants and the wild-type. The BxlBwt, BxlBN1;5;7 and BxlBDeglyc Km values were

2.06, 2.49 and 2.36 mM, while Vmax values were 9.56, 17.28 and 10.12 U/mg,

respectively. Therefore, the BxlBN1;5;7 glycomutant showed 50% higher catalytic

efficiency compared to the wild-type, while the catalytic efficiency of the BxlBDeglyc was

decreased by 7% (Table 1).

118

Designing additional mutants by combining mutations in the sites N1, N5 and N7

For a deeper understanding of the BxlBN1;5;7 improved secretion and catalytic

efficiency, four additional glycomutants were designed by maintaining the following N-

glycosylation sites: N1 (BxlBN1); N5 (BxlBN5); N7 (BxlBN7); and both N5 and N7

(BxlBN5;7) (Figure 4). These newly designed genes were also cloned into the pEXPYR

vector and then transformed into A. nidulans A773.

Figure 4. Overview of additional BxlB glycomutants. Four additional mutants were

designed by site-directed mutagenesis using the BxlBDeglyc as template. SP: signal

peptide, N: amino-terminus, C: carboxyl-terminus, orange circles: detected as

glycosylated by LC-MS/MS, grey circles: non-covered site by LC-MS/MS.

Initial analysis of BxlBN1, BxlBN5 and BxlBN7 showed lower secretion levels compared

to the wild-type, while BxlBN5;7 secretion was improved by achieving similar levels to

BxlBN1;5;7 (Figure S6 and Table 1). Moreover, kinetic parameters showed that the

catalytic efficiency of BxlBN5 and BxlBN7 was drastically reduced, while this parameter

was partially affected in the BxlBN1. Furthermore, BxlBN5;7 presented the highest

catalytic efficiency corresponding to a 57% increase when compared to the wild-type

(Table 1).

119

Table 1. Overview of kinetic parameters of BxlB glycomutants

Km

(mM)

Vmax

(U/mg)

Kcat

(1/s)

Kcat/Km

Kcat/Km

(%)*

BxlBwt 2.06 + 0.13 9.55 + 0.18 13.08 6.34 100

BxlBN1;5;7 2.49 + 0.43 17.28 + 1.07 23.67 9.51 150

BxlBDeglyc 2.36 + 0.11 10.12 + 0.14 13.86 5.87 93

BxlBN1 2.53 + 0.23 9.49 + 0.28 13.01 5.13 81

BxlBN5 3.48 + 0.66 1.57 + 0.11 2.15 0.61 10

BxlBN7 3.09 + 0.37 1.81 + 0.07 2.48 0.80 13

BxlBN5;7 2.81 + 0.11 20.47 + 0.28 28.04 9.94 157

* Relative to BxlBwt

Enzymes secretion evaluation

To evaluate BxlB N-glycomutants secretion, the secretomes were analyzed by SDS-

PAGE and target protein relative amount was estimated using the Image Lab 5.2.1

software (Bio-Rad) (Figure S6). This data showed higher secretion levels of BxlBN1;5;7

and BxlBN5;7, while all other mutants presented lower secretion compared to BxlBwt.

On the other hand, a quantitative secretion analysis by Western blot (WB) using a BxlB

antibody showed that all BxlB glycomutants had the secretion levels decreased

(Figure 5).

120

Figure 5. Secretion yield evaluated by Western blot. The WB was performed in

triplicate using BxlB glycomutants crude extracts (60 ug) and polyclonal BxlB antibody.

The relative protein amount corresponding to the BxlB band was estimated using the

BxlBwt as a reference. Asterisks in WB indicate the quantified band. A773: A. nidulans

parental strain. *ANOVA with Tukey posttest p<0.05.

Monitoring BxlBCC secretion using C-linked GFP

As previously showed, the absence of BxlBCC secretion cannot be attributed to

transcriptional impairment. In addition, real-time PCR showed non-significant

difference in the transcription of bipA (ER chaperone) and pdiA (protein disulfide

isomerase), genes normally associated to ER stress (data not shown) (Heimel, 2014;

Schröder, 2008; Sims et al., 2005). For further investigation on the low secretion of

BxlBCC, GFP was fused to the enzyme C-terminus, allowing protein monitoring by

fluorescence microscopy. The glucoamylase SP was maintained in the cloning of

bxlBwt and bxlBCC genes into the pmcB17 vector, which presents an alcA promoter.

Real-time PCR showed that both fused genes were expressed at similar levels in A.

nidulans (Figure 6).

121

G F P -B x lBw t

G F P -B x lBCC

0

1 0

2 0

3 0

4 0

5 0

Fo

ld C

ha

ng

e (

log

2)

***

Figure 6. Real-time PCR of BxlBwt using the pmcB17 expression vector. Data

were analyzed by the ΔΔCt method using tubC as endogenous control and A. nidulans

A773 was established as control strain. *ANOVA p<0.05.

After transcriptional analysis, intra and extracellular β-xylosidase activity were assayed

to monitor enzyme production. The activities of A. nidulans GFP-BxlBCC and A.

nidulans A773 crude extracts were very similar, showing the absence of GFP-BxlBCC

secretion. However, both intra and extracellular activities were detected for A. nidulans

GFP-BxlBwt. Despite the absence of functional activity, WB showed the intracellular

production of both enzymes at 48 h, and a weak extracellular signal detected for GFP-

BxlBCC at 24 and 48 h (Figure 7). In order to confirm the intracellular GFP signals, the

same strains were examined by confocal microscopy. Autofluorescence was avoided

by calibrating the microscope using A. nidulans A773 as control, and all images were

taken using the same measure settings. In spite of the absence of intracellular GFP

detection by WB at 24 h, confocal microscopy showed signal in the recombinant strains

(Figure S7). These results were further validated in the recombinant strains by using

a polyclonal BxlBwt antibody. Excepting for BxlBCC, all the BxlB glycomutants were

detected in the extracellular fraction (Figure S8A). However, a strong intracellular

signal was detected BxlBwt, while the BxlBCC presented weak signals (Figure S8B).

122

Figure 7. Enzymatic activity and WB analysis of BxlB glycovariants cloned into

the pmcB17 vector. The secretion of GFP-tagged BxlB glycomutants was quantified

by ρNP-X assay and monitored by WB using anti-GFP antibody (below X-axis at the

respective enzymatic activity). *ANOVA p<0.05.

Discussion

N-glycosylation enhances BxlB folding

The bxlBwt gene from A. nidulans encoding for a β-xylosidase was selected among 265

N-glycoproteins. The high secretion levels when cultivation was performed in

beechwood xylan revealed that this enzyme is very important for biomass

deconstruction (M. V. Rubio et al., 2016). β-xylosidases have been detected in various

prokaryotes and eukaryotes, however only eleven eukaryotic GH3 β-xylosidases have

been characterized to date, according to the MycoClap database (Murphy, Powlowski,

Wu, Butler, & Tsang, 2011; Strasser et al., 2015). Among the characterized β-

xylosidases, four correspond to recombinant enzymes produced in hosts such as

Aspergillus spp, P. pastoris and Saccharomyces cerevisiae (Table S3). Usually, well-

known vectors and homologous expression systems are selected to prevent concerns

related to correct gene expression and protein production. In addition to the high

123

secretion in lignocellulosic substrates, BxlBwt is a good model for studies regarding the

influence of N-glycosylation on enzyme secretion and functional parameters due to its

high levels of N-glycosylation and enzymatic activity.

As observed in the free energy landscape (Figure S1 and Figure S2), the glycosylated

protein loses an intermediate state (arrow at point 2), facilitating the folding process.

The arrows 1 and 2 at the Figure S2 show that the non-glycosylated protein may have

difficulties in reaching the folded state. N-glycans contact polypeptide chains, changing

both the free energy and specific conformational ensembles. In this sense, secretion

of glycoproteins is generally facilitated by their higher stability and the presence of the

calnexin/calreticulin quality control (Helenius & Aebi, 2004). Furthermore, low

thermodynamic stability decreases proteins export efficiency, i.e., very unstable

proteins are poorly exported (Wiseman, Powers, Buxbaum, Kelly, & Balch, 2007).

Influence of N-glycan composition in protein folding was also studied in the human

immune cell receptor (hCD2ad), and it was reported that the presence of complete N-

glycans accelerates folding by 4-fold and also stabilizes protein structure (Hanson et

al., 2009).

N-glycans at the positions 1, 5 and 7 are important for enzyme secretion

The secretion of BxlB, BxlBN1;5;7, BxlBCC and BxlBDeglyc were evaluated by homologous

expression in A. nidulans avoiding concerns on codon usage and gene expression.

SDS-PAGE and activity assays using the extracellular enzymes revealed that

complete deglycosylation did not affect BxlBDeglyc secretion and activity. On the other

hand, the improvement of secretion and enzymatic activity of the BxlBN1;5;7 indicates

that N63, N458 and N760 sites are important for protein folding and export. Moreover,

the BxlBCC mutant activity and secretion were not detected in the extracellular fraction

indicating some impairment in gene expression, protein production or in the secretion

pathway. Real-time PCR showed high transcription levels of wild-type, BxlBN1;5;7,

BxlBCC and BxlBDeglyc, suggesting that the transcription is not a bottleneck for BxlBCC

production. There are few studies dealing with N-glycan influence in protein secretion,

and some of them reported different results than we found in this study. By one side,

changes in two N-glycosylation sites (N14Q and N48Q) of a heterologous lipase

expressed in P. pastoris did not affect its secretion, while the N60Q mutation

124

completely abolished the enzyme secretion (Yang et al., 2015). Hence, N-glycans

attached to specific positions in the protein might be essential to folding kinetics and

quality control process in the secretion pathway.

Deglycosylation of BxlBwt reduces the thermal stability

Secondary structure analysis of BxlBwt and glycomutants revealed a classical profile of

α-helix as the predominant secondary structure in all recombinant enzymes (Figure 3)

(Kelly, Jess, & Price, 2005). The similarity among CD data was confirmed by

deconvolution analysis that verified the same rate of α-helix and β-strand. The

deconvolution of CD data showed high similarity to the A. niger β-xylosidase with 41%

α-helix and 16% β-sheet, however a T. reesei β-xylosidase presented lower similarity

with 23% α-helix, 27% β-sheet (Díaz-Malváez, García-Almendárez, Hernández-Arana,

Amaro-Reyes, & Regalado-González, 2013; Rojas et al., 2005).

Generally, glycoproteins present higher stability when compared to their partially or

non-glycosylated counterparts, in spite of the absence of structural links associated

with N-glycosylation (Imperiali & Connor, 1999). The same result was observed in this

study, i.e., the thermal stability decreased according to deglycosylation level, with the

deglycosylated form the most unstable variant (Figure 3). Recently, thermal stability

was evaluated in a T. reesei cellobiohydrolase (TrCel7A) by differential scanning

calorimetry and lower stability was reported for all the fifteen N-glycosylation mutants

(Amore et al., 2017). Commonly, interactions between N-glycan sugars and amino acid

residues stabilize the protein structure, consequently, the glycoproteins are more

stable than the non-glycosylated form (Imperiali & Connor, 1999; Shental-Bechor &

Levy, 2008).

Glycosylations at N63, N458 and N760 sites increase BxlB kinetic parameters

The optimal activity conditions to all BxlB glycomutant were pH 5.0 and 60 °C using

the substrate ρNP-X, while this same enzyme expressed in P pastoris, showed optimal

activity at pH 4.4 and 48 °C using rye arabinoxylan and xylohexaose as substrates

(Bauer et al., 2006). This difference in reaction conditions due to N-glycosylation

composition was also reported for a β-glucosidase from A. terreus expressed in P.

pastoris and T. reesei (Wei et al., 2013). Kinetic parameters showed that removal of

125

any N-glycosylation site decreases the BxlBwt affinity for ρNP-X, indicating that N-

glycans should help substrate recognition or affect catalytic site flexibility. Structural

dynamics can influence catalytic site residues position and flexibility, impacting in the

kinetic parameters (Solá et al., 2007). Wei et al. showed that the specific activity of A.

terreus β-glucosidase produced in filamentous fungi or yeast decreases by removing

some N-glycosylation site (Wei et al., 2013). Removal of four N-glycosylation sites in

the BxlBN1;5;7 increased Vmax and Km suggesting important changes in structural

dynamics.

N5 and N7 are essential glycosylation sites to BxlB catalytic efficiency

Four additional mutants were designed to further understanding the influence of each

N-glycosylation site in folding, secretion and functional parameters of BxlBwt. The

secretion and catalytic efficiency of BxlBN1 decreased in comparison to the BxlBDeglyc.

A similar behavior was showed for BxlBN1;5;7 in relation to BxlBN5;7. These data suggest

that the N1 site had a slight negative influence on BxlBwt kinetic parameters and

secretion levels. On the other hand, for the glycomutants containing a unique N-

glycosylation site, maintaining the N1 site (BxlBN1) do not drastically affect secretion

and enzyme function. The sites N5 and N7 individually had a more detrimental

influence on enzyme function; however, together these sites had the highest positive

influence on the catalytic efficiency. These alterations in secretion and enzyme activity

were probably impacted by the N-glycan position in the 3D structure, protein dynamics

and stability (Nagae & Yamaguchi, 2012; Solá et al., 2007). Despite the BxlBwt has

apparently two essential N-glycosylation site (N5 and N7), previous studies

demonstrated the critical importance of a single N-glycosylation site to the folding and

enzymatic activity, for example, the P. pastoris BglS N224 is important to enzyme

activity and production and the N428 is essential to N-Acetylglucosamine-6-

sulfotransferase-1 enzyme activity (Desko, Gross, & Kohler, 2009; Wei et al., 2013).

Changing the BxlBwt N-glycosylation context impaired the protein folding and

secretion

Our results show that the misposition of N-glycosylation sites can impair the production

of recombinant enzymes in A. nidulans. In order to understand the impairment of

BxlBCC secretion, experiments were designed to monitoring enzyme secretion.

126

Designing hybrid enzymes tagging another enzyme at C terminus are generally used

to improve secretion and monitor target enzymes (Fleiβner & Dersch, 2010; H.

Nevalainen & Peterson, 2014; Owen P. Ward, 2012). The absence of BxlBCC secretion

did not take place due to transcriptional issues, therefore the BxlBwt was GFP-fused in

order to follow the enzyme along the secretion pathway. GFP was tagged by gene

cloning into a pmcB17 vector and in spite of using the strong alcA promoter, lower

mRNA levels were detected compared to the expression under glaA promoter (Figure

5 and S5). Despite this lower expression, the GFP-BxlBwt (Figure 6) was functionally

secreted but with lower activity when compared to the BxlBwt (Figure 2). GFP-BxlBCC

had no activity on ρNP-X, however weak extracellular and stronger intracellular signals

were detected at 48 h. The microscopy data corroborates the intracellular signal

detection, indicating that the mutations designed in BxlBCC affected the folding and

secretion yield. Probably, the misfolding of BxlBCC triggered protein degradation and a

small amount was secreted in a non-functional form.

Proteins with difficulty in achieving the correct folding remain longer in the ER, which

has a strict quality control in order to facilitates the folding or to direct misfolded proteins

to degradation (Helenius & Aebi, 2004; E. Sergio Trombetta & Parodi, 2003). The

quality control in A. nidulans is represented by the calnexin cycle. Calnexin recognizes

the N-glycan attached to proteins, assists the disulfide bonds and, consequently

facilitates the correct folding and secretion (Moremen et al., 2012; Schwarz & Aebi,

2011). Here, the confocal microscopy showed that the GFP-BxlBCC was retained in the

intracellular fraction suggesting that the misposition of N-glycosylation sites triggered

the protein for degradation.

Experimental procedure

Strains, plasmids and media

The reference strain A. nidulans A773 (pyrG89;wA3;pyroA4) was obtained from the

Fungal Genetics Stock Center (FGSC). The A. nidulans A773 and recombinant strains

were regularly maintained in minimal medium (MM) 1% glucose (m/v), pH 6.5

(Pontecorvo et al., 1953; Segato et al., 2012). Plasmids were propagated in E. coli

DH5α maintained in Luria-Bertani (LB) medium.

127

Site-directed mutagenesis in GH3 β-xylosidase

The gene bxlBwt that encodes BxlBwt were amplified from A. nidulans A773 genomic

DNA by PCR using specific primers (BxlBwt Fwd and BxlBwt Rev) (Table S4). The gene

was cloned into NotI and XbaI sites of the pEXPYR shuttle vector previously described

(Segato et al., 2012). The GFP-tagged glycomutants were obtained by the gene

cloning in pmcB17 vector (Fernández-Abalos, Fox, Pitt, Wells, & Doonan, 1998).

The residues substitutions in BxlBwt sequence generated BxlBN1;5;7 (N340Q, N408Q,

N419Q and N621Q), BxlBDeglyc (N63Q, A123T, Q163N, N340Q, Q391N, N408Q,

N419Q, N458Q, N621Q and N760Q) and BxlBCC (N63Q, A123T, N340Q, N408Q,

N419Q, L450T, N458Q, N621Q and N760Q) mutants synthesized by GenOne (Rio de

Janeiro, Brazil). The other four mutants: BxlBN1 (N340Q, N408Q, N419Q, N458Q,

N621Q and N760Q), BxlBN5 (N63Q, N340Q, N408Q, N419Q, N458Q and N621Q),

BxlBN7 (N63Q, N340Q, N408Q, N419Q, N458Q and N621Q) and BxlBN5;7 (N63Q,

N340Q, N408Q, N419Q, N621Q) were designed using Q5® Site-Directed

Mutagenesis Kit (New Englands Biolabs). All primer sequences used in this study are

reported in the supplementary Table S4.

A. nidulans transformation

The genes cloned into the pEXPYR plasmid were transformed into calcium competent

E. coli cells by heat shock and confirmation was carried out by colony PCR. Positive

colonies were cultivated overnight, and plasmids extracted and used in fungal

transformation.

The fungal transformation was carried out as previously described with modifications

(Szewczyk et al., 2006). Spores of A. nidulans A773 were inoculated on YG medium

(20g.L-1 glucose, 5 g.L-1 yeast extract, 1× trace elements, 1 mg l−1pyridoxine and

2.5 mg l−1 uracil/uridine) and incubated at 30°C/130 rpm for 13 hours. The protoplast

was prepared by hydrolysis of the fungal cell wall with 125 mg of lysozyme from

chicken egg white (Sigma L7651) and 1.02 g of Vinotaste Pro (Novozymes) for 2 hours.

Approximately 10 µg of recombinant DNA was mixed with protoplasts solution and

PEG 25% (w/v). Protoplast-recovery were performed in MM plates supplemented with

1.2 M sorbitol and pyridoxine incubated at 37°C for three days.

128

In situ analysis

The stability and free landscape energy were performed using simplified contact of

structural units (CSU software) interaction type. This method analyzes interatomic

structures contacts, such as helices, sheets, strands and residues (Sobolev, Sorokine,

Prilusky, Abola, & Edelman, 1999). The structures were simplified to alfa-carbon

interactions. The CSU software has been designed to assist the molecular biologist in

understanding the structural consequences of modifying a ligand and/or protein. The

analysis was conducted in function of temperature and free energy in order to evaluate

stability and folding, respectively.

Biochemical characterization of β-xylosidase and glycomutants

Enzymatic activity and protein determination

107–108 fresh spores of A. nidulans A773 and recombinant strains were inoculated in

MM supplemented with 2% (w/v) maltose, pH 6.5 for 36 h at 37°C. Proteins in the crude

extracts were quantified by the Bradford method (Bradford, 1976). About 20 ug of

supernatant proteins were loaded in SDS-PAGE (Laemmli, 1970) and the target

protein relative secretion was measured by Image Lab 5.2.1 Software (Bio-Rad) using

the BxlBwt band as reference. Enzymatic activity was determined using 5 mM ρNP-X

as substrate and ρ-nitrophenol (ρNP) release was determined at 400 nm. One unit (U)

of β-xylosidase activity was defined as the amount of enzyme releasing 1 µmol of ρNP

per minute under the assay conditions.

Protein purification

All enzymes were purified by two-steps using HiPrepTM DEAE FF 16/10 (GE

Healthcare) followed by HiLoadTM 16/600 SuperdexTM 200 pg (GE healthcare)

columns, as previously described (Contesini et al., 2017a). Purification was evaluated

by SDS-PAGE and protein concentration was determined by reading the absorbance

at 280 nm and using the molar extinction coefficient (Kelly et al., 2005) calculated from

amino acid composition (http://web.expasy.org/protparam/).

129

Structural characterization by Circular Dichroism (CD) spectroscopy

CD analysis was carried out using a JASCO 815 spectropolarimeter (JASCO Inc.,

Tokyo, Japan) equipped with a Peltier temperature control unit and a 0.1 cm path

length cuvette as previously described (Cota et al., 2011). Data from 260 to 190 nm

were collected using 100 nm/min scanning speed, 1 nm spectral bandwidth and 0.5 s

response time. Melting temperature was evaluated by spectra measurement at 20 °C

to 100 °C.

Effect of temperature and pH on enzyme activity

To determine the optimal temperature of all recombinant proteins, enzyme activity was

assayed from 35 to 70 °C at pH 5.0, and for optimal pH, activity was determined using

different buffers in a pH range from 3.0 to 12.5 at 50 °C and ρNP-X as substrate.

Kinetic parameters

Maximum velocity (Vmax), Michaelis-Menten constant (Km), catalytic constant (Kcat) and

catalytic efficiency (Kcat/Km) were determined for all mutants using different

concentrations of ρNP-X (1-20 mM).

RNA extraction, transcript analysis by qPCR (quantitative real-time PCR) and

primer design

Total RNA was extracted by grinding frozen mycelia with a mortar and pestle under

liquid nitrogen, followed by extraction using Direct-Zol RNA Miniprep from Zymo

Research according to the manufacturer’s instructions. Total RNA (DNA free) was

assayed for reverse transcription using the Maxima First Strand cDNA Synthesis Kit

for RT-qPCR, with dsDNase (ThermoFisher Scientific). cDNA samples were diluted

and each qPCR reaction containing cDNA (100 ng), SYBR Green (Life Technologies),

forward and reverse primers (Table S4) and nuclease-free water was carried out using

ViiA™ 7 real-time PCR system (Life Technologies). All PCR reactions were carried out

in biological triplicate. Gene expression levels in the different samples were determined

using the ΔΔCt method and β-tubulin (tubC) as reference gene.

130

Confocal microscopy

Microscopic analyses were carried out by confocal microscopy based on Fischer-

Parton et al. (2000) with modifications. Mycelium was obtained after 24 and 48 h

cultivation of A. nidulans strains, at 37 °C and 200 rpm in MM. The images were

obtained by an LSM 510 Axiovert 200 M (Carls Zeiss) confocal inverted microscope,

fitted with an argon laser. The laser intensity was set using the A. nidulans A773 strain

to avoid autofluorescence at 488 nm excitation and fluorescence emission at 530 nm.

All samples were spread over a microscope slide, in natura, then analyzed right after

the cultivation.

Western Blot

WB analysis was carried out as described by Nutzmann et al. (2011). Sixty μg of

protein were separated by SDS-PAGE followed by transfer to PVDF membrane by

using a wet blotting system (Bio-Rad). The membrane was blocked with BSA 5%, then

incubated overnight with primary antibodies (GFP or BxlB), gently shaken at room

temperature, and posteriorly the secondary antibody anti-rabbit immunoglobulin G

labeled with peroxidase. Protein detection was carried out using Clarity Western ECL

Substrate chemiluminescence detection kit (Bio-Rad), as described by manufacturer's

protocol.

Conclusion

The study of N-glycosylation patterns on fungal CAZymes is important to shed light on

the effect of N-glycans position on proteins properties such as structure, dynamics,

stability and function. Here we demonstrate that N-glycosylation facilitates the correct

folding of a GH3 β-xylosidase by losing an intermediate state. The change of N-

glycosylation context in the BxlB resulted in secretion impairment even with high levels

of mRNA. Secondary structures were preserved in the BxlB glycomutants but their

thermal stability were reduced. Despite the secretion and kinetics parameters of BxlBwt

were affected by N-glycosylation sites mutations, the completely deglycosylated

enzymes (BxlBDeglyc) was secreted in a functional state. There is strong evidence that

misposition of BxlB N-glycosylation sites (BxlBCC) resulted in unfolded/misfolded and

non-functional enzyme. At the individual level, the N-glycosylation sites N5 and N7 are

131

essential to BxlB, improving enzyme catalytic efficiency. Moreover, BxlB glycomutants

showed how complex the N-glycosylation effect is by positively and/or negatively

affecting the folding process, secretion and kinetics parameters. N-glycosylation

engineering can be a promising tool to enhance target enzymes secretion, activity and

thermal stability.

Acknowledgments

This research was supported by FAPESP (grant 2012/20549-4 to ARLD). We are

grateful to the National Council for Scientific and Technological Development (CNPq)

for the financial support (441912/2014-1 and 304816/2017-5 to ARLD). MVR, CRFT,

FJC and MPZ received FAPESP fellowships (13/24988-5, 16/16306-0, 17/10083-1

and 14/15403-6). We thank the LNBio Mass Spectrometry staff for the assistance with

LC-MS/MS.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

ARLD conceived and designed the experiments. MVR, CRFT and JAG participated in

the design of the study and performed the experiments. MVR, CRFT and JAG and

ARLD analyzed the data. MVR, CRFT, FJC and MPZ drafted the manuscript. ARLD

revised the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

132

Supplementary data

Figure S1. Stability analysis of BxlBwt and the deglycosylated form. The

coefficient of Variation (CV) was calculated based on temperature increase using

contacts of structural units algorithm. The BxlBwt and BxlBDeglyc models were designed

based on structure of T. reesei beta-xylosidase Bxl1 (PDB 5a7m).

133

Figure S2. Free landscape energy analysis of BxlBwt and deglycosylated form.

The number of contacts indicates the transition of unfolded to folded form. The two

states with higher free energy (1 and 2 arrows) indicates that N-glycans facilitates the

folding. The free-energy profile in which an interaction number close to the value zero

indicates the unfolded state and when close to the value one, the folded state (0.9).

134

Figure S3. Analysis of N-glycosylation sites conservation by the alignment of

thirty-three BxlBwt homologous sequences. The alignment was performed by the

ClustalW algorithm. The homologous (E-value < 10-40) sequences were obtained in

Aspergillus Genome Database (AspGD).

BxlB

wt

BxlB

N1;5

;7

BxlB

CC

BxlB

Degly

c

A773

0

5

1 0

1 5

2 0

2 5

6 0

7 0

8 0

9 0

Re

lati

ve

ac

tiv

ity

(A

77

3) * * *

*

*

Figure S4. Analysis of BxlB glycomutants intracellular activity by homologous

expression in A. nidulans. The β-xylosidase activity was measured using the ρNP-X

assay. The reaction was carried out at 50 °C for 15 min and pH 5.0. *ANOVA p<0.05.

135

BxlB

wt

BxlB

N1;5

;7

BxlB

CC

BxlB

Degly

c

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

Fo

ld C

ha

ng

e (

log

2)

Figure S5. Real-time PCR analysis of BxlB glycomutants. The data was analyzed

by ΔΔCt method using the tubC as endogenous gene and A. nidulans A773 as control

strain. The gene induction was performed on maltose 2% and 36h. ANOVA statistics

were performed and no significant difference was observed.

Figure S6. Quantification of BxlB glycomutants secretion in A. nidulans.

Extracellular extracts (20 ug) were analyzed in biological replicates by Image Lab 5.2.1

software (Bio-Rad). Arrows indicate the quantified band. L: ladder.

136

Figure S7. In vivo monitoring of GFP-tagged BxlB mutants by confocal

microscopy. The intracellular GFP-tagged BxlB glycomutants were monitored after

24 h of induction with ethanol 2%. All images were captured using the same

parameters and the A. nidulans A773 strain was set as control to avoid

autofluorescence.

137

Figure S8. WB analysis of BxlB glycomutants. A) A. nidulans secretomes producing

BxlB glycomutants and the control strain A773 (30 ug) were analyzed using anti-BxlB

polyclonal antibody. B) The same analysis was performed in triplicate using 100 ug of

intracellular fraction and 0.5 ug of purified BxlBwt as positive control (C).

Table S1. Overview of BxlBwt putative N-glycosylated sites.

BxlBwt (PDB 3u48)

Asn number Sequence Asn position ASA Asn condition

(LC-MS/MS)

1 KIN*NT 63 86.8 + Glycosylated

2 ISN*ET 340 54.8 + Glycosylated

3 KAN*GT 408 69.9 + Glycosylated

4 FIN*FT 419 60.4 + Glycosylated

5 EVN*ST 458 79.3 + Not covered

6 TFN*VS 621 71.0 + Glycosylated

7 SGN*DS 760 NC Non glycosylated

ASA: Accessible Surface Area

138

Table S2. BxlBCC peptides detected by LC-MS/MS.

Query Observed Mr (expt) Mr (calc) Delta Score Unique Peptide

1 378,6812 755,3479 755,349 -0.0011 39 RFEFDAKV

2 444,2444 886,4742 886,476 -0.0018 40 KGDVQVLEKF

3 480,271 958,5275 958,5488 -0.0213 52 RLPITQYPKS

4 503,3022 1004,59 1004,602 -0.0121 51 RYLLQTVLRE

5 544,7969 1087,579 1087,587 -0.0081 68 RVAEIISTEARA

6 550,3059 1098,597 1098,607 -0.0100 49 KNIDWTLPLKA

7 571,8564 1141,698 1141,707 -0.0087 38 KTVAIQGTVLLKN

8 595,3351 1188,656 1188,66 -0.0046 69 KSLVSALTLEEKI

9 622,8507 1243,687 1243,688 -0.0015 48 RRVAEIISTEARA

10 626,811 1251,607 1251,625 -0.0173 69 KAFGPYDAATLARG

11 634,3194 1266,624 1266,639 -0.0147 12 KHIPTMIEAAERL

12 690,8664 1379,718 1379,72 -0.0015 74 KKAFGPYDAATLARG

13 506,2389 1515,695 1515,691 0.0034 17 U KINNTGHEAAGSSRL

14 528,2335 1581,679 1581,684 -0.0055 26 RGQETPGEDPLHCSRY

15 808,4366 1614,859 1614,858 0.0009 15 U RQGLISQETLDAALTRL

16 851,9121 1701,81 1701,811 -0.0014 113 KHLAAYDLEEWGGVSRF

17 877,4689 1752,923 1752,934 -0.0106 58 KVSAVDLLEYYLPPFKT

18 902,9621 1803,91 1803,921 -0.0118 60 U RQGLISNETLDAALTRL

19 910,4368 1818,859 1818,864 -0.0045 50 U KGDVQVLEKFPLSGNDSD

20 910,9232 1819,832 1819,848 -0.0157 116 RSLGWDDVATSEAEELAKT

21 723,3626 2167,066 2167,085 -0.0190 48 RLGLPAYNWWNEALHGVAEKH

22 756,3895 2266,147 2266,163 -0.0166 59 RLYTSLVQLGYFDPAEGQPLRS

23 1234,5342 2467,054 2467,063 -0.0093 87 KSYVDEVPMTDMNLQPGTDNPGRT

139

Table S3. Characterized β-xylosidases using pNP-X according to the MycoClap*.

Entry Name Species Host (for

recombinant

expression)

Specific

Activity

pH Temp

(°C)

Genbank Protein ID Uniprot ID Literature PMID

XYL3A_TRIRE Trichoderma

reesei

Saccharomyces

cerevisiae

active CAA93248 Q92458 8837440

XYL3D_ASPNG Aspergillus

niger

native 60.2 U/mg CAB06417, CAB59162,

CAK37179, CAW52627

O00089 9128738

XYL3A_EMENI Emericella

nidulans

Aspergillus

nidulans G191

active 5.0 50 CAA73902 9546179

XYL3A_ASPOR Aspergillus

oryzae

native 76 U/mg 4.0 60 BAA28267 9872754

XYL3A_ASPAW Aspergillus

awamori

native active BAE19756 Q4AEG8 16202538

XYL3A_ASPJA Aspergillus

japonicus

native 112 U/mg 4.0 70 BAG82824 B6EY09 19000618

140

XYL3A_AURPU Aureobasidiu

m pullulans

native 288 U/mg 3.5 70 BAI82526 D4AHT5 20547381

XYL3A_TRIRE Trichoderma

reesei

native 28 U/mg 4.0 60 DOI: 10.1007/BF00268208

XYL3A_ASPAW Aspergillus

awamori

native 20 U/mg 4.0 70 DOI: 10.1271/bbb.61.2010

XYL3A_EMENI Emericella

nidulans

native 107 U/mg http://onlinelibrary.wiley.com

/doi/10.1111/j.1574-

6968.1996.tb08003.x/pdf

XYL3A_ASPJA Aspergillus

japonicus

Pichia pastoris

GS115

19 U/mg

* MycoClap site: https://mycoclap.fungalgenomics.ca/mycoCLAP/

141

Table S4. Oligonucleotides used in this study.

Primer name Sequence

BxlBwt Fwd 5’- TATAGCGGCCGCTACCCGGACTGCACAA -3’

BxlBwt Rev 5’- TATATCTAGATAATCACTGTCGTTACCTGACA -3’

RT BxlBwt Fwd 5’- ACCATGATCGAGGCAGCAG -3’

RT BxlBwt Rev 5’- GGGCATCATCGAATCCGTCT -3’

N1 Fwd 5’- AGAGAAAATCAACAACACGGGCCACG -3’

N1 Rev 5’- TCGAGTGTCAGGGCAGAG -3’

N5 Fwd 5’- GACAGAGGTGAATTCGACAAGCACAGACG -3’

N5 Rev 5’- CCTGGCGCGGTGAGAACG -3’

N7 Fwd 5’- GTTGTCAGGTAACGACAGTGATTATC -3’

N7 Rev 5’- GGAAACTTTTCAAGCACC -3’

The NotI and XbaI restriction sites are shown in bold type

142

Capítulo 4. Considerações finais

Historicamente, estudos relacionados à glicosilação de proteínas foram desenvolvidos

a fim de compreender o papel do carboidrato em modificações biofísicas e

comunicação celular, com foco no desenvolvimento de novos tratamentos para

doenças humanas. Apesar de escassos, alguns estudos têm apresentado resultados

bastante promissores ao analisar o efeito das glicosilações no enovelamento,

secreção e propriedades funcionais de diferentes enzimas.

A N-glicosilação efetiva e correta é essencial para a produção de proteínas

heterólogas em fungos filamentosos. O acúmulo de proteínas não enoveladas ou mal

enoveladas representa um grande problema na via de secreção e,

consequentemente, no rendimento final da proteína alvo. Assim, estudar o processo

de N-glicosilação em A. nidulans, um organismo modelo, é fundamental para propor

novas estratégias para melhorar a secreção de proteínas recombinantes nesta

linhagem e em fungos filamentosos de maneira geral.

A glicoproteômica foi o primeiro trabalho de A. nidulans analisando proteínas, sítios

de N-glicosilação e N-glicanas. Apesar de não ser uma linhagem amplamente utilizada

na indústria, nossos resultados mostraram que A. nidulans possui um repertório de

CAZymes capaz de degradar as principais ligações glicosídicas presentes na

biomassa lignocelulósica. Dentre as proteínas identificadas, observou-se que o

repertório enzimático está diretamente relacionado com a composição do substrato

indutor.

As N-glicanas contendo cinco hexoses foram prevalentes nos cultivos em glicose e

bagaço de cana-de-açúcar, enquanto, o cultivo com xilano apresentou quantidades

semelhantes de 5 a 9 hexoses. Identificou-se, também, a preferência de A. nidulans

por sítios de glicosilação compostos por N-X-T, os quais foram predominantemente

encontrados em regiões da proteína com predominância de resíduos de aminoácidos

hidrofóbicos ou polares não carregados.

Os resultados da glicoproteômica poderão facilitar a manipulação e desenho correto

de sítios de N-glicosilação em genes recombinantes a serem expressos em A.

nidulans. Dessa forma, a β-xilosidase BxlB da família GH3 foi selecionada como

143

modelo para compreender a influência e efeitos da N-glicosilação no enovelamento,

na secreção, e na cinética enzimática de uma CAZyme de A. nidulans. BxlB e seus

respectivos glicomutantes foram caracterizados estrutural e funcionalmente. Com

base nos experimentos conduzidos, concluiu-se que a alteração no perfil de N-

glicosilação pode influenciar negativamente a secreção enzimática mesmo havendo

elevados níveis de mRNA. Os glicomutantes BxlBN1;5;7 e BxlBN5;7 apresentaram maior

eficiência catalítica. Dessa forma, concluiu-se que os sítios N5 e N7 são essenciais

para cinética enzimática da BxlB.

Em suma, a manipulação do processo de N-glicosilação é uma ferramenta bastante

promissora na otimização da secreção, atividade enzimática e estabilidade térmica.

Dessa forma, o estudo de sítios de N-glicosilação se torna fundamental para o correto

engenheiramento de proteínas recombinantes. Os resultados obtidos com os

glicomutantes de BxlB confirmam o grande potencial da manipulação dos sítios de N-

glicosilação em uma CAZyme alvo. Além disso, esse trabalho irá contribuir tanto com

a determinação de CAZymes alvo para estudos posteriores, quanto como modelo de

manipulação de N-glicosilação de β-xilosidases. Assim, será possível avançar no

desenvolvimento de excelentes catalizadores biológicos de acordo com a demanda

de processos biotecnológicos.

144

Referências

Adav, S. S., Ravindran, A., & Sze, S. K. (2014). Study of Phanerochaete

chrysosporium Secretome Revealed Protein Glycosylation as a Substrate-

Dependent Post-Translational Modification. Journal of Proteome Research,

13(10), 4272–4280. https://doi.org/10.1021/pr500385y

Adav, S. S., Ravindran, A., & Sze, S. K. (2015). Data for iTRAQ secretomic analysis

of Aspergillus fumigatus in response to different carbon sources. Data in Brief, 3,

175–179. https://doi.org/10.1016/j.dib.2015.03.001

Aebi, M. (2013). N-linked protein glycosylation in the ER. Biochimica et Biophysica

Acta - Molecular Cell Research, 1833(11), 2430–2437.

https://doi.org/10.1016/j.bbamcr.2013.04.001

Aebi, M., Bernasconi, R., Clerc, S., & Molinari, M. (2010). N-glycan structures:

recognition and processing in the ER. Trends in Biochemical Sciences, 35(2), 74–

82. https://doi.org/10.1016/j.tibs.2009.10.001

Alberts, B. Johnson, A. Lewis, J. Raff, M. Roberts, K. Walter, P. (2008). Molecular

Biology of the Cell, 5th Edition. Perspective.

Alvarez-Leefmans, F., & Delpire, E. (2010). Physiology and Pathology of Chloride

Transporters and Channels in the Nervous System. Physiology and Pathology of

chloride transporters and channels in the nervous system. Elsevier.

https://doi.org/10.1016/B978-0-12-374373-2.X0001-5

Amore, A., Knott, B. C., Supekar, N. T., Shajahan, A., Azadi, P., Zhao, P., … Taylor,

L. E. (2017). Distinct roles of N- and O-glycans in cellulase activity and stability.

Proceedings of the National Academy of Sciences, 114(52), 13667–13672.

https://doi.org/10.1073/pnas.1714249114

Anumula, K. R., & Taylor, P. B. (1992). A comprehensive procedure for preparation of

partially methylated alditol acetates from glycoprotein carbohydrates. Analytical

Biochemistry, 203(1), 101–108. https://doi.org/10.1016/0003-2697(92)90048-C

Archer, D. B., & Peberdy, J. F. (1997). The molecular biology of secreted enzyme

145

production by fungi. Critical Reviews in Biotechnology, 17(4), 273–306.

https://doi.org/10.3109/07388559709146616

Banerjee, S., Vishwanath, P., Cui, J., Kelleher, D. J., Gilmore, R., Robbins, P. W., &

Samuelson, J. (2007). The evolution of N-glycan-dependent endoplasmic

reticulum quality control factors for glycoprotein folding and degradation.

Proceedings of the National Academy of Sciences of the United States of America,

104(28), 11676–11681. https://doi.org/10.1073/pnas.0704862104

Bauer, S., Vasu, P., Persson, S., Mort, A. J., & Somerville, C. R. (2006). Development

and application of a suite of polysaccharide-degrading enzymes for analyzing

plant cell walls. Proceedings of the National Academy of Sciences of the United

States of America, 103(30), 11417–11422.

https://doi.org/10.1073/pnas.0604632103

Beausoleil, S. A., Villén, J., Gerber, S. A., Rush, J., & Gygi, S. P. (2006). A probability-

based approach for high-throughput protein phosphorylation analysis and site

localization. Nature Biotechnology, 24(10), 1285–92.

https://doi.org/10.1038/nbt1240

Beckham, G. T., Dai, Z., Matthews, J. F., Momany, M., Payne, C. M., Adney, W. S., …

Himmel, M. E. (2012a). Harnessing glycosylation to improve cellulase activity.

Current Opinion in Biotechnology, 23(3), 338–345.

https://doi.org/10.1016/j.copbio.2011.11.030

Beckham, G. T., Dai, Z., Matthews, J. F., Momany, M., Payne, C. M., Adney, W. S., …

Himmel, M. E. (2012b). Harnessing glycosylation to improve cellulase activity.

Current Opinion in Biotechnology, 23(3), 338–345.

https://doi.org/10.1016/j.copbio.2011.11.030

Bell, E., & Malmberg, R. L. (1990). Analysis of a cDNA encoding arginine

decarboxylase from oat reveals similarity to the Escherichia coli arginine

decarboxylase and evidence of protein processing. Molecular and General

Genetics MGG, 1(224), 431–436. Retrieved from

http://link.springer.com/article/10.1007/BF00262438

146

Benoit, I., Culleton, H., Zhou, M., DiFalco, M., Aguilar-Osorio, G., Battaglia, E., … de

Vries, R. P. (2015). Closely related fungi employ diverse enzymatic strategies to

degrade plant biomass. Biotechnology for Biofuels, 8(1), 107.

https://doi.org/10.1186/s13068-015-0285-0

Bhadauria, V., Zhao, W.-S. S., Wang, L.-X. X., Zhang, Y., Liu, J.-H. H., Yang, J., …

Peng, Y.-L. L. (2007). Advances in fungal proteomics. Microbiological Research,

162(3), 193–200. https://doi.org/10.1016/j.micres.2007.03.001

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., …

Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary

structure using evolutionary information. Nucleic Acids Research, 42(W1).

https://doi.org/10.1093/nar/gku340

Borin, G. P., Sanchez, C. C., de Souza, A. P., de Santana, E. S., de Souza, A. T.,

Leme, A. F. P., … Oliveira, J. V. D. C. (2015). Comparative Secretome Analysis

of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane

Biomass. Plos One, 10(6), e0129275.

https://doi.org/10.1371/journal.pone.0129275

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram

quantities of protein utilizing the principle of protein-dye binding. Analytical

Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Bulaj, G. (2005). Formation of disulfide bonds in proteins and peptides. Biotechnology

Advances, 23(1), 87–92. https://doi.org/10.1016/j.biotechadv.2004.09.002

Burda, P., & Aebi, M. (1999). The dolichol pathway of N-linked glycosylation.

Biochimica et Biophysica Acta - General Subjects, 1426(2), 239–257.

Camassola, M., & J.P. Dillon, A. (2012). Cellulase Determination: Modifications to

Make the Filter Paper Assay Easy, Fast, Practical and Efficient. Journal of

Analytical & Bioanalytical Techniques, 01(S1), 10–13.

https://doi.org/10.4172/scientificreports.125

Canilha, L., Rodrigues, R. D. C. L. B., Antunes, F. A. F., Milessi, T. S. D. S., Felipe, M.

147

D. G. A., & Silva, S. S. Da. (2013). Bioconversion of Hemicellulose from

Sugarcane Biomass Into Sustainable Products. In Sustainable Degradation of

Lignocellulosic Biomass - Techniques, Applications and Commercialization (pp.

15–45). https://doi.org/dx.doi.org/10.5772/53832

Cantarel, B. I., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat,

B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert

resource for glycogenomics. Nucleic Acids Research, 37(SUPPL. 1), D233-8.

https://doi.org/10.1093/nar/gkn663

Casas-Flores, S., Rosales-saavedra, T., & Herrera-Estrella, A. (2004). Three decades

of fungal transformation: novel technologies. Methods in Molecular Biology

(Clifton, N.J.), 267, 315–325. https://doi.org/10.1385/1-59259-774-2:315

Case, M. E., Schweizer, M., Kushner, S. R., Giles, N. H., Kushnert, S. R., & Giles, N.

H. (1979). Efficient transformation of Neurospora crassa by utilizing hybrid plasmid

DNA. Proceedings of the National Academy of Sciences of the United States of

America, 76(10), 5259–5263. https://doi.org/10.1073/pnas.76.10.5259

Cerqueira, G. C., Arnaud, M. B., Inglis, D. O., Skrzypek, M. S., Binkley, G., Simison,

M., … Wortman, J. R. (2014). The Aspergillus Genome Database: Multispecies

curation and incorporation of RNA-Seq data to improve structural gene

annotations. Nucleic Acids Research. https://doi.org/10.1093/nar/gkt1029

Chai, R., Zhang, G., Sun, Q., Zhang, M., Zhao, S., & Qiu, L. (2013). Liposome-

mediated mycelial transformation of filamentous fungi. Fungal Biology, 117(9),

577–83. https://doi.org/10.1016/j.funbio.2013.06.008

Chakraborty, B. N., Patterson, N. A., & Kapoor, M. (1991). An electroporation-based

system for high-efficiency transformation of germinated conidia of filamentous

fungi. Can. J. Microbiol, 37(11), 858–863. https://doi.org/10.1139/m91-147

Chang, X., Xu, B., Bai, Y., Luo, H., Ma, R., Shi, P., & Yao, B. (2017). Role of N-linked

glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from

Aspergillus fumigatus expressed in Pichia pastoris. PLoS ONE, 12(2), 1–13.

https://doi.org/10.1371/journal.pone.0171111

148

Chen, W., Smeekens, J. M., & Wu, R. (2014). Comprehensive analysis of protein N-

glycosylation sites by combining chemical deglycosylation with LC-MS. Journal of

Proteome Research, 13(3), 1466–1473. https://doi.org/10.1021/pr401000c

Chen, W., Xie, T., Shao, Y., & Chen, F. (2012). Genomic characteristics comparisons

of 12 food-related filamentous fungi in tRNA gene set, codon usage and amino

acid composition. Gene, 497(1), 116–124.

https://doi.org/10.1016/j.gene.2012.01.016

Cheng, S., Edwards, S. a., Jiang, Y., & Gräter, F. (2010). Glycosylation Enhances

Peptide Hydrophobic Collapse by Impairing Solvation. ChemPhysChem, 11(11),

2367–2374. https://doi.org/10.1002/cphc.201000205

Cherepanova, N., Shrimal, S., & Gilmore, R. (2016). N-linked glycosylation and

homeostasis of the endoplasmic reticulum. Current Opinion in Cell Biology, 41,

57–65. https://doi.org/10.1016/j.ceb.2016.03.021

Chung, D., Cha, M., Guss, A. M., & Westpheling, J. (2014). Direct conversion of plant

biomass to ethanol by engineered Caldicellulosiruptor bescii. Proceedings of the

National Academy of Sciences of the United States of America, 111(24), 8931–6.

https://doi.org/10.1073/pnas.1402210111

Colley, K. J., Varki, A., & Kinoshita, T. (2015). Cellular Organization of Glycosylation.

Essentials of Glycobiology. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/28876808

Conesa, A., Jeenes, D., Archer, D. B., van den Hondel, C. A. M. J. J., & Punt, P. J.

(2002). Calnexin Overexpression Increases Manganese Peroxidase Production in

Aspergillus niger. Applied and Environmental Microbiology, 68(2), 846–851.

https://doi.org/10.1128/AEM.68.2.846-851.2002

Conesa, A., Punt, P. J., van Luijk, N., & van den Hondel, C. A. M. J. J. (2001). The

secretion pathway in filamentous fungi: a biotechnological view. Fungal Genetics

and Biology : FG & B, 33(3), 155–171. https://doi.org/10.1006/fgbi.2001.1276

Contesini, F. J., Liberato, M. V., Rubio, M. V., Calzado, F., Zubieta, M. P., Riaño-

149

Pachón, D. M., … Damasio, A. R. (2017a). Structural and functional

characterization of a highly secreted α- l -arabinofuranosidase (GH62) from

Aspergillus nidulans grown on sugarcane bagasse. Biochimica et Biophysica Acta

(BBA) - Proteins and Proteomics, 1865(12), 1758–1769.

https://doi.org/10.1016/j.bbapap.2017.09.001

Contesini, F. J., Liberato, M. V., Rubio, M. V., Calzado, F., Zubieta, M. P., Riaño-

Pachón, D. M., … Damasio, A. R. (2017b). Structural and functional

characterization of a highly secreted α-L-arabinofuranosidase (GH62) from

Aspergillus nidulans grown on sugarcane bagasse. Biochimica et Biophysica Acta

- Proteins and Proteomics, 1865(12), 1758–1769.

https://doi.org/10.1016/j.bbapap.2017.09.001

Cooper, C. A., Gasteiger, E., & Packer, N. H. (2001). GlycoMod - A software tool for

determining glycosylation compositions from mass spectrometric data.

Proteomics, 1(2), 340–349. https://doi.org/10.1002/1615-

9861(200102)1:2<340::AID-PROT340>3.0.CO;2-B

Cota, J., Alvarez, T. M., Citadini, A. P., Santos, C. R., de Oliveira Neto, M., Oliveira, R.

R., … Squina, F. M. (2011). Mode of operation and low-resolution structure of a

multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga

petrophila. Biochemical and Biophysical Research Communications, 406(4), 590–

594. https://doi.org/10.1016/j.bbrc.2011.02.098

Cowcher, D. P., Deckert-Gaudig, T., Brewster, V. L., Ashton, L., Deckert, V., &

Goodacre, R. (2016). Detection of Protein Glycosylation Using Tip-Enhanced

Raman Scattering. Analytical Chemistry, 88(4), 2105–2112.

https://doi.org/10.1021/acs.analchem.5b03535

Daly, P., Munster, J. M. Van, Raulo, R., & Archer, D. B. (2015). Transcriptional

Regulation and Responses in Filamentous Fungi Exposed to Lignocellulose. In

Mycology: Current and Future Developments (Vol. 1, pp. 82–127).

Dam, S., Thaysen-Andersen, M., Stenkjær, E., Lorentzen, A., Roepstorff, P., Packer,

N. H., & Stougaard, J. (2013). Combined N-glycome and N-glycoproteome

150

analysis of the Lotus japonicus seed globulin fraction shows conservation of

protein structure and glycosylation in legumes. Journal of Proteome Research,

12(7), 3383–92. https://doi.org/10.1021/pr400224s

Davis, B. G., Van Kasteren, S. I., Kramer, H. B., & Gamblin, D. P. (2007). Site-selective

glycosylation of proteins: Creating synthetic glycoproteins. Nature Protocols,

2(12), 3185–3194. https://doi.org/10.1038/nprot.2007.430

de Groot, P. W. J., Brandt, B. W., Horiuchi, H., Ram, A. F. J., de Koster, C. G., & Klis,

F. M. (2009). Comprehensive genomic analysis of cell wall genes in Aspergillus

nidulans. Fungal Genetics and Biology : FG & B, 46(1), S72–S81.

https://doi.org/10.1016/j.fgb.2008.07.022

de Souza, W. R., de Gouvea, P. F., Savoldi, M., Malavazi, I., de Souza Bernardes, L.

a, Goldman, M. H. S., … Goldman, G. H. (2011). Transcriptome analysis of

Aspergillus niger grown on sugarcane bagasse. Biotechnology for Biofuels, 4(1),

40. https://doi.org/10.1186/1754-6834-4-40

Decker, S. R., Siika-Aho, M., & Viikari, L. (2009). Enzymatic Depolymerization of Plant

Cell Wall Hemicelluloses. In Biomass Recalcitrance: Deconstructing the Plant Cell

Wall for Bioenergy (pp. 352–373). Blackwell Publishing Ltd.

https://doi.org/10.1002/9781444305418.ch10

Delmas, S., Pullan, S. T., Gaddipati, S., Kokolski, M., Malla, S., Blythe, M. J., … Archer,

D. B. (2012). Uncovering the Genome-Wide Transcriptional Responses of the

Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing.

PLoS Genetics, 8(8), e1002875. https://doi.org/10.1371/journal.pgen.1002875

Deshpande, N., Wilkins, M. R., Packer, N., & Nevalainen, H. (2008). Protein

glycosylation pathways in filamentous fungi. Glycobiology, 18(8), 626–637.

https://doi.org/10.1093/glycob/cwn044

Desko, M. M., Gross, D. A., & Kohler, J. J. (2009). Effects of N-glycosylation on the

activity and localization of GlcNAc-6-sulfotransferase 1. Glycobiology, 19(10),

1068–1077. https://doi.org/10.1093/glycob/cwp092

151

Devchand, M., & Gwynne, D. I. (1991). Expression of heterologous proteins in

Aspergillus. Journal of Biotechnology, 17(1), 3–9. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/16814894

Dhawale, S. S., Paietta, J. V, & Marzluf, G. A. (1984). A new, rapid and efficient

transformation procedure for Neurospora. Current Genetics, 8(1), 77–79.

https://doi.org/10.1007/BF00405435

Díaz-Malváez, F. I., García-Almendárez, B. E., Hernández-Arana, A., Amaro-Reyes,

A., & Regalado-González, C. (2013). Isolation and properties of β-xylosidase from

Aspergillus niger GS1 using corn pericarp upon solid state fermentation. Process

Biochemistry, 48(7), 1018–1024. https://doi.org/10.1016/j.procbio.2013.05.003

Dimarogona, M., Topakas, E., Olsson, L., & Christakopoulos, P. (2012). Lignin boosts

the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile.

Bioresource Technology, 110, 480–487.

https://doi.org/10.1016/j.biortech.2012.01.116

Duden, R. (2003). ER-to-Golgi transport: COP I and COP II function. Molecular

Membrane Biology. https://doi.org/10.1080/0968768031000122548

Eshghi, S. T., Yang, S., & Wang, X. (2014). Imaging of N-Linked Glycans from

Formalin-Fixed Paraffin-Embedded Tissue Sections Using MALDI Mass

Spectrometry. ACS Chemical Biology. Retrieved from

http://pubs.acs.org/doi/abs/10.1021/cb500405h

Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of

saccharifying cellulase. Biotechnology for Biofuels, 2(1), 21.

https://doi.org/10.1186/1754-6834-2-21

Fernandes, P. (2010). Enzymes in Food Processing: A Condensed Overview on

Strategies for Better Biocatalysts. Enzyme Research, 2010, 1–19.

https://doi.org/10.4061/2010/862537

Fernández-Abalos, J. M., Fox, H., Pitt, C., Wells, B., & Doonan, J. H. (1998). Plant-

adapted green fluorescent protein is a versatile vital reporter for gene expression,

152

protein localization and mitosis in the filamentous fungus, Aspergillus nidulans.

Molecular Microbiology, 27(1), 121–130. https://doi.org/10.1111/j.1365-

2958.2009.06936.x

Fernandez, J.M. & Hoeffler, J.P., E. (1999). Gene Expression Systems. Using nature

for the art of expression. Retrieved from

http://www.embl.de/pepcore/pepcore_services/cloning/choice_expression_syste

ms/comparison_expression_systems/index.html

Fischer-Parton, S., Parton, R. M., Hickey, P. C., Dijksterhuis, J., Atkinson, H. A., &

Read, N. D. (2000). Confocal microscopy of FM4-64 as a tool for analysing

endocytosis and vesicle trafficking in living fungal hyphae. In Journal of

Microscopy (Vol. 198, pp. 246–259). https://doi.org/10.1046/j.1365-

2818.2000.00708.x

Flamm, E. L. (1991). How FDA approved chymosin: A case history. Bio/Technology,

9(4), 349–351. https://doi.org/10.1038/nbt0491-349

Fleiβner, A., & Dersch, P. (2010). Expression and export: Recombinant protein

production systems for Aspergillus. Applied Microbiology and Biotechnology,

87(4), 1255–70. https://doi.org/10.1007/s00253-010-2672-6

Gagneux, P., Aebi, M., & Varki, A. (2015). Evolution of Glycan Diversity. Essentials of

Glycobiology. https://doi.org/28876829

Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L.-J., Wortman, J. R., Batzoglou, S., …

Birren, B. W. (2005). Sequencing of Aspergillus nidulans and comparative

analysis with A. fumigatus and A. oryzae. Nature, 438(7071), 1105–1115.

https://doi.org/10.1038/nature04341

Gamblin, D. P., Garnier, P., van Kasteren, S., Oldham, N. J., Fairbanks, A. J., & Davis,

B. G. (2004). Glyco-SeS: selenenylsulfide-mediated protein glycoconjugation--a

new strategy in post-translational modification. Angewandte Chemie (International

Ed. in English), 43(7), 828–33. https://doi.org/10.1002/anie.200352975

Gardner, J. G., Crouch, L., Labourel, A., Forsberg, Z., Bukhman, Y. V., Vaaje-Kolstad,

153

G., … Keating, D. H. (2014). Systems biology defines the biological significance

of redox-active proteins during cellulose degradation in an aerobic bacterium.

Molecular Microbiology, 94(5), 1121–1133. https://doi.org/10.1111/mmi.12821

Geyer, H., & Geyer, R. (2006). Strategies for analysis of glycoprotein glycosylation.

Biochimica et Biophysica Acta, 1764(12), 1853–69.

https://doi.org/10.1016/j.bbapap.2006.10.007

Geysens, S., Whyteside, G., & Archer, D. B. (2009). Genomics of protein folding in the

endoplasmic reticulum, secretion stress and glycosylation in the aspergilli. Fungal

Genetics and Biology, 46(1), S121–S140.

https://doi.org/10.1016/j.fgb.2008.07.016

Ghaffar, S. H., & Fan, M. (2013). Structural analysis for lignin characteristics in biomass

straw. Biomass and Bioenergy, 57, 264–279.

https://doi.org/10.1016/j.biombioe.2013.07.015

Glass, N. L., Schmoll, M., Cate, J. H. D., & Coradetti, S. (2013). Plant cell wall

deconstruction by ascomycete fungi. Annual Review of Microbiology, 67(June),

477–98. https://doi.org/10.1146/annurev-micro-092611-150044

Goedegebuur, F., Dankmeyer, L., Gualfetti, P., Karkehabadi, S., Hansson, H., Jana,

S., … Sandgren, M. (2017). Improving the thermal stability of cellobiohydrolase

Cel7A from Hypocrea jecorina by directed evolution. Journal of Biological

Chemistry, jbc.M117.803270. https://doi.org/10.1074/jbc.M117.803270

Goettig, P. (2016). Effects of glycosylation on the enzymatic activity and mechanisms

of proteases. International Journal of Molecular Sciences, 17(12), 1–24.

https://doi.org/10.3390/ijms17121969

Goochee, C. F., & Monica, T. (1990). Environmental effects on protein glycosylation.

Nature Biotechnology, 8(5), 421–7. https://doi.org/10.1038/nbt0898-773

Gouka, R. J., Punt, P. J., & van den Hondel, C. A. M. J. J. (1997). Efficient production

of secreted proteins by Aspergillus : progress, limitations and prospects. Applied

Microbiology and Biotechnology, 47(1), 1–11.

154

https://doi.org/10.1007/s002530050880

Gouka, R. J., Punt, P. J., & van den Hondel, C. A. M. J. J. (1997). Glucoamylase Gene

Fusions Alleviate Limitations for Protein Production in Aspergillus awamori at the

Transcriptional and ( Post ) Translational Levels. Applied and Environmental

Microbiology, 63(2), 488–497.

Groot, M. J. A. de, & Bundock, P. (1998). Agrobacterium tumefaciens-mediated

transformation of flamentous fungi. Nature Biotechnology, 16, 839–842.

Gupta, R., Baldock, S. J., Fielden, P. R., & Grieve, B. D. (2011). Capillary zone

electrophoresis for the analysis of glycoforms of cellobiohydrolase. Journal of

Chromatography. A, 1218(31), 5362–8.

https://doi.org/10.1016/j.chroma.2011.06.036

Gupta, R., & Brunak, S. (2002). Prediction of glycosylation across the human proteome

and the correlation to protein function. Pacific Symposium on Biocomputing., 322,

310–322. https://doi.org/10.1142/9789812799623_0029

Gusakov, A. V. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends

in Biotechnology, 29, 419–425. https://doi.org/10.1016/j.tibtech.2011.04.004

Gusakov, A. V., Dotsenko, A. S., Rozhkova, A. M., & Sinitsyn, A. P. (2017). N-Linked

glycans are an important component of the processive machinery of

cellobiohydrolases. Biochimie, 132, 102–108.

https://doi.org/10.1016/j.biochi.2016.11.004

Gustafsson, C., Govindarajan, S., & Minshull, J. (2004). Codon bias and heterologous

protein expression. Trends in Biotechnology, 22(7), 346–353.

https://doi.org/10.1016/j.tibtech.2004.04.006

Hanson, S. R., Culyba, E. K., Hsu, T., Wong, C.-H., Kelly, J. W., & Powers, E. T. (2009).

The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding

and enhances stability. Proceedings of the National Academy of Sciences of the

United States of America, 106(9), 3131–3136.

https://doi.org/10.1073/pnas.0810318105

155

Harris, S. D. (2008). Branching of fungal hyphae: regulation, mechanisms and

comparison with other branching systems. Mycologia, 100(6), 823–832.

https://doi.org/10.3852/08-177

Heimel, K. (2014). Unfolded protein response in filamentous fungi-implications in

biotechnology. Applied Microbiology and Biotechnology, 99(1), 121–132.

https://doi.org/10.1007/s00253-014-6192-7

Helenius, A., & Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic

reticulum. Annual Review of Biochemistry, 73, 1019–49.

https://doi.org/10.1146/annurev.biochem.73.011303.073752

Hentze, M. W. (1991). Determinants and regulation of cytoplasmic mRNA stability in

eukaryotic cells. Biochimica et Biophysica Acta - Gene Structure and Expression,

1090(3), 281–292. https://doi.org/10.1016/0167-4781(91)90191-N

Horn, S. J., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G. (2012). Novel enzymes

for the degradation of cellulose. Biotechnology for Biofuels, 5(1), 45.

https://doi.org/10.1186/1754-6834-5-45

Hoyt, M. A., Williams-Abbott, L. J., Pitkin, J. W., & Davis, R. H. (2000). Cloning and

expression of the S-adenosylmethionine decarboxylase gene of Neurospora

crassa and processing of its product. Molecular & General Genetics : MGG,

263(4), 664–673. https://doi.org/10.1007/s004380051215

Huang, Y.-W., Yang, H.-I., Wu, Y.-T., Hsu, T.-L., Lin, T.-W., Kelly, J. W., & Wong, C.-

H. (2017). Residues Comprising the Enhanced Aromatic Sequon Influence Protein

N-glycosylation Efficiency. Journal of the American Chemical Society,

jacs.7b03868. https://doi.org/10.1021/jacs.7b03868

Hynes, M. J. (1996). Genetic transformation of filamentous fungi. Journal of Genetics,

75(3), 297–311. https://doi.org/10.1007/BF02966310

Imperiali, B., & Connor, S. E. O. (1999). Effect of N -linked glycosylation on

glycopeptide and glycoprotein structure, 9, 643–649.

Jacobs, P. P., & Callewaert, N. (2009). N-glycosylation engineering of

156

biopharmaceutical expression systems. Current Molecular Medicine, 9(7), 774–

800. https://doi.org/10.2174/156652409789105552

Jagadeeswaran, G., Gainey, L., Prade, R., & Mort, A. J. (2016). A family of AA9 lytic

polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated

by multiple substrates and at least one is active on cellulose and xyloglucan.

Applied Microbiology and Biotechnology, 100(10), 4535–4547.

https://doi.org/10.1007/s00253-016-7505-9

Jarrell, K. F., Ding, Y., Meyer, B. H., Albers, S.-V., Kaminski, L., & Eichler, J. (2014).

N-Linked Glycosylation in Archaea: a Structural, Functional, and Genetic Analysis.

Microbiology and Molecular Biology Reviews, 78(2), 304–341.

https://doi.org/10.1128/MMBR.00052-13

Jeenes, D. J., Mackenzie, D. A., Roberts, I. N., & Archer, D. B. (1991). Heterologous

protein production by filamentous fungi. Biotechnology & Genetic Engineering

Reviews, 9(1), 327–67. https://doi.org/10.1080/02648725.1991.10647884

Jensen, O. N. (2004). Modification-specific proteomics: Characterization of post-

translational modifications by mass spectrometry. Current Opinion in Chemical

Biology, 8(1), 33–41. https://doi.org/10.1016/j.cbpa.2003.12.009

Jeoh, T., Michener, W., Himmel, M. E., Decker, S. R., & Adney, W. S. (2008).

Implications of cellobiohydrolase glycosylation for use in biomass conversion.

Biotechnology for Biofuels, 1(1), 10. https://doi.org/10.1186/1754-6834-1-10

Jordan, D. B., & Wagschal, K. (2010). Properties and applications of microbial β-D-

xylosidases featuring the catalytically efficient enzyme from Selenomonas

ruminantium. Applied Microbiology and Biotechnology.

https://doi.org/10.1007/s00253-010-2538-y

Jouzani, G. S., & Taherzadeh, M. J. (2015). Advances in consolidated bioprocessing

systems for bioethanol and butanol production from biomass: a comprehensive

review. Biofuel Research Journal, 5, 152–195.

Kainz, E., Gallmetzer, A., Hatzl, C., Nett, J. H., Li, H., Schinko, T., … Strauss, J. (2008).

157

N-glycan modification in Aspergillus species. Applied and Environmental

Microbiology, 74(4), 1076–1086. https://doi.org/10.1128/AEM.01058-07

Kamm, B., Kamm, M., Schmidt, M., Hirth, T., & Schulze, M. (2006). Lignocellulose-

based Chemical Products and Product Family Trees. Biorefineries-Industrial

Processes and Products (Vol. 2). https://doi.org/10.1002/9783527619849.ch20

Kawasaki, L., Kawasaki, L., Wysong, D., Wysong, D., Diamond, R., Diamond, R., …

Notably, R. (1997). Two Divergent Catalase Genes Are Differentially Regulated

during Aspergillus nidulans Development and Oxidative Stress. Microbiology,

179(10), 3284–3292.

Keller, A., Nesvizhskii, A. I., Kolker, E., & Aebersold, R. (2002). Empirical Statistical

Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and

Database Search. Analytical Chemistry, 74(20), 5383–5392.

https://doi.org/10.1021/ac025747h

Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular

dichroism. Biochimica et Biophysica Acta, 1751(2), 119–39.

https://doi.org/10.1016/j.bbapap.2005.06.005

Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Industrial enzyme applications.

Current Opinion in Biotechnology, 13(4), 345–351. https://doi.org/10.1016/S0958-

1669(02)00328-2

Kruszewska, J. S., Perlińska-Lenart, U., Górka-Nieć, W., Orłowski, J., Zembek, P., &

Palamarczyk, G. (2008). Alterations in protein secretion caused by metabolic

engineering of glycosylation pathways in fungi. Acta Biochimica Polonica, 55(3),

447–56. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18797519

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for

pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel

production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729.

https://doi.org/10.1021/ie801542g

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head

158

of bacteriophage T4. Nature, 227(5259), 680–685.

https://doi.org/10.1038/227680a0

Larkin, A., & Imperiali, B. (2011). The expanding horizons of asparagine-linked

glycosylation. Biochemistry, 50(21), 4411–26. https://doi.org/10.1021/bi200346n

Leach, M. D., & Brown, A. J. P. (2012). Posttranslational modifications of proteins in

the pathobiology of medically relevant fungi. Eukaryotic Cell, 11(2), 98–108.

https://doi.org/10.1128/EC.05238-11

Lee, L. Y., Moh, E. S. X., Parker, B. L., Bern, M., Packer, N. H., & Thaysen-Andersen,

M. (2016). Toward Automated N-Glycopeptide Identification in Glycoproteomics.

Journal of Proteome Research, 15(10), 3904–3915.

https://doi.org/10.1021/acs.jproteome.6b00438

Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M., & Henrissat, B. (2013).

Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary

redox enzymes. Biotechnology for Biofuels, 6(1), 41. https://doi.org/10.1186/1754-

6834-6-41

Li, K., Ouyang, H., Lü, Y., Liang, J., Wilson, I. B. H., & Jin, C. (2011). Repression of N-

glycosylation triggers the unfolded protein response (UPR) and overexpression of

cell wall protein and chitin in aspergillus fumigatus. Microbiology, 157(7), 1968–

1979. https://doi.org/10.1099/mic.0.047712-0

Li, S. T., Wang, N., Xu, S., Yin, J., Nakanishi, H., Dean, N., & Gao, X. D. (2017).

Quantitative study of yeast Alg1 beta-1, 4 mannosyltransferase activity, a key

enzyme involved in protein N-glycosylation. Biochimica et Biophysica Acta -

General Subjects, 1861(1), 2934–2941.

https://doi.org/10.1016/j.bbagen.2016.09.023

Liu, B., Gong, X., Chang, S., Yang, Y., Song, M., Duan, D., … Wu, J. (2009). Disruption

of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein

expressed in Kluyveromyces lactis. Journal of Biotechnology, 143(2), 95–102.

https://doi.org/10.1016/j.jbiotec.2009.06.016

159

Liu, G., Qin, Y., Li, Z., & Qu, Y. (2013). Development of highly efficient, low-cost

lignocellulolytic enzyme systems in the post-genomic era. Biotechnology

Advances, 31(6), 962–975. https://doi.org/10.1016/j.biotechadv.2013.03.001

Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014).

The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids

Research, 42(D1), D490-5. https://doi.org/10.1093/nar/gkt1178

Lu, D., Yang, C., & Liu, Z. (2012). How hydrophobicity and the glycosylation site of

glycans affect protein folding and stability: A molecular dynamics simulation.

Journal of Physical Chemistry B, 116(1), 390–400.

https://doi.org/10.1021/jp203926r

Lubertozzi, D., & Keasling, J. D. (2009). Developing Aspergillus as a host for

heterologous expression. Biotechnology Advances, 27(1), 53–75.

https://doi.org/10.1016/j.biotechadv.2008.09.001

Maattanen, P., Kozlov, G., Gehring, K., & Thomas, D. Y. (2006). ERp57 and PDI:

multifunctional protein disulfide isomerases with similar domain architectures but

differing substrate–partner associationsThis paper is one of a selection of papers

published in this Special Issue, entitled CSBMCB — Membrane Proteins in He.

Biochemistry and Cell Biology, 84(6), 881–889. https://doi.org/10.1139/o06-186

Magaña-Ortíz, D., Coconi-Linares, N., Ortiz-Vazquez, E., Fernández, F., Loske, A. M.,

& Gómez-Lim, M. A. (2013). A novel and highly efficient method for genetic

transformation of fungi employing shock waves. Fungal Genetics and Biology : FG

& B, 56(April), 9–16. https://doi.org/10.1016/j.fgb.2013.03.008

Maloy, S., & Schaechter, M. (2006). The era of microbiology: A Golden Phoenix.

International Microbiology. https://doi.org/im2306001 [pii]

Maras, M., Van Die, I., Contreras, R., & van den Hondel, C. A. M. J. J. (1999).

Filamentous fungi as production organisms for glycoproteins of bio-medical

interest. Glycoconjugate Journal, 16(2), 99–107.

https://doi.org/10.1023/A:1026436424881

160

Mathewson, N., Toubai, T., Kapeles, S., Sun, Y. Y., Oravecz-Wilson, K., Tamaki, H.,

… Reddy, P. (2013). Neddylation plays an important role in the regulation of

murine and human dendritic cell function. Blood, 122(12), 2062–2073.

https://doi.org/10.1182/blood-2013-02-486373

Mayor, S., & Riezman, H. (2004). Sorting GPI-anchored proteins. Nature Reviews.

Molecular Cell Biology, 5(2), 110–120. https://doi.org/10.1038/nrm1309

McCracken, A. A., & Brodsky, J. L. (2000). A molecular portrait of the response to

unfolded proteins. Genome Biology, 1(2), REVIEWS1013.

https://doi.org/10.1186/gb-2000-1-2-reviews1013

Meyer, V., Wu, B., & Ram, A. F. J. (2011). Aspergillus as a multi-purpose cell factory:

Current status and perspectives. Biotechnology Letters, 33(3), 469–476.

https://doi.org/10.1007/s10529-010-0473-8

Moremen, K. W. K., Tiemeyer, M., & Nairn, A. V. A. (2012). Vertebrate protein

glycosylation: diversity, synthesis and function. Nature Reviews. Molecular Cell

Biology, 13(7), 448–462. https://doi.org/10.1038/nrm3383

Moriya, K., Nagatoshi, K., Noriyasu, Y., Okamura, T., Takamitsu, E., Suzuki, T., &

Utsumi, T. (2013). Protein N-myristoylation plays a critical role in the endoplasmic

reticulum morphological change induced by overexpression of protein lunapark,

an integral membrane protein of the endoplasmic reticulum. PLoS ONE, 8(11), 1–

13. https://doi.org/10.1371/journal.pone.0078235

Murphy, C., Powlowski, J., Wu, M., Butler, G., & Tsang, A. (2011). Curation of

characterized glycoside hydrolases of Fungal origin. Database, 2011, 1–14.

https://doi.org/10.1093/database/bar020

Nagae, M., & Yamaguchi, Y. (2012). Function and 3D Structure of the N-Glycans on

Glycoproteins. International Journal of Molecular Sciences, 13(12), 8398–8429.

https://doi.org/10.3390/ijms13078398

Nakamura, Y., Gojobori, T., & Ikemura, T. (1998). Codon usage tabulated from

international DNA sequence databases: status for the year 2000. Nucleic Acids

161

Research, 26(1), 334. https://doi.org/10.1093/nar/26.1.334

Navarrete, M., Callegari, E., & Eyzaguirre, J. (2012). The effect of acetylated xylan and

sugar beet pulp on the expression and secretion of enzymes by Penicillium

purpurogenum. Applied Microbiology and Biotechnology, 93(2), 723–741.

https://doi.org/10.1007/s00253-011-3744-y

Nayak, T., Szewczyk, E., Oakley, C. E., Osmani, A., Ukil, L., Murray, S. L., … Oakley,

B. R. (2006). A versatile and efficient gene-targeting system for Aspergillus

nidulans. Genetics, 172(3), 1557–66.

https://doi.org/10.1534/genetics.105.052563

Nesvizhskii, A. I., Keller, A., Kolker, E., & Aebersold, R. (2003). A Statistical Model for

Identifying Proteins by Tandem Mass Spectrometry abilities that proteins are

present in a sample on the basis. Analytical Chemistry, 75(17), 4646–4658.

https://doi.org/10.1021/ac0341261

Nevalainen, H., & Peterson, R. (2014). Making recombinant proteins in filamentous

fungi- Are we expecting too much? Frontiers in Microbiology, 5(FEB), 75.

https://doi.org/10.3389/fmicb.2014.00075

Nevalainen, K. M. H., Te’o, V. S. J., & Bergquist, P. L. (2005). Heterologous protein

expression in filamentous fungi. Trends in Biotechnology, 23(9), 468–74.

https://doi.org/10.1016/j.tibtech.2005.06.002

Nishihara, S., Ueda, R., Goto, S., Toyoda, H., Ishida, H., & Nakamura, M. (2004).

Approach for functional analysis of glycan using RNA interference. Glycoconj J,

21(1–2), 63–68. https://doi.org/5277453

[pii]\r10.1023/B:GLYC.0000043750.80389.14

Nutzmann, H.-W., Reyes-Dominguez, Y., Scherlach, K., Schroeckh, V., Horn, F.,

Gacek, A., … Brakhage, A. A. (2011). Bacteria-induced natural product formation

in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone

acetylation. Proceedings of the National Academy of Sciences, 108(34), 14282–

14287. https://doi.org/10.1073/pnas.1103523108

162

Pasternak, J. J. (2005). Recombinant DNA Technology. In An Introduction to Human

Molecular Genetics (Second, pp. 107–152). Hoboken, NJ, USA: John Wiley &

Sons, Inc. https://doi.org/10.1002/0471719188.ch5

Patel, T., Bruce, J., Merry, a, Bigge, C., Wormald, M., Jaques, a, & Parekh, R. (1993).

Use of hydrazine to release in intact and unreduced form both N- and O-linked

oligosaccharides from glycoproteins. Biochemistry, 32(2), 679–693.

Pentillä, M., Limón, C., Nevalainen, H., Penttilä, M., Limón, C., Nevalainen, H., …

Nevalainen, H. (2003). Molecular biology of Trichoderma and biotechnological

applications. In D. K. Arora (Ed.), Handbook of Fungal Biotechnology (2nd ed.,

Vol. 20031860). CRC Press. https://doi.org/10.1201/9780203027356.ch31

Peter-Katalinić, J. (2005). Methods in enzymology: O-glycosylation of proteins.

Methods in Enzymology, 405(05), 139–71. https://doi.org/10.1016/S0076-

6879(05)05007-X

Peterson, R., & Nevalainen, H. (2012). Trichoderma reesei RUT-C30 - thirty years of

strain improvement. Microbiology, 158(1), 58–68.

https://doi.org/10.1099/mic.0.054031-0

Petrescu, A.-J. A.-J., Milac, A.-L., Petrescu, S. M., Dwek, R. A., & Wormald, M. R.

(2004). Statistical analysis of the protein environment of N-glycosylation sites:

implications for occupancy, structure, and folding. Glycobiology, 14(2), 103–14.

https://doi.org/10.1093/glycob/cwh008

Phillips, C. M., Beeson, W. T., Cate, J. H., & Marletta, M. A. (2011). Cellobiose

dehydrogenase and a copper-dependent polysaccharide monooxygenase

potentiate cellulose degradation by Neurospora crassa. ACS Chemical Biology,

6(12), 1399–1406. https://doi.org/10.1021/cb200351

Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: Structures, functions, mechanisms.

Biochimica et Biophysica Acta - Molecular Cell Research, 1695(1–3), 55–72.

https://doi.org/10.1016/j.bbamcr.2004.09.019

Pontecorvo, G., Roper, J. A., Chemmons, L. M., Macdonald, K. D., & Bufton, A. W. J.

163

(1953). The Genetics of Aspergillus nidulans. Advances in Genetics, 5(C), 141–

238. https://doi.org/10.1016/S0065-2660(08)60408-3

Price, J. L., Culyba, E. K., Chen, W., Murray, A. N., Hanson, S. R., Wong, C. H., …

Kelly, J. W. (2012). N-glycosylation of enhanced aromatic sequons to increase

glycoprotein stability. Biopolymers, 98(3), 195–211.

https://doi.org/10.1002/bip.22030

Price, J. L., Powers, D. L., Powers, E. T., & Kelly, J. W. (2011). Glycosylation of the

enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn

contexts. Proceedings of the National Academy of Sciences of the United States

of America, 108(34), 14127–14132. https://doi.org/10.1073/pnas.1105880108

Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C.

A. M. J. J. (2002). Filamentous fungi as cell factories for heterologous protein

production. Trends in Biotechnology, 20(5), 200–6. https://doi.org/10.1016/S0167-

7799(02)01933-9

Qi, F., Zhang, W., Zhang, F., Chen, G., & Liu, W. (2014). Deciphering the effect of the

different N-glycosylation sites on the secretion, activity, and stability of

cellobiohydrolase I from Trichoderma reesei. Applied and Environmental

Microbiology, 80(13), 3962–3971. https://doi.org/10.1128/AEM.00261-14

Ramírez, A. S., Boilevin, J., Lin, C. W., Ha Gan, B., Janser, D., Aebi, M., … Locher, K.

P. (2017). Chemo-enzymatic synthesis of lipid-linked

GlcNAc2Man5oligosaccharides using recombinant Alg1, Alg2 and Alg11 proteins.

Glycobiology, 27(8), 726–733. https://doi.org/10.1093/glycob/cwx045

Rao, R. S. P., & Bernd, W. (2010). Do N-glycoproteins have preference for specific

sequons? Bioinformation, 5(5), 208–212.

https://doi.org/10.6026/97320630005208

Ribeiro, D. a, Cota, J., Alvarez, T. M., Brüchli, F., Bragato, J., Pereira, B. M. P., …

Squina, F. M. (2012). The Penicillium echinulatum secretome on sugar cane

bagasse. PloS One, 7(12), e50571. https://doi.org/10.1371/journal.pone.0050571

164

Rivera, A. L., Magaña-Ortíz, D., Gómez-Lim, M., Fernández, F., & Loske, A. M. (2014).

Physical methods for genetic transformation of fungi and yeast. Physics of Life

Reviews, 11(2), 184–203. https://doi.org/10.1016/j.plrev.2014.01.007

Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G., & Rossell, C. E. V.

(2012). Steam explosion pretreatment reproduction and alkaline delignification

reactions performed on a pilot scale with sugarcane bagasse for bioethanol

production. Industrial Crops and Products, 35(1), 274–279.

https://doi.org/10.1016/j.indcrop.2011.07.010

Rodriguez-Zuniga, U. F., Cannella, D., Giordano, R. D. C., Giordano, R. D. L. C.,

Jørgensen, H., & Felby, C. (2015). Lignocellulose pretreatment technologies affect

the level of enzymatic cellulose oxidation by LPMO. Green Chem., 2896–2903.

https://doi.org/10.1039/C4GC02179G

Rogers, L. D., & Overall, C. M. (2013). Proteolytic post-translational modification of

proteins: proteomic tools and methodology. Molecular & Cellular Proteomics :

MCP, 12(12), 3532–42. https://doi.org/10.1074/mcp.M113.031310

Rojas, A. L., Fischer, H., Eneiskaya, E. V., Kulminskaya, A. A., Shabalin, K. A.,

Neustroev, K. N., … Polikarpov, I. (2005). Structural insights into the β-xylosidase

from Trichoderma reesei obtained by synchrotron small-angle x-ray scattering and

circular dichroism spectroscopy. Biochemistry, 44(47), 15578–15584.

https://doi.org/10.1021/bi050826j

Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded

protein response. Nature Reviews. Molecular Cell Biology, 8(7), 519–529.

https://doi.org/10.1038/nrm2199

Rosa, M. F., Souza Filho, M. S. M., Figueiredo, M. C. B., Morais, J. P. S., Santaella,

S. T., & Leitão, R. C. (2011). Valorização De Resíduos Da Agroindústria. II

Simpósio Internacional Sobre Gerenciamento de Resíduos Agropecuários e

Agroindustriais, I, 98–105. https://doi.org/10.1021/jf050995a

Rubio, C., Pincus, D., Korennykh, A., Schuck, S., El-Samad, H., & Walter, P. (2011).

Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase

165

activity. Journal of Cell Biology, 193, 171–184.

https://doi.org/10.1083/jcb.201007077

Rubio, M. V., Tramontina, R., Gonçalves, T. A., Uchima, C. A., Segato, F., Squina, F.

M., & Damasio, A. R. de L. (2015). Mycology: Current and Future Developments.

(R. Silva, Ed.), Mycology: Current and Future Developments (Vol. 1). BENTHAM

SCIENCE PUBLISHERS. https://doi.org/10.2174/97816810807411150101

Rubio, M. V., Zubieta, M. P., Franco Cairo, J. P. L., Calzado, F., Paes Leme, A. F.,

Squina, F. M., … de Lima Damásio, A. R. (2016). Mapping N-linked glycosylation

of carbohydrate-active enzymes in the secretome of Aspergillus nidulans grown

on lignocellulose. Biotechnology for Biofuels, 9(1), 168.

https://doi.org/10.1186/s13068-016-0580-4

Ruggiano, A., Foresti, O., & Carvalho, P. (2014). ER-associated degradation: Protein

quality control and beyond. Journal of Cell Biology, 204(6), 869–879.

https://doi.org/10.1083/jcb.201312042

Ruiz-Díez, B. (2002). A Review: Strategies for the transformation of filamentous fungi.

Journal of Applied Microbiology, 92(2), 189–195. https://doi.org/10.1046/j.1365-

2672.2002.01516.x

Sagt, C. M. J., Kleizen, B., Verwaal, R., De Jong, M. D. M., Muller, W. H., Smits, a.,

… Verrips, C. T. (2000). Introduction of an N-glycosylation site increases secretion

of heterologous proteins in yeasts. Applied and Environmental Microbiology,

66(11), 4940–4944. https://doi.org/10.1128/AEM.66.11.4940-4944.2000

Sagt, C. M. J., ten Haaft, P. J., Minneboo, I. M., Hartog, M. P., Damveld, R. a, van der

Laan, J. M., … de Winde, J. H. (2009). Peroxicretion: a novel secretion pathway

in the eukaryotic cell. BMC Biotechnology, 9, 1–11. https://doi.org/10.1186/1472-

6750-9-48

Saloheimo, M., Lund, M., & Penttilä, M. E. (1999). The protein disulphide isomerase

gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress

and regulated by the carbon source. Molecular and General Genetics, 262(1), 35–

45. https://doi.org/10.1007/s004380051057

166

Samuelson, J., & Robbins, P. W. (2015). Effects of N-glycan precursor length diversity

on quality control of protein folding and on protein glycosylation. Seminars in Cell

and Developmental Biology, 41, 121–128.

https://doi.org/10.1016/j.semcdb.2014.11.008

Sani, R. K., & Krishnaraj, R. N. (2017). Extremophilic enzymatic processing of

lignocellulosic feedstocks to bioenergy. Extremophilic Enzymatic Processing of

Lignocellulosic Feedstocks to Bioenergy. https://doi.org/10.1007/978-3-319-

54684-1

Saykhedkar, S., Ray, A., Ayoubi-Canaan, P., Hartson, S. D., Prade, R., & Mort, A. J.

(2012). A time course analysis of the extracellular proteome of Aspergillus

nidulans growing on sorghum stover. Biotechnology for Biofuels, 5(1), 52.

https://doi.org/10.1186/1754-6834-5-52

Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology,

61, 263–89. https://doi.org/10.1146/annurev-arplant-042809-112315

Schröder, M. (2008). Endoplasmic reticulum stress responses. Cellular and Molecular

Life Sciences (Vol. 65). https://doi.org/10.1007/s00018-007-7383-5

Schwartz, D., & Gygi, S. P. (2005). An iterative statistical approach to the identification

of protein phosphorylation motifs from large-scale data sets. Nature

Biotechnology, 23(11), 1391–1398. https://doi.org/10.1038/nbt1146

Schwarz, F., & Aebi, M. (2011). Mechanisms and principles of N-linked protein

glycosylation. Current Opinion in Structural Biology, 21(5), 576–582.

https://doi.org/10.1016/j.sbi.2011.08.005

Segato, F., Damásio, A. R. L., de Lucas, R. C., Squina, F. M., & Prade, R. A. (2014).

Genomics Review of Holocellulose Deconstruction by Aspergilli. Microbiology and

Molecular Biology Reviews, 78(4), 588–613.

https://doi.org/10.1128/MMBR.00019-14

Segato, F., Damásio, A. R. L. L., Gonçalves, T. A., de Lucas, R. C., Squina, F. M.,

Decker, S. R., & Prade, R. A. (2012). High-yield secretion of multiple client proteins

167

in Aspergillus. Enzyme and Microbial Technology, 51(2), 100–106.

https://doi.org/10.1016/j.enzmictec.2012.04.008

Seo, J.-W., & Lee, K.-J. (2004). Post-translational modifications and their biological

functions: proteomic analysis and systematic approaches. Journal of Biochemistry

and Molecular Biology, 37(1), 35–44.

https://doi.org/10.5483/BMBRep.2004.37.1.035

Sharma, R., Katoch, M., Srivastava, P. S., & Qazi, G. N. (2009). Approaches for

refining heterologous protein production in filamentous fungi. World Journal of

Microbiology and Biotechnology, 25(12), 2083–2094.

https://doi.org/10.1007/s11274-009-0128-x

Shental-Bechor, D., & Levy, Y. (2008). Effect of glycosylation on protein folding: a close

look at thermodynamic stabilization. Proceedings of the National Academy of

Sciences of the United States of America, 105(24), 8256–61.

https://doi.org/10.1073/pnas.0801340105

Shirke, A. N., Su, A., Jones, J. A., Butterfoss, G. L., Koffas, M. A. G., Kim, J. R., &

Gross, R. A. (2017). Comparative thermal inactivation analysis of Aspergillus

oryzae and Thiellavia terrestris cutinase: Role of glycosylation. Biotechnology and

Bioengineering, 114(1), 63–73. https://doi.org/10.1002/bit.26052

Sims, A. H., Gent, M. E., Lanthaler, K., Dunn-Coleman, N. S., Oliver, S. G., & Robson,

G. D. (2005). Transcriptome analysis of recombinant protein secretion by

Aspergillus nidulans and the unfolded-protein response in vivo. Applied and

Environmental Microbiology, 71(5), 2737–2747.

https://doi.org/10.1128/AEM.71.5.2737-2747.2005

Singh Nee Nigam, P., & Pandey, A. (2009). Biotechnology for agro-industrial residues

utilisation: Utilisation of agro-residues. Biotechnology for Agro-Industrial Residues

Utilisation: Utilisation of Agro-Residues. https://doi.org/10.1007/978-1-4020-9942-

7

Skropeta, D. (2009). The effect of individual N-glycans on enzyme activity. Bioorganic

& Medicinal Chemistry, 17(7), 2645–53.

168

https://doi.org/10.1016/j.bmc.2009.02.037

Smith, M. H., Ploegh, H. L., & Weissman, J. S. (2011). Road to ruin: Targeting proteins

for degradation in the endoplasmic reticulum. Science.

https://doi.org/10.1126/science.1209235

Smotrys, J. E., & Linder, M. E. (2004). Palmitoylation of intracellular signaling proteins:

regulation and function. Annual Review of Biochemistry, 73, 559–587.

https://doi.org/10.1146/annurev.biochem.73.011303.073954

Sobolev, V., Sorokine, A., Prilusky, J., Abola, E. E., & Edelman, M. (1999). Automated

analysis of interatomic contacts in proteins. Bioinformatics, 15(4), 327–332.

https://doi.org/10.1093/bioinformatics/15.4.327

Solá, R. J., Rodríguez-Martínez, J. a., & Griebenow, K. (2007). Modulation of protein

biophysical properties by chemical glycosylation: Biochemical insights and

biomedical implications. Cellular and Molecular Life Sciences, 64(16), 2133–2152.

https://doi.org/10.1007/s00018-007-6551-y

Spiro, R. G. (2002). Protein glycosylation: nature, distribution, enzymatic formation,

and disease implications of glycopeptide bonds. Glycobiology, 12(4), 43R–56R.

https://doi.org/10.1093/glycob/12.4.43R

Stals, I., Sandra, K., Geysens, S., Contreras, R., Van Beeumen, J., & Claeyssens, M.

(2004). Factors influencing glycosylation of Trichoderma reesei cellulases. I:

Postsecretorial changes of the O- and N-glycosylation pattern of Ce17A.

Glycobiology, 14(8), 713–724. https://doi.org/10.1093/glycob/cwh080

Stanley, P., Taniguchi, N., & Aebi, M. (2017). N-Glycans. Essentials of Glycobiology.

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28876855

Strasser, K., McDonnell, E., Nyaga, C., Wu, M., Wu, S., Almeida, H., … Tsang, A.

(2015). MycoCLAP, the database for characterized lignocellulose-active proteins

of fungal origin: Resource and text mining curation support. Database, 2015.

https://doi.org/10.1093/database/bav008

Szewczyk, E., Nayak, T., Oakley, C. E., Edgerton, H., Xiong, Y., Taheri-Talesh, N., …

169

Oakley, B. R. (2006). Fusion PCR and gene targeting in Aspergillus nidulans.

Nature Protocols, 1(6), 3111–3120. https://doi.org/10.1038/nprot.2006.405

Takayanagi, T., Kimura, A., Chiba, S., & Ajisaka, K. (1994). Novel structures of N-

linked high-mannose type oligosaccharides containing α-D-galactofuranosyl

linkages in Aspergillus niger α-D-glucosidase. Carbohydrate Research, 256(1),

149–158. https://doi.org/10.1016/0008-6215(94)84234-5

Tan, N. Y., Bailey, U.-M., Jamaluddin, M. F., Mahmud, S. H. B., Raman, S. C., &

Schulz, B. L. (2014). Sequence-based protein stabilization in the absence of

glycosylation. Nature Communications, 5, 1–7.

https://doi.org/10.1038/ncomms4099

Tanaka, A., Mita, S., Ohta, S., Kyozuka, J., Shimamoto, K., & Nakamura, K. (1990).

Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco

is correlated with an increased level of mRNA and an efficient splicing of the intron.

Nucleic Acids Research, 18(23), 6767–6770.

https://doi.org/10.1093/nar/18.23.6767

Tanaka, M., Tokuoka, M., & Gomi, K. (2014). Effects of codon optimization on the

mRNA levels of heterologous genes in filamentous fungi. Applied Microbiology

and Biotechnology, 98(9), 3859–3867. https://doi.org/10.1007/s00253-014-5609-

7

Tanaka, M., Tokuoka, M., Shintani, T., & Gomi, K. (2012). Transcripts of a

heterologous gene encoding mite allergen der f 7 are stabilized by codon

optimization in Aspergillus oryzae. Applied Microbiology and Biotechnology, 96(5),

1275–1282. https://doi.org/10.1007/s00253-012-4169-y

Tang, H., Wang, S., Wang, J., Song, M., Xu, M., Zhang, M., … Bao, X. (2016). N-

hypermannose glycosylation disruption enhances recombinant protein production

by regulating secretory pathway and cell wall integrity in Saccharomyces

cerevisiae. Scientific Reports, 6(January), 1–13.

https://doi.org/10.1038/srep25654

Thaysen-Andersen, M., & Packer, N. H. (2012). Site-specific glycoproteomics confirms

170

that protein structure dictates formation of N-glycan type, core fucosylation and

branching. Glycobiology, 22(11), 1440–1452.

https://doi.org/10.1093/glycob/cws110

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids

Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Tilburn, J., Scazzocchio, C., Taylor, G. G., Zabicky-Zissman, J. H., Lockington, R. A.,

& Davies, R. W. (1983). Transformation by integration in Aspergillus nidulans.

Gene, 26(2–3), 205–221. https://doi.org/10.1016/0378-1119(83)90191-9

Tokuoka, M., Tanaka, M., Ono, K., Takagi, S., Shintani, T., & Gomi, K. (2008). Codon

optimization increases steady-state mRNA levels in Aspergillus oryzae

heterologous gene expression. Applied and Environmental Microbiology, 74(21),

6538–46. https://doi.org/10.1128/AEM.01354-08

Trombetta, E. S. (2003). The contribution of N-glycans and their processing in the

endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology, 13(9), 77R–

91R. https://doi.org/10.1093/glycob/cwg075

Trombetta, E. S., & Parodi, A. J. (2003). Quality Control and Protein Folding in the

Secretory Pathway. Annual Review of Cell and Developmental Biology, 19(1),

649–676. https://doi.org/10.1146/annurev.cellbio.19.110701.153949

Vaaje-kolstad, G., Westereng, B., Horn, S. J., Liu, Z., Zhai, H., Sorlie, M., … Eijsink,

V. G. H. (2010). An Oxidative Enzyme Boosting the Enzymatic Conversion of

Recalcitrant Polysaccharides. Science, 330(6001), 219–222.

https://doi.org/10.1126/science.1192231

Valderrama-Rincon, J. D., Fisher, A. C., Merritt, J. H., Fan, Y.-Y., Reading, C. A.,

Chhiba, K., … DeLisa, M. P. (2012). An engineered eukaryotic protein

glycosylation pathway in Escherichia coli. Nature Chemical Biology, 8(5), 434–

436. https://doi.org/10.1038/nchembio.921

171

van Hellemond, E. W., Leferink, N. G. H., Heuts, D. P. H. M., Fraaije, M. W., & van

Berkel, W. J. H. (2006). Occurrence and Biocatalytic Potential of Carbohydrate

Oxidases. Advances in Applied Microbiology, 60(Table I), 17–54.

https://doi.org/10.1016/S0065-2164(06)60002-6

Varga, J., Szigeti, G., Baranyi, N., Kocsubé, S., O’Gorman, C. M., & Dyer, P. S. (2014).

Aspergillus: Sex and Recombination. Mycopathologia.

https://doi.org/10.1007/s11046-014-9795-8

Verdoes, J. C., Punt, P. J., Schrickx, J. M., van Verseveld, H. W., Stouthamer, A. H.,

& van den Hondel, C. A. M. J. J. (1993). Glucoamylase overexpression in

Aspergillus niger: Molecular genetic analysis of strains containing multiple copies

of the glaA gene. Transgenic Research, 2(2), 84–92.

https://doi.org/10.1007/BF01969381

Vries, R. P. De, & Visser, J. (2001). Aspergillus Enzymes Involved in Degradation of

Plant Cell Wall Polysaccharides Aspergillus Enzymes Involved in Degradation of

Plant Cell Wall Polysaccharides. Microbiology and Molecular Biology Reviews,

65(4), 497–522. https://doi.org/10.1128/MMBR.65.4.497

Vuong, T. V, Vesterinen, A.-H., Foumani, M., Juvonen, M., Seppälä, J., Tenkanen, M.,

& Master, E. R. (2013). Xylo- and cello-oligosaccharide oxidation by gluco-

oligosaccharide oxidase from Sarocladium strictum and variants with reduced

substrate inhibition. Biotechnology for Biofuels, 6(1), 148.

https://doi.org/10.1186/1754-6834-6-148

Wacker, M., Linton, D., Hitchen, P. G., Nita-Lazar, M., Haslam, S. M., North, S. J., …

Aebi, M. (2002). N-linked glycosylation in Campylobacter jejuni and its functional

transfer into E. coli. Science, 298(5599), 1790–1793.

https://doi.org/10.1126/science.298.5599.1790

Walter, P., & Ron, D. (2011). The Unfolded Protein Response: From Stress Pathway

to Homeostatic Regulation. Science, 334(6059), 1081–1086.

https://doi.org/10.1126/science.1209038

Wang, L., Aryal, U. K., Dai, Z., Mason, A. C., Monroe, M. E., Tian, Z.-X. X., … Qian,

172

W.-J. J. (2012). Mapping N-linked glycosylation sites in the secretome and whole

cells of aspergillus niger using hydrazide chemistry and mass spectrometry.

Journal of Proteome Research, 11(1), 143–156.

https://doi.org/10.1021/pr200916k

Wang, L., Ridgway, D., Gu, T., & Moo-Young, M. (2005). Bioprocessing strategies to

improve heterologous protein production in filamentous fungal fermentations.

Biotechnology Advances, 23(2), 115–29.

https://doi.org/10.1016/j.biotechadv.2004.11.001

Wang, N., Li, S., Lu, T., Nakanishi, H., & Gao, X. (2017). Approaches towards the core

pentasaccharide in N- linked glycans. Chinese Chemical Letters, 1–5.

https://doi.org/10.1016/j.cclet.2017.09.044

Wang, P., Wang, H., Gai, J., Tian, X., Zhang, X., Lv, Y., & Jian, Y. (2017). Evolution of

protein N-glycosylation process in Golgi apparatus which shapes diversity of

protein N-glycan structures in plants, animals and fungi. Scientific Reports,

7(October 2016), 1–13. https://doi.org/10.1038/srep40301

Ward, O. P. (2012). Production of recombinant proteins by filamentous fungi.

Biotechnology Advances, 30(5), 1119–1139.

https://doi.org/10.1016/j.biotechadv.2011.09.012

Ward, O. P., Qin, W. M., Dhanjoon, J., Ye, J., & Singh, A. (2005). Physiology and

Biotechnology of Aspergillus. In Advances in Applied Microbiology (Vol. 58, pp. 1–

75). https://doi.org/10.1016/S0065-2164(05)58001-8

Weerapana, E., & Imperiali, B. (2006). Asparagine-linked protein glycosylation: from

eukaryotic to prokaryotic systems. Glycobiology, 16(6), 91R–101R.

https://doi.org/10.1093/glycob/cwj099

Wei, W., Chen, L., Zou, G., Wang, Q., Yan, X., Zhang, J., … Zhou, Z. (2013). N -

glycosylation affects the proper folding, enzymatic characteristics and production

of a fungal β-glucosidase. Biotechnology and Bioengineering, 110(12), 3075–

3084. https://doi.org/10.1002/bit.24990

173

White, R. J. (2015). The Search for Functional Porous Carbons from Sustainable

Precursors. Porous Carbon Materials from Sustainable Precursors, (32), 3–49.

https://doi.org/10.1039/9781782622277-00003

Wiseman, R. L., Powers, E. T., Buxbaum, J. N., Kelly, J. W., & Balch, W. E. (2007). An

Adaptable Standard for Protein Export from the Endoplasmic Reticulum. Cell,

131(4), 809–821. https://doi.org/10.1016/j.cell.2007.10.025

Wong, K. H., Todd, R. B., Oakley, B. R., Oakley, C. E., Hynes, M. J., & Davis, M. a.

(2008). Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression

and live-cell imaging. Fungal Genetics and Biology, 45(5), 728–737.

https://doi.org/10.1016/j.fgb.2007.12.009

Wright, T. H., & Davis, B. G. (2017). Post-translational mutagenesis for installation of

natural and unnatural amino acid side chains into recombinant proteins. Nature

Protocols, 12(10), 2243–2250. https://doi.org/10.1038/nprot.2017.087

Yang, M., Yu, X.-W., Zheng, H., Sha, C., Zhao, C., Qian, M., & Xu, Y. (2015). Role of

N-linked glycosylation in the secretion and enzymatic properties of Rhizopus

chinensis lipase expressed in Pichia pastoris. Microbial Cell Factories, 14(1), 40.

https://doi.org/10.1186/s12934-015-0225-5

Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., & Xu, Y. (2012). dbCAN: A web resource

for automated carbohydrate-active enzyme annotation. Nucleic Acids Research,

40, W445–W451. https://doi.org/10.1093/nar/gks479

Yoneda, A., Kuo, H.-W. D., Ishihara, M., Azadi, P., Yu, S.-M., & Ho, T. D. (2014).

Glycosylation Variants of a β-Glucosidase Secreted by a Taiwanese Fungus,

Chaetomella raphigera, Exhibit Variant-Specific Catalytic and Biochemical

Properties. PLoS ONE, 9(9), e106306.

https://doi.org/10.1371/journal.pone.0106306

Yoon, J., Maruyama, J. I., & Kitamoto, K. (2011). Disruption of ten protease genes in

the filamentous fungus Aspergillus oryzae highly improves production of

heterologous proteins. Applied Microbiology and Biotechnology, 89(3), 747–59.

https://doi.org/10.1007/s00253-010-2937-0

174

Zoglowek, M., Lübeck, P. S., Ahring, B. K., & Lübeck, M. (2015). Heterologous

expression of cellobiohydrolases in filamentous fungi – An update on the current

challenges, achievements and perspectives. Process Biochemistry, 50(2), 211–

220. https://doi.org/10.1016/j.procbio.2014.12.018

Zubieta, M. P., Contesini, F. J., Rubio, M. V., Gonçalves, A. E. de S. S., Gerhardt, J.

A., Prade, R. A., & Damasio, A. R. de L. (2018). Protein profile in Aspergillus

nidulans recombinant strains overproducing heterologous enzymes. Microbial

Biotechnology, 11(2). https://doi.org/10.1111/1751-7915.13027

175

Anexos

Termo de aprovação da pesquisa pela Comissão de Biossegurança

176

Declaração referente aos direitos autorais