unit workbook 4 calculus - wb 4.pdfletโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ...

15
Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved. 1 of 38 Pearson BTEC Higher Nationals in Electrical and Electronic Engineering (RQF) Unit 2: Engineering Maths (core) Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Calculus Sample

Upload: others

Post on 10-Feb-2020

28 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

1 of 38

Pearson BTEC Higher Nationals in Electrical and Electronic Engineering (RQF)

Unit 2: Engineering Maths (core)

Unit Workbook 4 in a series of 4 for this unit

Learning Outcome 4

Calculus

Sample

Page 2: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

4 of 38

3.1 Calculus There are a couple of great webpages for checking your answers to Calculus problemsโ€ฆ

Check Differentiation answers

Check Integration answers

3.1.1 The Concept of the Limit, Continuity and the Derivative Calculus deals with functions which continually vary and is based upon the concept of a limit and continuity. Letโ€™s refer to a diagram to understand the concept of a limitโ€ฆ

Here we have indicated a point P on part of a function (the red curve) with Cartesian co-ordinates (๐‘ฅ๐‘ฅ1,๐‘ฆ๐‘ฆ1). We require another point Q on the function to be a small increment away from P and will designate a small increment with the symbol ๐›ฟ๐›ฟ (delta).

What we then have isโ€ฆ

๐‘ท๐‘ท = (๐’™๐’™๐Ÿ๐Ÿ,๐’š๐’š๐Ÿ๐Ÿ)

๐‘ธ๐‘ธ = (๐’™๐’™๐Ÿ๐Ÿ + ๐œน๐œน๐’™๐’™, ๐’š๐’š๐Ÿ๐Ÿ + ๐œน๐œน๐’š๐’š)

Look now at the chord PQ (drawn as the straight line in blue). If we can determine the slope of this chord and then make it infinitesimally short we will end up with a tangent to the function. It is the slope of this tangent which forms the basis of Differential Calculus (normally called differentiation).

By inspection, we see that the slope of the chord is given byโ€ฆ

๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’” ๐’”๐’”๐’๐’ ๐’„๐’„๐’„๐’„๐’”๐’”๐’„๐’„๐’„๐’„ ๐‘ท๐‘ท๐‘ธ๐‘ธ =๐œน๐œน๐’š๐’š๐œน๐œน๐’™๐’™

If we deliberately make ๐›ฟ๐›ฟ๐‘ฅ๐‘ฅ approach zero (i.e. make it as short as possible) then we shall reach a limit, which may expressed mathematically asโ€ฆ

Sample

Page 3: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

5 of 38

Worked Example 1

๐’„๐’„๐’š๐’š๐’„๐’„๐’™๐’™

= ๐œน๐œน๐’™๐’™๐’”๐’”๐’๐’๐’๐’๐’๐’๐’๐’๏ฟฝโŽฏโŽฏ๏ฟฝ ๐ŸŽ๐ŸŽ

๐œน๐œน๐’š๐’š๐œน๐œน๐’™๐’™

The term ๐‘‘๐‘‘๐‘ฆ๐‘ฆ ๐‘‘๐‘‘๐‘ฅ๐‘ฅโ„ is written in Leibnitz notation and indicates the slope of the chord when the chord only touches the function at one single point. This is achieved by continual reduction of ๐›ฟ๐›ฟ๐‘ฅ๐‘ฅ.

What we can now say is that we are able to find the slope of any function by adopting this process. Hence, given a function ๐‘“๐‘“(๐‘ฅ๐‘ฅ) we are able to differentiate that function, meaning find its slope at all points. We can writeโ€ฆ

The slope at any point of a function ๐‘“๐‘“(๐‘ฅ๐‘ฅ) is given by ๐’„๐’„(๐’๐’(๐’™๐’™))๐’„๐’„๐’™๐’™

This process is called finding the derivative of a function.

3.1.2 Derivatives of Standard Functions What we donโ€™t want to be doing is to spend too much time drawing graphs of functions just to work out the derivative. Fortunately there are standard ways to determine the derivative of functions and some of the frequent ones which engineers meet are given in the table below.

Function Derivative ๐ด๐ด๐‘ฅ๐‘ฅ๐‘›๐‘› ๐‘›๐‘›๐ด๐ด๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1

A sin (๐‘ฅ๐‘ฅ) A cos (๐‘ฅ๐‘ฅ)

A cos (๐‘ฅ๐‘ฅ) โˆ’๐ด๐ด sin (๐‘ฅ๐‘ฅ)

๐ด๐ด ๐‘’๐‘’๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘˜๐‘˜๐ด๐ด๐‘’๐‘’๐‘˜๐‘˜๐‘˜๐‘˜

๐ด๐ด ๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘’๐‘’(๐‘ฅ๐‘ฅ) ๐ด๐ด ๐‘ฅ๐‘ฅ๏ฟฝ

A sinh (๐‘ฅ๐‘ฅ) A cosh (๐‘ฅ๐‘ฅ)

A cosh (๐‘ฅ๐‘ฅ) A sinh (๐‘ฅ๐‘ฅ)

Letโ€™s look at some examples of using these standard derivativesโ€ฆ

Differentiate the function ๐’š๐’š = ๐Ÿ‘๐Ÿ‘๐’™๐’™๐Ÿ’๐Ÿ’ with respect to ๐’™๐’™.

We see that this function is similar to that in row 1 of our table. We can see that ๐ด๐ด = 3 and ๐‘›๐‘› = 4. We may then writeโ€ฆ

Sample

Page 4: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

6 of 38

Worked Example 2

Worked Example 3

Worked Example 4

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘›๐‘›๐ด๐ด๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 = (4)(3)๐‘ฅ๐‘ฅ4โˆ’1 = 12๐‘ฅ๐‘ฅ3

Differentiate the function ๐’š๐’š = ๐Ÿ”๐Ÿ”๐’™๐’™โˆ’๐Ÿ“๐Ÿ“ with respect to ๐’™๐’™.

We see that this function is similar to that in row 1 of our table. We can see that ๐ด๐ด = 6 and ๐‘›๐‘› = โˆ’5. We may then writeโ€ฆ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘›๐‘›๐ด๐ด๐‘ฅ๐‘ฅ๐‘›๐‘›โˆ’1 = (โˆ’5)(6)๐‘ฅ๐‘ฅโˆ’5โˆ’1 = โˆ’30๐‘ฅ๐‘ฅโˆ’6

Differentiate the function ๐’—๐’— = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’”๐’”๐’๐’๐’”๐’”(๐’๐’) with respect to ๐’๐’.

Donโ€™t worry that ๐‘ฆ๐‘ฆ and ๐‘ฅ๐‘ฅ have disappeared here. We can use any letters we like. The letter ๐‘ฃ๐‘ฃ means voltage and ๐‘ก๐‘ก is time. All we want to do here then is to find ๐‘‘๐‘‘๐‘ฃ๐‘ฃ ๐‘‘๐‘‘๐‘ก๐‘ก๏ฟฝ .

We see that the function is similar to that in row 2 of our table. We may writeโ€ฆ

๐‘‘๐‘‘๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ก๐‘ก

= ๐ด๐ด cos(๐‘ก๐‘ก) = 12 cos (๐‘ก๐‘ก)

Differentiate the function ๐’๐’ = ๐Ÿ“๐Ÿ“ ๐’„๐’„๐’”๐’”๐’”๐’”(๐’๐’) with respect to ๐’๐’.

The letter ๐‘–๐‘– means current and ๐‘ก๐‘ก is time. All we want to do here then is to find ๐‘‘๐‘‘๐‘–๐‘– ๐‘‘๐‘‘๐‘ก๐‘ก๏ฟฝ .

We see that the function is similar to that in row 3 of our table. We may writeโ€ฆ

๐‘‘๐‘‘๐‘–๐‘–๐‘‘๐‘‘๐‘ก๐‘ก

= โˆ’๐ด๐ด sin(๐‘ก๐‘ก) = โˆ’5 sin (๐‘ก๐‘ก)

Sample

Page 5: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

7 of 38

Worked Example 5

Worked Example 6

Worked Example 7

Worked Example 8

Questions

Differentiate the function ๐’š๐’š = ๐Ÿ’๐Ÿ’๐’”๐’”๐Ÿ๐Ÿ๐’™๐’™ with respect to ๐’™๐’™.

From row 4 of our table we can writeโ€ฆ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐‘˜๐‘˜๐ด๐ด๐‘’๐‘’๐‘˜๐‘˜๐‘˜๐‘˜ = (2)(4)๐‘’๐‘’2๐‘˜๐‘˜ = 8๐‘’๐‘’2๐‘˜๐‘˜

Differentiate the function ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ”๐Ÿ” ๐’”๐’”๐’”๐’”๐’๐’๐’”๐’”(๐’™๐’™) with respect to ๐’™๐’™.

We refer to row 5 of our table and writeโ€ฆ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

=๐ด๐ด๐‘ฅ๐‘ฅ

=16๐‘ฅ๐‘ฅ

Differentiate the function ๐’š๐’š = ๐Ÿ—๐Ÿ— ๐’”๐’”๐’๐’๐’”๐’”๐’„๐’„(๐’™๐’™) with respect to ๐’™๐’™.

We refer to row 6 of our table and writeโ€ฆ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐ด๐ด cosh(๐‘ฅ๐‘ฅ) = 9 cosh (๐‘ฅ๐‘ฅ)

Differentiate the function ๐’š๐’š = โˆ’๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’.๐Ÿ“๐Ÿ“ ๐’„๐’„๐’”๐’”๐’”๐’”๐’„๐’„(๐’™๐’™) with respect to ๐’™๐’™.

We refer to row 7 of our table and writeโ€ฆ

๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= ๐ด๐ด sinh(๐‘ฅ๐‘ฅ) = โˆ’14.5 sinh (๐‘ฅ๐‘ฅ)

Q3.1 Differentiate the function ๐’š๐’š = ๐Ÿ–๐Ÿ–๐’™๐’™๐Ÿ“๐Ÿ“ with respect to ๐’™๐’™.

Sample

Page 6: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

8 of 38

Video

Q3.2 Differentiate the function ๐’š๐’š = ๐Ÿ•๐Ÿ•๐’™๐’™โˆ’๐Ÿ’๐Ÿ’ with respect to ๐’™๐’™.

Q3.3 Differentiate the function ๐’—๐’— = ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– ๐’”๐’”๐’๐’๐’”๐’”(๐’๐’) with respect to ๐’๐’.

Q3.4 Differentiate the function ๐’๐’ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’„๐’„๐’”๐’”๐’”๐’”(๐’๐’) with respect to ๐’๐’.

Q3.5 Differentiate the function ๐’š๐’š = ๐Ÿ”๐Ÿ”๐’”๐’”๐Ÿ‘๐Ÿ‘๐’™๐’™ with respect to ๐’™๐’™.

Q3.6 Differentiate the function ๐’š๐’š = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ ๐’”๐’”๐’”๐’”๐’๐’๐’”๐’”(๐’™๐’™) with respect to ๐’™๐’™.

Q3.7 Differentiate the function ๐’š๐’š = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ ๐’”๐’”๐’๐’๐’”๐’”๐’„๐’„(๐’™๐’™) with respect to ๐’™๐’™.

Q3.8 Differentiate the function ๐’š๐’š = โˆ’๐Ÿ๐Ÿ๐Ÿ—๐Ÿ—.๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ ๐’„๐’„๐’”๐’”๐’”๐’”๐’„๐’„(๐’™๐’™) with respect to ๐’™๐’™.

ANSWERS

These videos will boost your knowledge of differentiation

3.1.3 Notion of the Derivative and Rates of Change The notion of taking the derivative of a function and examining rate of change can be readily explained with reference to the diagram belowโ€ฆ

Q3.1 40๐‘ฅ๐‘ฅ4

Q3.2 โˆ’28๐‘ฅ๐‘ฅโˆ’5

Q3.3 18 cos(๐‘ก๐‘ก)

Q3.4 โˆ’11 sin(๐‘ก๐‘ก)

Q3.5 18๐‘’๐‘’3๐‘˜๐‘˜

Q3.6 20 ๐‘ฅ๐‘ฅโ„

Q3.7 13 cosh(๐‘ฅ๐‘ฅ)

Q3.8 โˆ’19.62 sinh(๐‘ฅ๐‘ฅ) Sample

Page 7: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

9 of 38

Challenge

Here we have plotted a section of a sine wave in red. Notice that we have used pink arrows to indicate the slope at various points on the sine wave. For example, at the start the sine wave is rising to a positive more rapidly than at any other point. The pink arrow indicates this positive growth by pointing upwards in the direction of the sine wave at that beginning point. The second arrow shows the slope of the sine wave at ๐œ‹๐œ‹ 2โ„ radians (or 900 if you like). Here it is at a plateau and has zero slope (meaning that it just moves horizontally, with no vertical movement at all). The third arrow indicates a negative slope (its moving down very steeply). The picture continues in a similar way for the remaining arrows.

Hereโ€™s the really interesting bit. When we record all of the slopes on our sine wave we get the dotted waveform in blue. What does that look like? Of course, it is a cosine wave. So we have just proved graphically that finding the slope (differentiating) at all points on a sine wave leads to a cosine wave.

โˆด ๐’„๐’„{๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ (๐’๐’)}

๐’„๐’„๐’๐’= ๐œ๐œ๐œ๐œ๐ฌ๐ฌ (๐’๐’)

โ€ฆ as given in our table of standard derivatives in section 3.1.2.

If we had loads of time to kill we could prove all of the other derivatives graphically.

Determine a graphical proof (as above) forโ€ฆ

๐’„๐’„{๐œ๐œ๐œ๐œ๐ฌ๐ฌ (๐’๐’)}๐’„๐’„๐’๐’

= โˆ’๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ (๐’๐’)

Sample

Page 8: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

27 of 38

3.2.3 Differentiation of Inverse Trigonometric Functions Suppose we have the equationโ€ฆ

๐‘ฆ๐‘ฆ = ๐ด๐ด๐‘–๐‘–๐‘›๐‘›โˆ’1(๐‘ฅ๐‘ฅ)

How do we then go about finding ๐‘‘๐‘‘๐‘ฆ๐‘ฆ ๐‘‘๐‘‘๐‘ฅ๐‘ฅโ„ ? Maybe we should write this in a different formโ€ฆ

๐‘ฅ๐‘ฅ = sin(๐‘ฆ๐‘ฆ)

Now can differentiateโ€ฆ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ

= cos(๐‘ฆ๐‘ฆ) โˆด ๐‘“๐‘“๐‘™๐‘™๐‘–๐‘–๐‘“๐‘“ ๐‘ ๐‘ ๐‘™๐‘™๐‘ก๐‘กโ„Ž ๐ด๐ด๐‘–๐‘–๐‘‘๐‘‘๐‘’๐‘’๐ด๐ด: ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

=1

cos (๐‘ฆ๐‘ฆ)

Next we shall remember one of our handy trig. Identitiesโ€ฆ

๐‘๐‘๐‘™๐‘™๐ด๐ด2(๐‘ฆ๐‘ฆ) + ๐ด๐ด๐‘–๐‘–๐‘›๐‘›2(๐‘ฆ๐‘ฆ) = 1 โˆด ๐‘๐‘๐‘™๐‘™๐ด๐ด2(๐‘ฆ๐‘ฆ) = 1 โˆ’ ๐ด๐ด๐‘–๐‘–๐‘›๐‘›2(๐‘ฆ๐‘ฆ) โˆด cos(๐‘ฆ๐‘ฆ) = ๏ฟฝ1 โˆ’ ๐ด๐ด๐‘–๐‘–๐‘›๐‘›2(๐‘ฆ๐‘ฆ)

Since we know ๐‘ฅ๐‘ฅ = sin(๐‘ฆ๐‘ฆ) then if we square both sides we shall have ๐‘ฅ๐‘ฅ2 = ๐ด๐ด๐‘–๐‘–๐‘›๐‘›2(๐‘ฆ๐‘ฆ)

So we may re-write our transposed trig. identity asโ€ฆ

cos(๐‘ฆ๐‘ฆ) = ๏ฟฝ1 โˆ’ ๐‘ฅ๐‘ฅ2

Now we can put this latest result back into our differentialโ€ฆ

๐’„๐’„๐’š๐’š๐’„๐’„๐’™๐’™

=๐Ÿ๐Ÿ

๐œ๐œ๐œ๐œ๐ฌ๐ฌ (๐’š๐’š)=

๐Ÿ๐Ÿโˆš๐Ÿ๐Ÿ โˆ’ ๐’™๐’™๐Ÿ๐Ÿ

=๐Ÿ๐Ÿ

(๐Ÿ๐Ÿ โˆ’ ๐’™๐’™๐Ÿ๐Ÿ)๐ŸŽ๐ŸŽ.๐Ÿ“๐Ÿ“ = (๐Ÿ๐Ÿ โˆ’ ๐’™๐’™๐Ÿ๐Ÿ)โˆ’๐ŸŽ๐ŸŽ.๐Ÿ“๐Ÿ“

That was a bit tricky, but we managed to find ๐‘ฆ๐‘ฆโ€ฒ.

Letโ€™s go on and see if we can find ๐‘ฆ๐‘ฆโ€ฒโ€ฒโ€ฆ

๐‘ฆ๐‘ฆโ€ฒ = (1 โˆ’ ๐‘ฅ๐‘ฅ2)โˆ’0.5

This is where that shorthand notation for derivatives comes in really handyโ€ฆ

๐ฟ๐ฟ๐‘’๐‘’๐‘ก๐‘ก ๐‘ข๐‘ข = 1 โˆ’ ๐‘ฅ๐‘ฅ2 โˆด ๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= โˆ’2๐‘ฅ๐‘ฅ

โˆด ๐‘ฆ๐‘ฆโ€ฒ = ๐‘ข๐‘ขโˆ’0.5

โˆด ๐‘‘๐‘‘๐‘ฆ๐‘ฆโ€ฒ

๐‘‘๐‘‘๐‘ข๐‘ข= โˆ’0.5๐‘ข๐‘ขโˆ’1.5

โˆด ๐‘ฆ๐‘ฆโ€ฒโ€ฒ =๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โˆ™ ๐‘‘๐‘‘๐‘ฆ๐‘ฆโ€ฒ

๐‘‘๐‘‘๐‘ข๐‘ข= โˆ’2๐‘ฅ๐‘ฅ ร— โˆ’0.5๐‘ข๐‘ขโˆ’1.5

โˆด ๐’š๐’šโ€ฒโ€ฒ = ๐’™๐’™๐’…๐’…โˆ’๐Ÿ๐Ÿ.๐Ÿ“๐Ÿ“ = ๐’™๐’™(๐Ÿ๐Ÿ โˆ’ ๐’™๐’™๐Ÿ๐Ÿ)โˆ’๐Ÿ๐Ÿ.๐Ÿ“๐Ÿ“

Sample

Page 9: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

28 of 38

Question

Question

Q3.23 Find ๐’š๐’šโ€ฒโ€ฒ for ๐’š๐’š = ๐’„๐’„๐’”๐’”๐’”๐’”โˆ’๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐’™๐’™)

ANSWER

3.2.4 Differentiation of Inverse Hyperbolic Functions Consider the functionโ€ฆ

๐‘ฆ๐‘ฆ = ๐ด๐ด๐‘–๐‘–๐‘›๐‘›โ„Žโˆ’1(๐‘ฅ๐‘ฅ)

Our task here is to find ๐‘ฆ๐‘ฆโ€ฒโ€ฒ. We proceed in a similar manner to the previous problemโ€ฆ

๐‘ฅ๐‘ฅ = sinh (๐‘ฆ๐‘ฆ)

โˆด ๐‘‘๐‘‘๐‘ฅ๐‘ฅ๐‘‘๐‘‘๐‘ฆ๐‘ฆ

= cosh(๐‘ฆ๐‘ฆ) โˆด ๐‘‘๐‘‘๐‘ฆ๐‘ฆ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

=1

cosh (๐‘ฆ๐‘ฆ)

A useful identity isโ€ฆ

๐‘๐‘๐‘™๐‘™๐ด๐ดโ„Ž2(๐‘ฆ๐‘ฆ)โˆ’ ๐ด๐ด๐‘–๐‘–๐‘›๐‘›โ„Ž2(๐‘ฆ๐‘ฆ) = 1 โˆด ๐‘๐‘๐‘™๐‘™๐ด๐ดโ„Ž2(๐‘ฆ๐‘ฆ) = 1 + ๐ด๐ด๐‘–๐‘–๐‘›๐‘›โ„Ž2(๐‘ฆ๐‘ฆ)

โˆด ๐‘๐‘๐‘™๐‘™๐ด๐ดโ„Ž2(๐‘ฆ๐‘ฆ) = 1 + ๐‘ฅ๐‘ฅ2 โˆด cosh(๐‘ฆ๐‘ฆ) = ๏ฟฝ1 + ๐‘ฅ๐‘ฅ2

โˆด ๐’„๐’„๐’š๐’š๐’„๐’„๐’™๐’™

= ๐’š๐’šโ€ฒ =๐Ÿ๐Ÿ

โˆš๐Ÿ๐Ÿ + ๐’™๐’™๐Ÿ๐Ÿ= (๐Ÿ๐Ÿ + ๐’™๐’™๐Ÿ๐Ÿ)โˆ’๐ŸŽ๐ŸŽ.๐Ÿ“๐Ÿ“

Now to find that second derivativeโ€ฆ

๐‘ฆ๐‘ฆโ€ฒ = (1 + ๐‘ฅ๐‘ฅ2)โˆ’0.5

๐ฟ๐ฟ๐‘’๐‘’๐‘ก๐‘ก ๐‘ข๐‘ข = 1 + ๐‘ฅ๐‘ฅ2 โˆด ๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= 2๐‘ฅ๐‘ฅ

โˆด ๐‘ฆ๐‘ฆโ€ฒ = ๐‘ข๐‘ขโˆ’0.5 โˆด ๐‘‘๐‘‘๐‘ฆ๐‘ฆโ€ฒ

๐‘‘๐‘‘๐‘ข๐‘ข= โˆ’0.5๐‘ข๐‘ขโˆ’1.5

โˆด ๐‘ฆ๐‘ฆโ€ฒโ€ฒ =๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โˆ™ ๐‘‘๐‘‘๐‘ฆ๐‘ฆโ€ฒ

๐‘‘๐‘‘๐‘ข๐‘ข= 2๐‘ฅ๐‘ฅ ร— โˆ’0.5๐‘ข๐‘ขโˆ’1.5 = โˆ’๐‘ฅ๐‘ฅ(1 + ๐‘ฅ๐‘ฅ2)โˆ’1.5

Q3.24 Find ๐’š๐’šโ€ฒโ€ฒ for ๐’š๐’š = ๐’„๐’„๐’”๐’”๐’”๐’”๐’„๐’„โˆ’๐Ÿ๐Ÿ(๐Ÿ๐Ÿ๐’™๐’™)

ANSWER

Q3.23 โˆ’8๐‘˜๐‘˜(1โˆ’4๐‘˜๐‘˜2)1.5

Sample

Page 10: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

30 of 38

Worked Example 22

3.3 Further Integration

3.3.1 Integration by Parts This technique provides us with a way to integrate the product of two simple functions. We shall develop a formula to use as a framework for the technique.

The starting point for our formula lies with the Product Rule, which you mastered in Section 3.1.5โ€ฆ

๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฅ๐‘ฅ

(๐‘ข๐‘ข๐‘ฃ๐‘ฃ) = ๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

+ ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

Letโ€™s rearrange this formulaโ€ฆ

๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

=๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฅ๐‘ฅ

(๐‘ข๐‘ข๐‘ฃ๐‘ฃ) โˆ’ ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

If we now integrate both sides with respect to ๐‘ฅ๐‘ฅ then we need to place a โˆซ sign before each term and a ๐‘‘๐‘‘๐‘ฅ๐‘ฅ at the end of each term, like soโ€ฆ

๏ฟฝ๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘๐‘ฅ๐‘ฅ

(๐‘ข๐‘ข๐‘ฃ๐‘ฃ)๐‘‘๐‘‘๐‘ฅ๐‘ฅ โˆ’๏ฟฝ๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐‘‘๐‘‘๐‘ฅ๐‘ฅ

Some simplifications can be noticed here:

In the first integral the two ๐‘‘๐‘‘๐‘ฅ๐‘ฅ terms cancel each other out In the second integral we are taking the โ€˜integral of the differentialโ€™ of ๐‘ข๐‘ข๐‘ฃ๐‘ฃ. Since integration is the

reverse of differentiation then the โ€™integral of a differentialโ€™ drops away, just leaving ๐‘ข๐‘ข๐‘ฃ๐‘ฃ In the third integral the two ๐‘‘๐‘‘๐‘ฅ๐‘ฅ terms cancel each other out

Performing these simplifications givesโ€ฆ

๏ฟฝ๐’…๐’… ๐’„๐’„๐’—๐’— = ๐’…๐’…๐’—๐’— โˆ’๏ฟฝ๐’—๐’— ๐’„๐’„๐’…๐’…

That is our formula for integration by parts.

What we do with the formula is to look at the left hand side and see the integral of a product. That product is composed of ๐‘ข๐‘ข and ๐‘‘๐‘‘๐‘ฃ๐‘ฃ. When using integration by parts you have a choice of which part of the product to call ๐‘ข๐‘ข and which to call ๐‘‘๐‘‘๐‘ฃ๐‘ฃ. Fortunately, your choice is guidedโ€ฆ

The ๐‘ข๐‘ข part will become a constant after taking multiple derivatives The ๐‘‘๐‘‘๐‘ฃ๐‘ฃ part is readily integrated by using standard integrals.

Sample

Page 11: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

31 of 38

Worked Example 23

Determine: โˆซ๐’™๐’™ ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ(๐’™๐’™)๐’„๐’„๐’™๐’™

One part of our product is ๐‘ฅ๐‘ฅ and the other part is sin (๐‘ฅ๐‘ฅ). We need to make a choice as to which one to make ๐‘ข๐‘ข and which to make ๐‘‘๐‘‘๐‘ฃ๐‘ฃ. Our guidance tells us to make the ๐‘ฅ๐‘ฅ part equal to ๐‘ข๐‘ข since the derivative of ๐‘ฅ๐‘ฅ becomes 1 (i.e. a constant)โ€ฆ

๐ฟ๐ฟ๐‘’๐‘’๐‘ก๐‘ก ๐‘ข๐‘ข = ๐‘ฅ๐‘ฅ

๐ฟ๐ฟ๐‘’๐‘’๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ฃ๐‘ฃ = sin (๐‘ฅ๐‘ฅ)

We now try to form the terms in our integration by parts formulaโ€ฆ

๐ผ๐ผ๐‘“๐‘“ ๐‘ข๐‘ข = ๐‘ฅ๐‘ฅ โˆด ๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= 1 โˆด ๐‘‘๐‘‘๐‘ข๐‘ข = ๐‘‘๐‘‘๐‘ฅ๐‘ฅ

๐ผ๐ผ๐‘“๐‘“ ๐‘‘๐‘‘๐‘ฃ๐‘ฃ = sin(๐‘ฅ๐‘ฅ) โˆด ๐‘ฃ๐‘ฃ = โˆ’ cos (๐‘ฅ๐‘ฅ)

We can now writeโ€ฆ

๏ฟฝ๐’…๐’… ๐’„๐’„๐’—๐’— = ๐’…๐’…๐’—๐’— โˆ’๏ฟฝ๐’—๐’— ๐’„๐’„๐’…๐’…

๏ฟฝ๐‘ฅ๐‘ฅ sin(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘ฅ๐‘ฅ = ๐‘ฅ๐‘ฅ(โˆ’ cos(๐‘ฅ๐‘ฅ)) โˆ’๏ฟฝ(โˆ’ cos(๐‘ฅ๐‘ฅ))๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โˆด ๏ฟฝ๐‘ฅ๐‘ฅ sin(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘ฅ๐‘ฅ = โˆ’๐‘ฅ๐‘ฅ cos(๐‘ฅ๐‘ฅ) + ๏ฟฝ cos(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โˆด ๏ฟฝ๐’™๐’™๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ(๐’™๐’™)๐’„๐’„๐’™๐’™ = โˆ’๐’™๐’™๐œ๐œ๐œ๐œ๐ฌ๐ฌ(๐’™๐’™) + ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ(๐’™๐’™) + ๐‘ช๐‘ช

That was fairly straightforward. Always remember the constant of integration ๐ถ๐ถ at the end.

Letโ€™s now try to integrate the product of an exponential and a cosine.

Determine: โˆซ๐’”๐’”๐Ÿ๐Ÿ๐’™๐’™ ๐œ๐œ๐œ๐œ๐ฌ๐ฌ(๐’™๐’™)๐’„๐’„๐’™๐’™

Our two products here are ๐‘’๐‘’2๐‘˜๐‘˜ and cos (๐‘ฅ๐‘ฅ). Neither of them will reduce to a constant when differentiated so it doesnโ€™t matter which one we call ๐‘ข๐‘ข and which we call ๐‘‘๐‘‘๐‘ฃ๐‘ฃ. You will see here that we need to do integration by parts twice to arrive at our answer.

Just as in the previous worked example we need to decide on assignments for ๐‘ข๐‘ข and ๐‘‘๐‘‘๐‘ฃ๐‘ฃ, then find ๐‘ฃ๐‘ฃ and ๐‘‘๐‘‘๐‘ข๐‘ข. Letโ€™s do thatโ€ฆ

๐ฟ๐ฟ๐‘’๐‘’๐‘ก๐‘ก ๐‘ข๐‘ข = ๐‘’๐‘’2๐‘˜๐‘˜ โˆด ๐‘‘๐‘‘๐‘ข๐‘ข๐‘‘๐‘‘๐‘ฅ๐‘ฅ

= 2๐‘’๐‘’2๐‘˜๐‘˜ โˆด ๐‘‘๐‘‘๐‘ข๐‘ข = 2๐‘’๐‘’2๐‘˜๐‘˜๐‘‘๐‘‘๐‘ฅ๐‘ฅ

Sample

Page 12: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

32 of 38

Question

๐ฟ๐ฟ๐‘’๐‘’๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ฃ๐‘ฃ = cos(๐‘ฅ๐‘ฅ) โˆด ๐‘ฃ๐‘ฃ = sin (๐‘ฅ๐‘ฅ)

To aid our working here (and save some ink) we normally assign the capital letter ๐ผ๐ผ to the integral in our question.

โˆด ๐ผ๐ผ = ๏ฟฝ๐‘’๐‘’2๐‘˜๐‘˜ cos(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘ฅ๐‘ฅ

โˆด ๐ผ๐ผ = ๐‘’๐‘’2๐‘˜๐‘˜ sin(๐‘ฅ๐‘ฅ) โˆ’๏ฟฝ sin(๐‘ฅ๐‘ฅ) 2๐‘’๐‘’2๐‘˜๐‘˜๐‘‘๐‘‘๐‘ฅ๐‘ฅ

This needs tidyingโ€ฆ

โˆด ๐ผ๐ผ = ๐‘’๐‘’2๐‘˜๐‘˜ sin(๐‘ฅ๐‘ฅ) โˆ’ 2๏ฟฝ๐‘’๐‘’2๐‘˜๐‘˜sin(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘ฅ๐‘ฅ

We were rather hoping for an answer, but what we seem to have is another โ€˜integration by partsโ€™ problem embedded into our development. Donโ€™t worry, thatโ€™s quite normal for this type of problem. All we do is attack that last part with โ€˜integration by partsโ€™ once more, using square brackets. Our desired result will then appearโ€ฆ

๐ผ๐ผ = ๐‘’๐‘’2๐‘˜๐‘˜ sin(๐‘ฅ๐‘ฅ) โˆ’ 2 ๏ฟฝ๐‘’๐‘’2๐‘˜๐‘˜(โˆ’cos (๐‘ฅ๐‘ฅ)) โˆ’๏ฟฝโˆ’cos (๐‘ฅ๐‘ฅ)2๐‘’๐‘’2๐‘˜๐‘˜๐‘‘๐‘‘๐‘ฅ๐‘ฅ๏ฟฝ

Expanding these terms givesโ€ฆ

๐ผ๐ผ = ๐‘’๐‘’2๐‘˜๐‘˜ sin(๐‘ฅ๐‘ฅ) + 2๐‘’๐‘’2๐‘˜๐‘˜ cos(๐‘ฅ๐‘ฅ) โˆ’ 4๏ฟฝ๐‘’๐‘’2๐‘˜๐‘˜ cos(๐‘ฅ๐‘ฅ)๐‘‘๐‘‘๐‘ฅ๐‘ฅ

That last integral is the same as ๐ผ๐ผ, which is really handy, so we may now writeโ€ฆ

๐ผ๐ผ = ๐‘’๐‘’2๐‘˜๐‘˜ sin(๐‘ฅ๐‘ฅ) + 2๐‘’๐‘’2๐‘˜๐‘˜ cos(๐‘ฅ๐‘ฅ) โˆ’ 4๐ผ๐ผ

โˆด 5๐ผ๐ผ = ๐‘’๐‘’2๐‘˜๐‘˜ sin(๐‘ฅ๐‘ฅ) + 2๐‘’๐‘’2๐‘˜๐‘˜cos (๐‘ฅ๐‘ฅ)

If we divide both sides by 5 then we have our final answerโ€ฆ

๐‘ฐ๐‘ฐ =๐’”๐’”๐Ÿ๐Ÿ๐’™๐’™ ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ(๐’™๐’™) + ๐Ÿ๐Ÿ๐’”๐’”๐Ÿ๐Ÿ๐’™๐’™๐œ๐œ๐œ๐œ๐ฌ๐ฌ (๐’™๐’™)

๐Ÿ“๐Ÿ“

Q3.25 Determine: โˆซ๐’”๐’”๐Ÿ’๐Ÿ’๐’™๐’™๐’”๐’”๐’๐’๐’”๐’”(๐Ÿ๐Ÿ๐’™๐’™)๐’„๐’„๐’™๐’™

ANSWER

Q3.25 4๐‘’๐‘’4๐‘ฅ๐‘ฅ sin(2๐‘˜๐‘˜)โˆ’2๐‘’๐‘’4๐‘ฅ๐‘ฅcos(2๐‘˜๐‘˜)

20

Sample

Page 13: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

36 of 38

3.4 Solution of Engineering Problems with Calculus

3.4.1 Charging RC Circuit For the circuit below, use Calculus to find the charge stored in the capacitor 2 seconds after the switch closes. Assume zero charge on the capacitor before this event.

For a capacitor charging via a DC source voltage, through a series resistor, the formula for instantaneous current isโ€ฆ

๐‘–๐‘– =๐ธ๐ธ๐‘…๐‘…โˆ™ ๐‘’๐‘’๏ฟฝโˆ’๐‘ก๐‘ก ๐‘…๐‘…๐‘…๐‘…๏ฟฝ ๏ฟฝ ๐ด๐ด๐‘ ๐‘ ๐‘“๐‘“๐ด๐ด

Since current is the defined as the rate of change of charge (๐‘ ๐‘ , carried by passing electrons) we may sayโ€ฆ

๐‘–๐‘– =๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

If we integrate both sides with respect to ๐‘ก๐‘ก we will haveโ€ฆ

๏ฟฝ ๐‘–๐‘– ๐‘‘๐‘‘๐‘ก๐‘ก = ๏ฟฝ๐‘‘๐‘‘๐‘ ๐‘ ๐‘‘๐‘‘๐‘ก๐‘ก

๐‘‘๐‘‘๐‘ก๐‘ก = ๏ฟฝ๐‘‘๐‘‘๐‘ ๐‘  = ๐‘ ๐‘ 

So we may say thatโ€ฆ

๐‘ ๐‘  = ๏ฟฝ ๐‘–๐‘– ๐‘‘๐‘‘๐‘ก๐‘ก

If we wish to find the amount of charge store stored within a certain time period (i.e. 2 seconds in this example) we writeโ€ฆ

๐‘ ๐‘ (0โˆ’2) = ๏ฟฝ ๐‘–๐‘– ๐‘‘๐‘‘๐‘ก๐‘ก2

0

= ๏ฟฝ๐ธ๐ธ๐‘…๐‘…โˆ™ ๐‘’๐‘’๏ฟฝโˆ’๐‘ก๐‘ก ๐‘…๐‘…๐‘…๐‘…๏ฟฝ ๏ฟฝ

2

0

๐‘‘๐‘‘๐‘ก๐‘ก

=๐ธ๐ธ๐‘…๐‘…๏ฟฝ๐‘’๐‘’๏ฟฝโˆ’1๐‘…๐‘…๐‘…๐‘…๏ฟฝ๐‘ก๐‘ก

โˆ’1๐‘…๐‘…๐ถ๐ถ๏ฟฝ

๏ฟฝ

0

2

=โˆ’๐ธ๐ธ๐‘…๐‘…๐ถ๐ถ๐‘…๐‘…

๏ฟฝ๐‘’๐‘’๏ฟฝโˆ’๐‘ก๐‘ก ๐‘…๐‘…๐‘…๐‘…๏ฟฝ ๏ฟฝ๏ฟฝ0

2= โˆ’๐ธ๐ธ๐ถ๐ถ ๏ฟฝ๐‘’๐‘’๏ฟฝโˆ’๐‘ก๐‘ก ๐‘…๐‘…๐‘…๐‘…๏ฟฝ ๏ฟฝ๏ฟฝ

0

2

Since we know that ๐‘…๐‘… = 1๐‘€๐‘€ฮฉ and ๐ถ๐ถ = 1๐œ‡๐œ‡๐น๐น then ๐‘…๐‘…๐ถ๐ถ = 1 ร— 106 ร— 1 ร— 10โˆ’6 = 106โˆ’6 = 100 = 1 we may writeโ€ฆ

Sample

Page 14: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

37 of 38

๐‘ ๐‘ (0โˆ’2) = โˆ’๐ธ๐ธ๐ถ๐ถ ๏ฟฝ๐‘’๐‘’๏ฟฝโˆ’๐‘ก๐‘ก 1๏ฟฝ ๏ฟฝ๏ฟฝ0

2= โˆ’๐ธ๐ธ๐ถ๐ถ[๐‘’๐‘’โˆ’๐‘ก๐‘ก]02 = โˆ’๐ธ๐ธ๐ถ๐ถ[๐‘’๐‘’โˆ’2 โˆ’ ๐‘’๐‘’โˆ’0] = โˆ’๐ธ๐ธ๐ถ๐ถ[0.135 โˆ’ 1]

We also know that the DC supply voltage (๐ธ๐ธ) is 10Vโ€ฆ

โˆด ๐’’๐’’(๐ŸŽ๐ŸŽโˆ’๐Ÿ๐Ÿ) = โˆ’๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ ร— ๐Ÿ๐Ÿ ร— ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽโˆ’๐Ÿ”๐Ÿ”[โˆ’๐ŸŽ๐ŸŽ.๐Ÿ–๐Ÿ–๐Ÿ”๐Ÿ”๐Ÿ“๐Ÿ“] = ๐Ÿ–๐Ÿ–.๐Ÿ”๐Ÿ”๐Ÿ“๐Ÿ“ ร— ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽโˆ’๐Ÿ”๐Ÿ” ๐‘ช๐‘ช๐’”๐’”๐’…๐’…๐’”๐’”๐’”๐’”๐’๐’๐‘ช๐‘ช๐’”๐’” = ๐Ÿ–๐Ÿ–.๐Ÿ”๐Ÿ”๐Ÿ“๐Ÿ“ ๐๐๐‘ช๐‘ช

The plot below illustrates the integration we have just performedโ€ฆ

Current is on the vertical axis and time on the horizontal. When we multiply current by time we get charge, which is shown as the shaded area between 0 and 2 seconds. You may like to experiment with the Graph simulator to produce similar results.

3.4.2 Energising Inductor Consider the series RL circuit belowโ€ฆ

If ๐‘ฌ๐‘ฌ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ ๐‘ฝ๐‘ฝ, ๐‘น๐‘น = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐›€๐›€ and ๐‘ณ๐‘ณ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐’๐’๐Ÿ๐Ÿ, use Calculus to determine the voltage across the inductor after ๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ๐๐๐’”๐’”. Use the following formulae in your solution developmentโ€ฆ

๐’๐’ =๐‘ฌ๐‘ฌ๐‘น๐‘น๏ฟฝ๐Ÿ๐Ÿ โˆ’ ๐’”๐’”โˆ’๐‘น๐‘น๐’๐’ ๐‘ณ๐‘ณ๏ฟฝ ๏ฟฝ ๐’‚๐’‚๐’”๐’”๐’„๐’„ ๐’—๐’—๐‘ณ๐‘ณ = ๐‘ณ๐‘ณ

๐’„๐’„๐’๐’๐’„๐’„๐’๐’

Sample

Page 15: Unit Workbook 4 Calculus - WB 4.pdfLetโ€™s go on and see if we can find ๐‘ฆ๐‘ฆ โ€ฒโ€ฒ โ€ฆ ๐‘ฆ๐‘ฆ โ€ฒ = (1 โˆ’๐‘ฅ๐‘ฅ 2) โˆ’0.5 This is where that shorthand notation for derivatives

Unit WorkBook 4 โ€“ Level 4 ENGโ€“ U2 Engineering Maths ยฉ 2018 UniCourse Ltd. All Rights Reserved.

38 of 38

We start withโ€ฆ

๐‘ฃ๐‘ฃ๐ฟ๐ฟ = ๐ฟ๐ฟ๐‘‘๐‘‘๐‘–๐‘–๐‘‘๐‘‘๐‘ก๐‘ก

= ๐ฟ๐ฟ๐‘‘๐‘‘ ๏ฟฝ๐ธ๐ธ๐‘…๐‘… ๏ฟฝ1 โˆ’ ๐‘’๐‘’โˆ’๐‘…๐‘…๐‘ก๐‘ก ๐ฟ๐ฟ๏ฟฝ ๏ฟฝ๏ฟฝ

๐‘‘๐‘‘๐‘ก๐‘ก

=๐ฟ๐ฟ๐ธ๐ธ๐‘…๐‘…โˆ™๐‘‘๐‘‘ ๏ฟฝ1 โˆ’ ๐‘’๐‘’โˆ’๐‘…๐‘…๐‘ก๐‘ก ๐ฟ๐ฟ๏ฟฝ ๏ฟฝ

๐‘‘๐‘‘๐‘ก๐‘ก=๐ฟ๐ฟ๐ธ๐ธ๐‘…๐‘…๏ฟฝ๐‘…๐‘…๐ฟ๐ฟโˆ™ ๐‘’๐‘’โˆ’๐‘…๐‘…๐‘ก๐‘ก ๐ฟ๐ฟ๏ฟฝ ๏ฟฝ = ๐ธ๐ธ๐‘’๐‘’โˆ’๐‘…๐‘…๐‘ก๐‘ก ๐ฟ๐ฟ๏ฟฝ

Putting in the values for E, R, t and L givesโ€ฆ

๐’—๐’—๐‘ณ๐‘ณ = ๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ๐’”๐’”๏ฟฝโˆ’๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ

๐Ÿ”๐Ÿ”ร—๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿร—๐Ÿ๐Ÿ๐ŸŽ๐ŸŽโˆ’๐Ÿ”๐Ÿ”๐ŸŽ๐ŸŽ.๐Ÿ๐Ÿ ๏ฟฝ

= ๐Ÿ”๐Ÿ”.๐ŸŽ๐ŸŽ๐Ÿ”๐Ÿ”๐Ÿ“๐Ÿ“ ๐’—๐’—๐’”๐’”๐’”๐’”๐’๐’๐’”๐’”

Sample