universidad nacional de colombia sede medellÍn facultad de...

21
1 UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA DE OSCILACIONES ONDAS Y ÓPTICA MÓDULO # 20: EL ESPECTRO ELECTROMAGNÉTICO –TEORÍA CUÁNTICA- Diego Luis Aristizábal R., Roberto Restrepo A. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín Temas Introducción Origen de la teoría cuántica de la luz: radiación del cuerpo negro Teoría de Planck Procesos atómicos El fenómeno LÁSER Espectroscopía Tema de interés: Descripción del espectro electromagnético Tema de interés: Teoría del color Taller Introducción La teoría cuántica, es una teoría física basada en la utilización del concepto de unidad cuántica para describir las propiedades dinámicas de las partículas subatómicas y las interacciones entre la materia y la radiación. Las bases de la teoría fueron sentadas por el físico alemán Max Planck, que en 1900 postuló que la materia sólo puede emitir o absorber energía en pequeñas unidades discretas llamadas cuantos. A finales del siglo XIX y principios del siglo XX se conocieron resultados experimentales que la teoría newtoniana (física clásica) no lograba explicar, tales como: Las líneas espectrales de los gases calentados o sometidos a descargas eléctricas. La denominada radiación del cuerpo negro en la termodinámica. Fue con base en la teoría cuántica de Planck que se logran explicar estos resultados. En éste módulo en primera instancia se explorarán brevemente estos eventos experimentales que originaron la teoría cuántica de la radiación electromagnética. A continuación se explicarán los postulados básicos de esta teoría, los cuales se utilizarán para explicar descriptivamente los procesos atómicos y a su vez los fundamentos de la espectroscopía y del láser. Ya en este punto del curso se tiene la explicación de las dos teorías sobre la luz: teoría clásica (onda electromagnética) y teoría cuántica (partículas llamadas fotones). Para finalizar el curso, se consideró importante tratar dos temas de interés, los cuales se agregaron en éste módulo: la descripción del espectro electromagnético y las teorías del color.

Upload: dinhthu

Post on 21-Sep-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

1

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA

FÍSICA DE OSCILACIONES ONDAS Y ÓPTICA

MÓDULO # 20: EL ESPECTRO ELECTROMAGNÉTICO –TEORÍA CUÁNTICA- Diego Luis Aristizábal R., Roberto Restrepo A.

Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Temas

Introducción

Origen de la teoría cuántica de la luz: radiación del cuerpo negro

Teoría de Planck

Procesos atómicos

El fenómeno LÁSER

Espectroscopía

Tema de interés: Descripción del espectro electromagnético

Tema de interés: Teoría del color

Taller

Introducción

La teoría cuántica, es una teoría física basada en la

utilización del concepto de unidad cuántica para describir las

propiedades dinámicas de las partículas subatómicas y las

interacciones entre la materia y la radiación. Las bases de la

teoría fueron sentadas por el físico alemán Max Planck, que

en 1900 postuló que la materia sólo puede emitir o absorber

energía en pequeñas unidades discretas llamadas cuantos.

A finales del siglo XIX y principios del siglo XX se conocieron

resultados experimentales que la teoría newtoniana (física

clásica) no lograba explicar, tales como:

Las líneas espectrales de los gases calentados o sometidos a descargas eléctricas.

La denominada radiación del cuerpo negro en la termodinámica.

Fue con base en la teoría cuántica de Planck que se logran explicar estos resultados.

En éste módulo en primera instancia se explorarán brevemente estos eventos experimentales que

originaron la teoría cuántica de la radiación electromagnética. A continuación se explicarán los postulados

básicos de esta teoría, los cuales se utilizarán para explicar descriptivamente los procesos atómicos y a su

vez los fundamentos de la espectroscopía y del láser.

Ya en este punto del curso se tiene la explicación de las dos teorías sobre la luz: teoría clásica (onda

electromagnética) y teoría cuántica (partículas llamadas fotones). Para finalizar el curso, se consideró

importante tratar dos temas de interés, los cuales se agregaron en éste módulo: la descripción del

espectro electromagnético y las teorías del color.

2

Origen de la teoría cuántica de la luz: radiación del cuerpo negro

La termodinámica conocía muy bien la denominada ley de Stefan-Boltzman y la ley de desplazamiento de

Wien; sin embargo la física clásica, y más concretamente la teoría electromagnética de Maxwell no era

capaz de explicarlas.

Ley de Stefan-Boltzman

Esta ley enuncia así:

La energía electromagnética por unidad de tiempo emitida por un cuerpo (es decir la potencia), P, es

proporcional a la cuarta potencia de la temperatura absoluta (T) y al área de su superficie (A),

4P = σεAT [1]

en donde ε es la emisividad del cuerpo, σ es la constante de Stefan-Boltzman (5,670 51x10-8 Wm-2 K-4).

La emisividad ε depende de la naturaleza de la superficie de los cuerpos y varía entre 0 y 1.

Experimentalmente se demuestra que todo cuerpo es capaz de absorber las radiaciones que emite; es decir

los buenos radiadores son también buenos receptores. Un cuerpo negro es aquel que absorbe toda la

energía que incide desde el exterior y que de la misma manera emite toda la energía que incide desde su

interior, siendo su emisividad ε igual a 1 (no existe en la naturaleza un cuerpo negro, incluso el negro de

humo refleja el 1% de la energía incidente). Las superficies brillantes y pulimentadas son de gran poder

reflector y por tanto malos receptores y malos emisores de radiación electromagnética (su emisividad es

cercana a cero). Las superficies obscuras y mates son muy emisivas por ser absorbentes. Sin embargo, no

hay siempre relación entre color y poder absorbente total para todas las radiaciones, pues existen cuerpos

blancos que se comportan como cuerpos negros (por ejemplo, la piel humana independientemente de su

color, es gran absorbente de radiación infrarroja, no siendo así para la radiación visible). La emisividad de

un cuerpo depende de la frecuencia de la radiación electromagnética.

Ejemplo 1:

El cuerpo humano radia como un cuerpo negro en la región

del infrarrojo (IR), Figura 2 (esta figura corresponde a un

termograma: la radiación IR es capturada y mediante

software con base en la temperatura absoluta se hace

pseudocoloreo). Si la superficie del cuerpo es

aproximadamente de 2,00 m2, obtener la potencia radiada

(considerar que la piel se encuentra a una temperatura de

22,0 oC y que su emisividad es 0,98). Expresar el resultado

en vatios y en calorías por segundo (cal/s).

Solución:

Reemplazando en la ecuación [1], A= 2,00 m2, T=295 K, ε = 0,98 se obtiene,

3

P = 842 W

Para expresar la potencia radiada en cal/s hay que tener en cuenta el denominado equivalente mecánico del

calor, 1 cal= 4,186 J,

J 1 calP = 842 ×

s 4,186 J

calP = 201

s

Ejemplo 2:

El filamento de una lámpara de incandescencia de 100 W está hecho

de wolframio cuya emisividad es de 0,30, Figura 3. Si el filamento

tiene una longitud de 0.20 m, ¿cuál debe ser su radio si funciona a la

temperatura de 3 000 K?

Solución:

De la ecuación [1] se obtiene,

4

PA =

σεT

Reemplazando en esta ecuación, P= 100 W, ε = 0,30 , T=3 000 K se

obtiene para el área total de la superficie del filamento,

2A = 0,725 cm

Asumiendo que la radiación emitida por el filamento cilíndrico por sus bases es despreciable se obtiene,

A = 2πRL

Siendo R el radio del filamento y L su longitud. Por lo tanto,

AR =

2πL

y reemplazando, A= 0,725 cm2, L=20 cm se obtiene,

R = 0,0577 mm

4

Video:

Observar el video que ilustra el radiómetro de Crookes:

http://ludifisica.medellin.unal.edu.co/recursos/videos/videos_experimentos_fisica/ondas_electromagnetic

as/radiometro.html

Ley de desplazamiento de Wien

Las ondas electromagnéticas emitidas por los cuerpos

son emitidas en muchas longitudes de ondas y con

diferente intensidad. Experimentalmente se observa

que si se aumenta la temperatura van apareciendo

radiaciones con longitudes de onda cada vez más

pequeñas. Esto lo expresó Wien con una ley que enunció

así:

Una fuente térmica emite energía electromagnética con

muchas longitudes de onda, pero con un máximo para

una longitud de onda ( maxλ ) determinada para cada

temperatura, de tal forma que se cumple que,

maxλ T = 2 897,9 μm.K [2]

Ejemplo 3:

Mostrar que el Sol, con una temperatura superficial de

aproximadamente 6 000 K, tiene un máximo de emisión de radiación

electromagnética en la longitud de onda de 500,0 nm., la cual se

encuentra en el centro del espectro visible (amarillo-verde).

Solución:

Reemplazando en la ecuación [2], -3

maxλ = 500,0 nm = 500,0×10 μm ,

se obtiene,

T = 5 795 K

La ley de Wienn explica el por qué los sólidos cuando se calientan, emiten radiaciones electromagnéticas

que abarcan una gran gama de longitudes de onda: la luz rojiza tenue de un calentador eléctrico y la luz

blanca.

Simulación:

5

En el siguiente link se presenta una simulación que ilustra la relación entre temperatura y color de los

sólidos cuando se “calientan”.

http://micro.magnet.fsu.edu/primer/java/colortemperature/index.html

Ejemplo 4:

Explicar el funcionamiento de los termogramas, Figura 5.

Solución:

La termografía es una técnica que permite medir temperaturas a

distancia con exactitud y sin necesidad de contacto físico con el objeto a

estudiar. Para esto se emplean sensores que detectan la radiación

infrarroja (IR) y mediante la medida de las longitudes de onda se obtiene

la temperatura utilizando la ley de desplazamiento de Wien.

Una gran aplicación es la denominada cámara termográfica, la cual está

equipada con un sistema óptico de infrarrojos y un detector que analiza la

longitud de onda. La cámara genera un termograma, una representación

visual de las temperaturas dominantes, mediante la técnica de

pseudocoloreo, obteniéndose imágenes como la de la Figura 5.

.

Ejemplo 5:

Si la piel del cuerpo humano se encuentra a 22 oC, calcular la longitud de onda del pico de radiación

electromagnética que emite. ¿En qué región del espectro está?

Solución:

Reemplazando en la ecuación [2], T=295 K se obtiene,

maxλ = 9 823 nm

que corresponde al IR lejano.

Ejemplo 6:

Si se orienta un radiotelescopio de suficiente sensibilidad en una

dirección particular del cielo, se sintonizaría una débil señal con un

máximo centrado en una frecuencia de unos 280 GHz, que

corresponde al rango de las microondas en el espectro

electromagnético. Incluso en nuestra casa se puede recibir una

parte de la señal en un televisor sin sintonizar, siendo un porcentaje

de las interferencias causado por la radiación de fondo.

6

Si el radiotelescopio fuera capaz de sintonizar frecuencias cercanas a los 280 GHz, se observaría que la

intensidad de la señal disminuye a ambos lados de una forma particular. Mostrar que esta señal indica que

la radiación de fondo equivale a la radiación de un cuerpo negro que se encuentra a una temperatura 2,73 K.

Técnicamente se suele llamar a esta señal Fondo Cósmico de Microondas.

Solución:

Se tiene que,

λf = c

cλ=

f

Reemplazando f=280x109 Hz, c=3x108 m.s-1 se obtiene,

λ = 1070 μm

Reemplazando en la ecuación [2], maxλ = 1 070 μm se obtiene,

T = 2,71 K

¡Uff … qué “FRÍO”!

Teoría de Planck

Además de las dos leyes anteriores (ley de Stefan-Boltzman y ley de desplazmiento de Wien) , había otros

fenómenos que la teoría clásica de la radiación electromagnética era también incapaz de explicar. Por

ejemplo el conocido efecto mediante el cual un metal desprendía electrones al incidirle luz a determinadas

frecuencias, más adelante denominado efecto fotoeléctrico. El funcionamiento del mundo a pequeña escala

(átomos y moléculas) tampoco lograba ser explicado con la teoría clásica de la radiación.

Por todo lo anterior fue necesario inventarse otra teoría, llamada teoría cuántica de la radiación

electromagnética. Y fue precisamente Max Planck en 1900 quien sugirió que la radiación electromagnética

era radiada o absorbida por un átomo o molécula en forma discontinua, por paquetes (cuantos) de energía

denominados fotones; estos paquetes contienen la siguiente cantidad de energía:

E = hf [3]

en donde h es la denominada constante de Planck cuyo valor es 6,62x10-34 J.s, y f la frecuencia de la

radiación.

Otra característica importante es que la energía que puede tener un átomo o una molécula también está

cuantizada. Esta energía sólo puede tomar un valor de un conjunto discreto de valores. Ese conjunto

discreto de valores se denomina niveles de energía. Si un átomo aumenta o disminuye su energía, pasando

7

de una energía inicial Ei a otra final Ef , lo hace a saltos absorbiendo o emitiendo un cuanto de energía (un

fotón) en forma de energía radiante, de tal forma que se cumple,

f iE - E = hf [4]

donde f es la frecuencia de la radiación emitida o absorbida por el átomo. De esta forma los átomos y

moléculas sólo podrán absorber o emitir luz (fotones) de determinadas frecuencias (espectros de

absorción y emisión), tal y como se ilustra en la Figura 7. Se debe observar que a las frecuencias que

absorbe (espectro de absorción) un átomo o molécula, también emite (espectro de emisión), Figura 8.

Figura 7

Figura 8

Ejemplo 7:

Dada las longitudes de onda del espectro de la luz visible calcular las frecuencias respectivas y la energía

de los correspondientes fotones (escoger una longitud de onda para cada uno de los colores principales). En

la Tabla 1 se pueden obtener los datos

8

Tabla 1

Espectro Color Longitud de onda

λ (nm)

violeta 380–450 azul 450–495

verde 495–570 amarillo 570–590 naranja 590–620

rojo 620–750

Solución:

En cada región del espectro se estimará la longitud de onda tomando el promedio de su ancho de banda de

las longitudes de onda. Por ejemplo, la luz violeta está comprendida entre longitudes de onda de 380 nm a

450 nm, Tabla 1, por lo cual se tomará su promedio para realizar los cálculos,

menor mayorλ + λλ =

2

violeta

380 nm + 450 nmλ = = 415 nm

2

Análogamente para las otras longitudes de onda del espectro visible. Los resultados se registran en la

Tabla 2.

Para calcular la frecuencia se emplea,

λf = c

cf =

λ

Realizando el cálculo para la luz violeta,

8 -1

-9

3×10 m.sf =

415×10 m

12f = 723 10 Hz = 723 THz

Análogamente para las otras frecuencias del espectro visible. Los resultados se registran en la Tabla 2.

Para calcular la energía correspondiente a los fotones se emplea,

E = hf

9

Realizando el cálculo para la luz violeta,

-34 12 -1 19E = 6,62x10 J.s × 723×10 s 4,79 10 J

Análogamente para las otras frecuencias del espectro visible. Los resultados se registran en la Tabla 2.

La energía de los fotones se acostumbra a expresarla en electronvoltios (1 eV = 1,6x10-19 J).

Tabla 2

Espectro Color Longitud de onda

λ (nm)

Longitud de onda

Promedio

λ (nm)

frecuencia

f (THz)

Energía

(J)

Energía

(eV)

violeta 380–450 415 723 4,79x10-19 2,99

azul 450–495 472 636 4,21x10-19 2,63

verde 495–570 532 564 3,73x10-19 2,33

amarillo 570–590 580 517 3,42x10-19 2,14

naranja 590–620 605 496 3,28x10-19 2,05

rojo 620–750 685 438 2,90x10-19 1,81

Ejemplo 8:

Calcular la energía de los fotones emitidos en un horno

microondas si la frecuencia de la OEM es 2,45 GHz, Figura

9.

Solución:

Para calcular la energía correspondiente a los fotones se

emplea,

E = hf

-34 9 -1 24E = 6,62x10 J.s × 2,45×10 s 1,6 10 J

6E = 10,14 10 eV

E = 0,00001 eV

Como puede observarse es MUY BAJA comparada con los fotones de la luz visible.

Ejemplo 9:

Calcular la energía de los fotones emitidos en un aparato de Rayos X para realizar radiografías si la

longitud de onda de la OEM que emite es igual a 0,050 nm, Figura 10.

10

Solución:

Para calcular la frecuencia correspondiente a la OEM emitida se emplea,

λf = c

cf =

λ

8 -1

-9

3×10 m.sf =

0,05×10 m

17f = 60 10 Hz

Para calcular la energía correspondiente a los fotones se emplea,

E = hf

-34 17 -1 17E = 6,62x10 J.s × 60×10 s 397 10 J

E = 24 812 eV

Como puede observarse es MUY ALTA comparada con los fotones de la luz visible.

A medida que la longitud de onda en el espectro electromagnético aumenta, disminuye la frecuencia y la

energía de los fotones.

Ejercicio 10:

Una bombilla de 100 W emite en diversas

longitudes de onda, Figura 11, en el visible e

infrarrojo, pero la longitud de onda media suele

estar en el amarillo-naranja, es decir unos 600

nm. Además se puede suponer que el 10% de aquella potencia se emite en el visible. Calcular el número de

fotones emitidos por segundo y con frecuencias en el visible.

Solución:

De 100 W sólo 10 W se emiten en el visible (10 %). Esto significa que cada segundo la bombilla emite 10 J

en el visible.

Para calcular la energía de los fotones emitidos a una longitud de onda de 600 nm primero se debe calcular

la frecuencia de la OEM, para lo cual se emplea,

11

λf = c

cf =

λ

8 -1

-9

3×10 m.sf =

600×10 m

12f = 500 10 Hz

La energía correspondiente a los fotones es,

E = hf

-34 12 -1 19E = 6,62x10 J.s × 500×10 s 3,31 10 J

Por lo tanto el número N de fotones en el visible emitidos por la bombilla en 1 s es,

19

-19

10 JN = 3×10 fotones

3,31×10 J

Ejemplo 11:

Un electrón en un átomo de hidrógeno pasa de un nivel que posee una energía igual a -3,4 eV a otro cuya

energía es –13,6 eV. Calcular la frecuencia y la longitud de onda de la radiación electromagnética

correspondiente al fotón emitido. ¿A qué región del espectro pertenece?

Solución:

Aplicando la ecuación [4],

f iE - E = hf [4]

f iE - E f =

h

Es necesario asegurarse que la frecuencia es positiva. El resultado negativo de la resta de energías

significa que el átomo pierde energía emitiendo un fotón,

f iE - E f =

h

Reemplazando, fE = -13,6 eV , iE = -3,4 eV se obtiene,

12

-19

15

-34

-13,6 - -3,4 ×1,6×10 J f = 2,465×10 Hz

6,62×10 J.s

15f = 2,465×10 Hz

que corresponde a una longitud de onda,

λf = c

cλ =

f

8 -1

15 -1

3×10 m.sλ =

2,465×10 s

-7λ = 1,217 x10 m 122 nm

que corresponde a luz ultravioleta.

Procesos atómicos

Los tres procesos atómicos básicos son: absorción estimulada, emisión espontánea y emisión estimulada.

Absorción estimulada y emisión espontánea

El electrón absorbe la energía hf de un fotón la cual corresponde al valor exacto para saltar de un nivel

energético inferior a uno superior (salto permitido). El átomo queda excitado aunque sólo se puede

mantener en él durante un tiempo muy breve: esta es la denominada absorción estimulada. Al caer de nuevo

a su órbita previa, o a otro nivel de energía permitido, emite un fotón: esta es la denominada emisión espontánea.

Emisión estimulada

La emisión estimulada, base de la generación de radiación de un láser, se produce cuando un átomo en

estado excitado recibe un estímulo externo que lo lleva a emitir fotones y así retornar a un estado menos

excitado. El estímulo en cuestión proviene de la llegada de un fotón con energía similar a la diferencia

entre la energía de los dos estados. Los fotones así emitidos por el átomo estimulado poseen fase, energía

y dirección similares a las del fotón externo que les dio origen. La emisión estimulada descrita es la raíz de

muchas de las características de la luz láser. No sólo produce luz coherente y monocromática sino,

también, “amplifica” la emisión de luz ya que, por cada fotón que incide sobre un átomo excitado, se genera

otro fotón.

13

El fenómeno LÁSER

La palabra LASER es el acrónimo en inglés de Light

Amplification by Stimulated Emission of Radiation, es

decir, amplificación de luz por mecanismo de emisión

estimulada de radiación. Una de las propiedades esenciales

de la emisión láser, es su gran intensidad, Figura 12 (láser

de He-Ne). En efecto, la intensidad de la emisión láser es

inusitadamente elevada, convirtiéndose así la radiación en

una poderosa herramienta de trabajo. En los láseres el

rango de potencia (magnitud relacionada directamente con

la intensidad) es amplísimo, empezando desde las

fracciones de vatio que se emplean en algunas tecnologías

(lectores de CD), hasta el orden de los gigavatios que se

alcanzan en el láser NOVA, del laboratorio Lawrence Livermore National Laboratory (LLNL), que es el más

potente que existe en el mundo. Otra de las características esenciales de los láseres es la emisión de luz

altamente monocromática (es decir, se emite luz con una longitud de onda única, o por lo menos con una

ancho de banda prácticamente despreciable), lo que por un lado resulta beneficioso en algunas aplicaciones

y por otro impone serias limitaciones a su uso. Actualmente existen láseres que son capaces de barrer todo

el rango de longitud de onda del visible (láseres de colorante), aunque su precio es elevadísimo. Otra de las

características fundamentales de la radiación láser es su elevada coherencia (la fase de la radiación

permanece constante con el tiempo). Por último, se destaca la elevada direccionabilidad de la radiación

láser (la radiación se propaga en una única dirección), lo que permite su uso a largas distancias (control

remoto) y con enorme precisión.

Espectroscopía

Fue Newton quien descubrió que la luz del Sol, al pasar por un prisma de vidrio, se descompone en luces con

los colores del arco iris. La franja de luces de colores que se obtienen al separar la luz del Sol se denomina

espectro solar.

Cualquier cuerpo puede emitir luz si está a una temperatura lo suficientemente alta, como ocurre con el

filamento de una bombilla cuando es atravesada por una corriente eléctrica, Figura 13. Los sólidos y

líquidos emiten un espectro fundamentalmente continuo y similar al del Sol (contiene la misma distribución

de colores y solo cambia la intensidad de cada uno de ellos).

En cambio en estado gaseoso cada sustancia tiene un espectro característico que la identifica como si de

un código de barras se tratara (una especie de “huella digital”), Figura 13 (observar que el espectro de

emisión y el de absorción del mismo gas son complementarios). La espectrometría es una técnica que

aprovecha esta circunstancia para conocer la composición de un material analizando la luz que desprende

cuando se somete a incandescencia (es utilizada en astronomía para identificar los componentes de una

estrella como el Sol).

14

Figura 13: Con una red de difracción se puede descomponer la luz (es decir, obtener los espectros). En esta

ilustración el gas caliente y el gas frío corresponden a la misma sustancia.

Para estudiar los espectros se emplean los denominados espectrómetros. Estos pueden funcionar con base

en la refracción (de prisma) o en la difracción (de red de difracción). Esto fue tratado en los módulos 12 y

18.

Tema de interés: Descripción del espectro electromagnético

Si las ondas electromagnéticas se organizan de acuerdo a sus

longitudes de onda se obtiene el denominado espectro electromagnético, el cual se extiende desde ondas del orden de

billonésimas de metros (radiación gamma) hasta ondas del orden de

kilómetros (ondas largas de radio), Figura 14. A continuación se

describirá las regiones del espectro.

Rayos gamma Como fuente microscópica de esta radiación está el

núcleo atómico en determinadas reacciones nucleares. Su generación

artificial se hace con aceleradores de partículas. Su detección se

realiza con contadores Geiger y las denominadas cámaras de

ionización. Poseen gran poder de penetración.

Rayos X Como fuente microscópica de rayos X están los electrones internos

de los átomos. Su generación artificial se hace con los tubos de rayos X que

funcionan con base en el frenado de haces de electrones: los metales emiten

rayos X cuando se les bombardea con electrones que poseen una gran

energía. Esta radiación descubierta por Wilhelm Röntgen a finales del s. XIX,

es capaz de atravesar cuerpos opacos y de impresionar las películas

fotográficas. De casi todos son conocidas las aplicaciones de los rayos X en

el campo de la Medicina para realizar Radiografías, Figura 15. El uso de los

rayos X se extendió también a la detección de fallos en metales o análisis de

pinturas. Pero, además, su descubrimiento revolucionó, a lo largo de los años,

15

los campos de la Física, la Química y la Biología. Los rayos X que más interesan en el campo de la

Cristalografía de rayos X son aquellos que disponen de una longitud de onda próxima a 1 Angstrom (los

denominados RAYOS X “duros”) y corresponden a una frecuencia de aproximadamente 3 millones de THz.

Rayos UV A comienzo del siglo XIX, Johannes Ritter descubrió que el Sol, además de luz visible, emite una

radiación “invisible” de longitud de onda más corta que el azul y el violeta. Esa banda recibió el nombre de

ultravioleta, dividida en tres subregiones: UV-A, UV-B y UV-C.

La UV-A (cerca de la radiación visible y es responsable del bronceado de la piel. Su longitud de onda varía

entre 400 y 320 nm). La UV-B (llega a la Tierra muy atenuada por la capa de ozono. Es llamada también UV

biológica, varía entre 280 y 320 nm y es muy peligrosa para la vida en general y, en particular, para la salud

humana, en caso de exposiciones prolongadas de la piel y los ojos -cáncer de piel, melanoma, catarata,

debilitamiento del sistema inmunológico-). Representa sólo el 5%de la UV y el 0.25%de toda la radiación

solar que llega a la superficie de la Tierra. La UV-C que es en teoría la más peligrosa para el hombre, pero

afortunadamente es absorbida totalmente por la atmósfera. Su origen se debe a saltos energéticos en los

electrones internos y externos del átomo. Artificialmente pueden ser generados a través de la emisión de

gas de mercurio a baja presión. También se usan láseres (luz UV coherente). Se pueden detectar con los

tubos fotomultiplicadores.

La longitud de onda más eficaz para la destrucción de microorganismos está alrededor de 260 nm con un

cuanto de energía aproximadamente de 4,9 electrón-voltios (eV). Las longitudes de onda inferiores a 200

nm no son eficaces porque las absorbe muy rápidamente el oxígeno atmosférico. A las longitudes de onda

desde 360 a 450 nm, se les suele llamar “onda larga ultravioleta”, “luz negra” o “ultravioleta próxima” (en la

figura se ilustra un conjunto de billetes iluminados con esta luz) . Debido a su bajo cuanto de energía, la

irradiación UV es totalmente absorbida por las moléculas

expuestas. La molécula se excita por la energía absorbida

y puede suceder que se produzcan reacciones anormales

que provoquen su destrucción, con posibles efectos letales

sobre los gérmenes. La radiación UV-B es biológicamente

nociva, daña el ADN de las células y puede causar defectos

genéticos en las superficies externas de plantas y

animales si se recibe en dosis altas. De esta manera, los

rayos UV-B pueden dañar la piel humana causando desde

un ligero enrojecimiento (eritemas) hasta quemaduras;

incluso con el tiempo pueden producir molestias graves,

lunares, manchas y hasta cáncer en la piel, Figura 16. Sin

embargo, la radiación UV en dosis normales tiene efectos

benéficos, pues ayuda a producir ciertas vitaminas en el cuerpo evitando padecimientos como el raquitismo

de los huesos.

Luz Visible Su origen se debe a saltos de los electrones externos del átomo a niveles inferiores de

energía. El ojo humano detecta esta franja del espectro electromagnético. Se genera artificialmente

mediante lámparas, bombillas, chispas, llamas, y láseres (estos generan luz coherente). Se extiende desde

la luz violeta hasta la luz roja.

Luz Infrarroja (IR) La radiación infrarroja o radiación térmica es un tipo de radiación electromagnética

de mayor longitud de onda que la luz visible, pero menor que la de las microondas. Los infrarrojos se

utilizan en los equipos de visión nocturna cuando la cantidad de luz visible es insuficiente para ver los

16

objetos. La radiación se recibe y después se

refleja en una pantalla. Los objetos cuyas

superficies están a mayor temperatura emiten

mayor intensidad de luz IR; esto permite obtener

imágenes denominadas termogramas, Figura 17.

También son usados en comandos a distancia

(telecomandos) en vez de ondas de radio ya que no

interfieren con otras señales electromagnéticas

como las señales de televisión. La luz utilizada en

las fibras ópticas es generalmente de infrarrojos.

Macroscópicamente los cuerpos calientes son fuentes de IR. Microscópicamente el origen de la radiación

IR se encuentra en los saltos energéticos en los niveles vibracionales y rotacionales de las moléculas. Esta

radiación se detecta con bolómetros y termocuplas.

Los infrarrojos están relacionados con el denominado efecto invernadero. Cuando la radiación solar llega a

la superficie de la Tierra le aporta energía que eleva su temperatura. La energía absorbida es emitida luego

como radiación infrarroja. Sin embargo, no toda esta radiación vuelve al espacio, ya que alrededor de un

90%es absorbida por la atmósfera, provocando un fenómeno similar al que mantiene la temperatura cálida

en el interior de un invernadero. De este modo, el equilibrio térmico se establece a una temperatura

superior a la que se obtendría sin este efecto. En zonas de la Tierra cuya atmósfera tiene poca proporción

de gases de efecto invernadero (especialmente de vapor de agua), como en los grandes desiertos, las

fluctuaciones de temperatura entre el día (absorción de radiación solar) y la noche (emisión hacia el cielo

nocturno) son muy grandes.

Microondas Las microondas pueden ser generadas de varias maneras, generalmente divididas en dos

categorías: dispositivos de estado sólido y dispositivos basados en tubos de vacío. Los dispositivos de

estado sólido para microondas están basados en semiconductores de silicio o arseniuro de galio. Los

dispositivos basados en tubos de vacío operan teniendo en cuenta el movimiento balístico de un electrón en

el vacío bajo la influencia de campos eléctricos o magnéticos, entre los que se incluyen el magnetrón y el

klistrón.

Un horno microondas, usa un magnetrón para producir microondas a una frecuencia de aproximadamente

2.45 GHz para cocción. Las microondas hacen vibrar o rotar las moléculas de agua, aumentando la energía

cinética interna de los alimentos (por tanto su

temperatura). Debido a que la materia está hecha

esencialmente de agua, los alimentos son fácilmente

cocinados de esta manera. Las microondas son usadas en

radiodifusión, ya que estas pasan fácilmente a través de la

atmósfera con menos interferencia que otras longitudes de

onda mayores, Figura 18. También hay más ancho de banda

en el espectro de microondas que en el resto del espectro

de radio. Protocolos inalámbricos LAN (Local Area

Network), tales como Bluetooth y WiFi [Wireless Fidelity,

especificaciones IEEE.11b y IEEE.11b g), emplean

microondas de 2.45 GHz, conocida como la banda ISM

(Industrial Scientific and Medical) reservada

internacionalmente para uso no comercial en aplicaciones

industriales, científicas y médicas. La televisión por cable y el acceso a Internet vía cable coaxial usan

17

algunas de las más bajas frecuencias de microondas. Algunas redes de telefonía celular también usan bajas

frecuencias de microondas. El radar también incluye radiación de microondas para detectar la posición, la

velocidad y otras características de objetos remotos. Un máser es un dispositivo similar a un láser pero

que trabaja con frecuencias de microondas.

Onda de Radio La radio es una tecnología que posibilita la transmisión de señales mediante la modulación

de ondas electromagnéticas. Una onda de radio se origina cuando una partícula cargada (por ejemplo, un

electrón) se excita a una frecuencia situada en la zona de radiofrecuencia (RF) del espectro

electromagnético. Cuando la onda de radio actúa sobre un conductor eléctrico (la antena), induce en él un

movimiento de la carga eléctrica (corriente eléctrica) que puede ser transformado en señales de audio u

otro tipo de señales portadoras de información.

Simulación:

Analizar la simulación de SimulPhysics correspondiente al espectro electromagnético. Para acceder a ésta

hacer clic con el mouse en el ítem señalado en la Figuras 19. En ésta hacer las variaciones permitidas y

observar detenidamente los resultados.

http://ludifisica.medellin.unal.edu.co/index.php/software-hardware/simulphysics

Figura 19

Tema de interés: Teorías del color

Es interesante aprovechar esta sección para hablar un poco sobre el COLOR

El espectro visible encierra tres amplias regiones de la radiación: rojo, verde y azul. Si se quita uno de

estos aparece la mezcla de los otros dos: al quitar el rojo queda el cyan (verde+azul), al quitar el verde

queda el magenta (rojo+azul) y al quitar el azul queda el amarillo (rojo+verde).

18

Los colores producidos por luces (en la pantalla de nuestro computador, en el cine, televisión, etc.) tienen

como colores primarios, el rojo, el verde y el azul (RGB por sus nombres en inglés) cuya fusión de estos,

crean y componen la luz blanca, por eso a esta mezcla se le denomina, síntesis aditiva, Figura 20, y las

mezclas parciales de estas luces dan origen a la mayoría de los colores del espectro visible.

Figura 20: Teoría aditiva del color

Los colores sustractivos, son colores basados en la luz reflejada de los pigmentos aplicados a las

superficies. Forman esta síntesis sustractiva, el color magenta, el cyan y el amarillo. Son los colores

básicos de las tintas que se usan en la mayoría de los sistemas de impresión.

La mezcla de los tres colores primarios pigmento en teoría debería producir el negro, el color más oscuro y

de menor cantidad de luz, por lo cual esta mezcla es conocida como síntesis sustractiva, Figura 21. En la

práctica el color así obtenido no es lo bastante intenso, motivo por el cual se le agrega negro pigmento

conformándose el espacio de color CMYK (por sus nombres en inglés).

Figura 21: Teoría sustractiva del color

19

Simulación:

Analizar las simulaciones de SimulPhysics correspondientes a las teorías del color. Para acceder a ellas

hacer clic con el mouse en los ítems señalados en la Figura 22. En ésta hacer las variaciones permitidas y

observar detenidamente los resultados.

http://ludifisica.medellin.unal.edu.co/index.php/software-hardware/simulphysics

Figura 22

Algo sobre filtros

¿Qué es un filtro?

Cuando la luz atraviesa un filtro de color, éste absorbe (sustrae) todas las luces excepto la luz de su propio

color, Figura 23 izquierda. Uno de un color complementario (amarillo, por ejemplo) sustrae a la luz el azul,

pero deja pasar a los otros dos (rojo+verde=amarillo), Figura 23 derecha, esta es la forma como obtienen

sus colores los pigmentos (pinturas, objetos, etc.).

Figura 23: Principio de los filtros de colores

20

Pigmentos:

¿Qué es un pigmento?

Un pigmento es cualquier sustancia que absorba la luz. El color del pigmento está dado por la longitud de

onda no absorbida (y por lo tanto reflejada). El pigmento negro absorbe todas las longitudes de onda que le

llega. El pigmento blanco refleja prácticamente toda la energía que le llega. Los pigmentos tienen un

espectro de absorción característico de cada uno de ellos.

La clorofila

La clorofila, el pigmento verde común a todas las células fotosintéticas, captura en su mayoría la luz en los

entornos del azul (400–500 nm) y del rojo (600–700 nm), que corresponden a los extremos del espectro

visible de la luz solar y refleja la luz de la parte media del espectro correspondiente al color verde (500–

600 nm) dando a las plantas su color, Figura 24. La energía absorbida, la planta la utiliza para realizar el

proceso de fotosíntesis.

A. La solución de clorofila deja

pasar las longitudes de onda

correspondiente a los verdes

B. Espectro de absorción de la clorofila

Figura 24

Algo sobre el color

El color es una sensación, como el olfato.

El color no se observa hasta que la radiación interactúa con la materia siendo reflejada o transmitida

por esta, para llegar al ojo donde es sensada e interpretada por el cerebro.

El color de un cuerpo depende de: la naturaleza de su superficie, de los colores vecinos y del tipo de luz

que lo ilumina.

Un objeto sólo se ve con su propio color si se ilumina con luz blanca o con luz de su mismo color (en este

caso, si está en un fondo blanco se podrá confundir con el fondo es decir, “desaparecería”).

El cosmos está lleno de radiación pero se ve oscuro. El cielo se ve azul en la Tierra debido al efecto de

los gases de la atmósfera sobre la luz que esparcen.

Las materias colorantes procedentes de sustancias orgánicas, casi siempre de partes florales, jugo de

la savia, etc., disueltas en aceite o agua son la base de las pinturas.

21

Taller sobre teoría cuántica de la luz

Pendiente

FIN.