unit i basic concepts

Upload: saravana-kumar

Post on 02-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Unit I Basic Concepts

    1/14

    Introduction to CompressibleFlow

    0 Dt D

    The density of a gas changes significantly along a streamline

    Compressible Flow

    Definition of Compressibility: the fractional change involume of the fluid element per unit change in pressure

    p

    p

    p

    pv

    dp p +

    dp p +dp p +

    dp p +

    dvv

    Compressible Flow

    1. Mach Number:

    2. Compressibility becomes important for High SpeedFlows where M > 0.3

    M < 0.3 Subsonic & incompressible 0.3 < M < 0.8 Subsonic & compressible 0.8 < M < 1.2 transonic flow shock waves appear

    mixed subsonic and sonic flow regime 1.2 < M < 3.0 - Supersonic shock waves are present

    but NO subsonic flow M > 3.0 Hypersonic Flow, shock waves and other

    flow changes are very strong

    soundof speed velocitylocal==

    cV

    M

  • 8/10/2019 Unit I Basic Concepts

    2/14

    Compressible Flow

    3. Significant changes in velocity and pressure resultin density variations throughout a flow field

    4. Large Temperature variations result in densityvariations.

    As a result we now have two new variables we must solve for:T &

    We need 2 new equations.We will solve: mass, linear momentum, energy and an equation of state.

    Important Effects of Compressibility on Flow

    1. Choked Flow a flow rate in a duct is limited bythe sonic condition

    2. Sound Wave/Pressure Waves rise and fall of pressure during the passage of an acoustic/soundwave. The magnitude of the pressure change isvery small.

    3. Shock Waves nearly discontinuous propertychanges in supersonic flow. (Explosions, highspeed flight, gun firing, nuclear explosion)

    4. A pressure ratio of 2:1 will cause sonic flow

    Applications

    1. Nozzles and Diffusers and convergingdiverging nozzles

    2. Turbines, fans & pumps3. Throttles flow regulators, an obstruction

    in a duct that controls pressure drop.4. One Dimensional Isentropic Flow

    compressible pipe flow.

  • 8/10/2019 Unit I Basic Concepts

    3/14

    Approach

    Control volume approach Steady, One-dimension, Uniform Flow Additional Thermodynamics Concepts are

    needed Restrict our analysis to ideal gases

    Thermodynamics

    Equation of State Ideal Gas Law

    RT p =

    Temperature is absolute and the specific volume is(volume per unit mass):

    1=v

    K)J/(kg287.97kg/kmol28

    K)J/(kmol8314air of massMolecular

    ConstantGasUniversal ====m

    u

    M R

    R

    Thermodynamics Internal Energy &Enthalpy

    Internal Energy individual particle kinetic energy.Summation of molecular vibrational and rotational energy.

    For an ideal gas

    Recall from our integral form of the Energy Equation forEnthalpy of an ideal gas:

    dvvu

    dT T u

    ud T v

    ! " #$

    % &

    +!

    " #$

    % &

    =

    ~~~

    ( )T vuu ,~~ =

    dT cud v=~

    ( )T uu ~~ =

    )(T hh =

    dT cdh p=

    pvuh += ~

  • 8/10/2019 Unit I Basic Concepts

    4/14

    Thermodynamics Internal Energy &Enthalpy

    dT cdh p=

    RdT ud dh

    RT uh

    pvuh

    +=

    +=

    +=

    ~

    ~

    ~

    RT p =

    dT cud v=~

    Substituting:

    const Rcc

    Rcc

    RdT dT cdT c

    RdT ud dh

    v p

    v p

    v p

    ==

    +=

    +=

    += ~

    Thermodynamics Internal Energy &Enthalpy

    Define the ratio of specific heats: const c

    ck

    v

    p =

    Then,

    1

    1

    =

    =

    k R

    c

    k kR

    c

    v

    p

    For Air:c p = 1004 J/kg-K k = 1.4

    The 2 nd Law of Thermodynamics & IsentropicProcesses

    Combining the 1 st and 2 nd Laws gives us Gibbs Equation

    revT Q

    ds ! " #$

    % &

    =

    We define entropy by:

    ''' =

    =

    =

    2

    1

    2

    1

    2

    1 pdp

    RT

    dT cds

    dpdT cTds

    dpdhTds

    p

    p

    dT cdh p=

    p R

    T =

    1

  • 8/10/2019 Unit I Basic Concepts

    5/14

    The 2 nd Law of Thermodynamics & IsentropicProcesses

    For an Isentropic process: adiabatic and reversibleWe get the following power law relationship

    1

    2

    1

    212 lnln p

    p R

    T T

    c s s p =

    k k

    k

    T T

    p p

    !! "

    #$$%

    & =!! "

    #$$%

    & =

    1

    21

    1

    2

    1

    2

    Control Volume Analysis of a Finite StrengthPressure Wave

    c

    0=V

    T

    p

    T T

    p p

    +

    +

    +

    V

    Moving Wave of Frontal Area A

    The Speed of sound ( c) is the rate of propagation of a press ure wave of infinitesimalstrength through a still fluid.

    cV

    T

    p

    =

    T T

    p p

    +

    +

    +

    V cV =

    Stationary WaveReference frame moving with wave

    ( ) ( )( )

    ( )( )( ) ( )

    (A)

    021

    +

    =

    ++=

    +=

    ++== '''

    cV

    V cc

    AV ccA

    dAV cdAcdAnV CS

    !Steady State Continuity Equation (Solve for the induced velocity V):

    1 2

    Control Volume Analysis of a Finite StrengthPressure Wave

    Small Amplitude moderate frequency waves areisentropic and

    cV

    T

    p

    =

    T T

    p p

    +

    +

    +

    V cV =( ) ( )

    ( ) ( )(B)

    12

    V c p

    cV ccA A p p pA

    V V mdAnV V F CS

    x x

    =

    =+

    == '(

    "!

    Steady State Momentum Equation:(Find p and c)

    1 2

    Now combine A & B and solve for the speed of sound:

    0of limitin the

    1

    2

    2

    =

    !! " #

    $$% &

    +

    =

    +

    =

    pc

    p pc

    const p

    k =

  • 8/10/2019 Unit I Basic Concepts

    6/14

    Control Volume Analysis of a Finite StrengthPressure Wave

    Calculating the Speed of Sound for an ideal gas:

    const p

    k =

    p

    k p

    =

    kRT pk c ==

    kRT c = Typical Speeds of SoundFluid c (m/s)Gases:H2 1,294Air 340

    Liquids:Water 1,490Et hyl Alc oh ol 1, 200

    Data From White 2003

    4.1=v

    p

    c

    ck

    For Air:

    K)J/(kg287 = R

    Example 1: Speed of sound calculation

    Determine the speed of sound in Argon (Ar) at 120 oC. MW = 40kg/kmol:

    kRT c =

    668.1=v

    p

    c

    ck

    K)J/(kg9.2070kg/kmol4

    K)J/(kmol8314 ===m

    u

    M R

    R

    ( )( ) 1-ms8.318393J/kgK 9.207668.1 == K c

    Movement of a sound sourceand wave propagation

    V = 0

    V < c V > c

    Source moves to the right at a speed V

    M cV 1

    sin ==

    Zone of silence

    V t

    3 c t

    V t V t

    Mach cone

  • 8/10/2019 Unit I Basic Concepts

    7/14

    Example 2: a needle nose projectile traveling at aspeed of M=3 passes 200m above an observer. Find

    the projectiles velocity and determine how far beyond the observer the projectile will first be heard

    200 m

    M =3

    x

    Example 2: a needle nose projectile traveling at aspeed of M=3 passes 200m above an observer. Find

    the projectiles velocity and determine how far beyond the observer the projectile will first be heard

    ( )( )( )

    mm

    x

    xm

    M

    McV

    kRT c

    o

    5655.19tan

    200

    200tan

    5.1931

    sin1

    sin

    m/s6.10412.3473

    m/s2.3473002874.1

    11

    ==

    =

    =! " #$

    % &

    =! " #$

    % &

    =

    ===

    ===

    Steady Isentropic Flow Control VolumeAnalysis

    Applications where the assumptions of steady,uniform, isentropic flow are reasonable:

    1. Exhaust gasses passing through the bladesof a turbine.

    2. Diffuser near the front of a jet engine3. Nozzles on a rocket engine4. A broken natural gas line

  • 8/10/2019 Unit I Basic Concepts

    8/14

    Steady Isentropic Flow

    p

    T

    h

    V

    dp p

    dT T

    d

    dhh

    +

    +

    +

    +

    dV V +

    dx

    ( )( )( )( )

    dAdV d dV Ad dAdV AdV dAVd VAd VdA AV VA

    dA AdV V d VA

    AV AV dAnV CS

    +++++++=

    +++=

    +== ' 2221110!

    Steady State Continuity Equation:

    1 2

    Steady Isentropic Flow

    p

    T

    h

    V

    dp p

    dT T

    d

    dhh

    +

    +

    +

    +

    dV V +

    dx

    ( )( )( )( )

    dAdV d dV Ad dAdV AdV dAVd VAd VdA AV VA

    dA AdV V d VA

    AV AV dAnV CS

    +++++++=

    +++=

    +== ' 2221110!

    Steady State Continuity Equation:

    Only retain 1 st order differential terms & divideBy VA

    V dV d

    AdA ++=

    0

    1 2

    ~ 0 ~ 0 ~ 0 ~ 0

    Steady Isentropic Flow

    p

    T

    h

    V

    dp p

    dT T

    d

    dhh

    +

    +

    +

    +

    dV V +

    dx

    ( ) ( ) ( )12122

    12

    2 ~~2

    pvu pvu z z g V V

    mW Q s ++++

    =

    "

    ""

    Steady State Energy Equation with

    1 inlet & 1 exit:

    Neglecting potential energy and recalling: pvuh += ~

    12

    21

    22

    2hh

    V V m

    W Q s +

    =

    "

    ""

    ( )122

    12

    2

    2T T c

    V V m

    W Q p

    s +

    =

    "

    ""Assuming and ideal gas:

    1 2

  • 8/10/2019 Unit I Basic Concepts

    9/14

    Steady Isentropic Flow

    p

    T

    h

    V

    dp p

    dT T

    d

    dhh

    +

    +

    +

    +

    dV V +

    dxSteady State Energy Equation with 1 inlet& 1 exit, neglecting potential energy &assuming Isentropic duct flow:

    1

    21

    2

    22

    22h

    V h

    V +=+

    Assuming and ideal gas:

    1

    21

    2

    22

    22T c

    V T c

    V p p

    +=+

    1

    21

    2

    22

    1212 RT

    k k V

    RT k

    k V

    +=

    +

    1 2

    Stagnation Conditions

    Assume the area A2is so big V 2 ~ 0, then

    ohhV

    h =+= 12

    12 2

    1

    2

    Stagnation enthalpy

    T c

    V T p

    o += 2

    2

    1

    21

    2

    22

    22T c

    V T c

    V p p

    +=+

    Similarly, as we adiabatically bring a fluid parcel to zero velocitythere is a corresponding increase in temperature

    Insolatedwalls

    Stagnation Temperature

    Stagnation Conditions maximum velocity

    T c

    V T

    po

    +=2

    2

    If the temperature, T is taken taken down to absolute zero,then (+) can be solved for the maximum velocity:

    (+)

    o pT cV 2max =

    No higher velocity is possible unless energy is added to theflow through heat transfer or shaft work.

  • 8/10/2019 Unit I Basic Concepts

    10/14

    Stagnation Conditions Mach number relations

    12

    11

    21

    12

    2

    22

    2

    2

    2

    +

    =+

    =

    +=

    +=

    M k

    cV k

    T T

    cT V

    T T

    T cV

    T

    o

    p

    o

    po For Ideal gases:

    11

    1 =!

    " #$

    % &

    =

    k kRT T

    k kR

    T c p

    pc2c

    12

    1 2 +

    = M k

    T T o

    Recall, that the Mach number is defined as:cV

    M =

    Stagnation Conditions Isentropic pressure &density relationships

    11

    211

    121

    12

    1

    12

    1

    ! " #$

    % &

    +

    =! " #$

    % &

    =

    ! " #$

    % &

    +

    =! " #$

    % &

    =

    k k oo

    k k

    k k

    oo

    M k

    T T

    M k

    T T

    p p

    12

    1 2 +

    = M k

    T T o

    Critical Values: conditions when M = 1

    ! " #$

    % &

    +=

    12*

    k T T

    o

    1*

    1

    2 ! "

    #$%

    &

    +

    =k

    k

    o k p

    p

    11

    *

    12 !

    " #$

    % &

    +=

    k

    o k

    21

    *

    12 !

    " #$

    % &

    +=

    k cc

    o

  • 8/10/2019 Unit I Basic Concepts

    11/14

    Critical Values: conditions when M = 1

    8333.01

    2* =! " #$

    % &

    +=

    k T T

    o

    5283.01

    2 1* =! " #$

    % &

    +=

    k k

    o k p p

    9129.01

    2 11

    *

    =! " #$

    % &

    +=

    k

    o k

    For Air k = 1.4

    9129.01

    2 21

    *

    =! " #$

    % &

    +=

    k cc

    o

    In all isentropic flow, all critical values are constant.

    Critical Values: conditions when M = 1

    Critical Velocity: is the speed of sound c*

    21

    21

    ***

    12

    12 !

    " #$

    % &

    +=!

    " #$

    % &

    +===

    k kRT

    k ckRT cV oo

    21

    *

    12 !

    " #$

    % &

    +=

    k cc

    o

    Example 3: Stagnation ConditionsAir flows adiabatically through a duct. At point 1 the velocity

    is 240 m/s, with T 1 = 320K and p1 = 170kPa. Compute(a) T o(b) P o(c) r o(d) M

    (e) V max(f) V *

  • 8/10/2019 Unit I Basic Concepts

    12/14

    Steady Isentropic Duct Flow

    p

    T

    h

    V

    dp p

    dT T d

    dhh

    +

    +

    +

    +

    dV V +

    dx

    Recall, for Steady isentropic flow Continuity:

    V dV d

    AdA ++=

    0

    For compressible, isentropic flow the momentum equation is:

    VdV dpdV dp +=+= 2

    02

    Bernoullis Equation!neglecting gravity

    Substitute () into (*)

    ()

    (*)

    V dV d

    AdA =

    !! "

    #$$%

    & =+=

    dpd

    V dp

    V dpd

    AdA

    22

    1

    1 2

    Steady Isentropic Duct Flow

    p

    T

    h

    V

    dp p

    dT T d

    dhh

    +

    +

    +

    +

    dV V +

    !! " #

    $$% &

    =dpd

    V dp

    AdA

    21

    Recall that the speed of sound is:

    = pc 2

    !! "

    #$$%

    & =!

    " #$

    % &

    =2

    2

    222 111

    cV

    V dp

    cV dp

    AdA

    Substituting the Mach number:cV

    M =

    ( )22 1 M V dp

    AdA =

    Describes how the pressure behaves in nozzles and diffusers

    under various flow conditions

    1 2

    Nozzle Flow Characteristics

    1. Subsonic Flow : M < 1 and dA < 0, then dP < 0:indicating a decrease in pressure in a c onverging

    channel.2. Supersonic Flow: M > 1 and dA < 0, then dP > 0:indicating an increase in pressure in a convergingchannel.

    3. Subsonic Flow : M < 1 and dA > 0, then dP > 0 :indicating an increase in pressure in a divergingchannel.

    4. Supersonic Flow: M > 1 dA > 0, then dP < 0 :indicating a decrease in pressure in a divergingchannel.

    ( )22 1 M V dp

    AdA =

    P P

    PP

    PP

    P P

  • 8/10/2019 Unit I Basic Concepts

    13/14

    Steady Isentropic Duct Flow NozzlesDiffusers and Converging Diverging Nozzles

    ( )22 1 M V dp

    AdA =

    Describes how the pressure behaves in nozzles and diffusersunder various flow conditions

    VdV dp +=

    0

    Recall, the momentum equation here is:

    VdV dp =

    Now substitute (**) into () :

    ( )12 = M V dV

    AdA

    ( )12 = M V A

    dV dA

    Or,

    ()

    (**)

    Nozzle Flow Characteristics

    1. Subsonic Flow : M < 1 and dA < 0, then dV > 0:indicating an accelerating flow in a convergingchannel.

    2. Supersonic Flow: M > 1 and dA < 0, then dV < 0:indicating an decelerating flow in a convergingchannel.

    3. Subsonic Flow : M < 1 and dA > 0, then dV < 0 :indicating an decelerating flow in a divergingchannel.

    4. Supersonic Flow: M > 1 dA > 0, then dV > 0 :indicating an accelerating flow in a divergingchannel.

    ( )12 = M V dV

    AdA

    Converging-Diverging Nozzles

    AminSubsonic Supersonic

    M = 1

    Amax

    Subsonic

    Supersonic

    M < 1Subsonic

    Supersonic M > 1

    Flow can not be sonic

  • 8/10/2019 Unit I Basic Concepts

    14/14

    Choked Flow The maximum possible mass flow through a

    duct occurs when its throat is at the sonic conditionConsider a converging Nozzle:

    VA RT

    pVAm == "

    o

    o

    o

    T

    p

    r preceiver

    plenum

    e

    e

    V

    p

    Mass Flow Rate (ideal gas):

    kRT V

    cV

    M ==

    MA RT

    k p AkRT M

    RT p

    m =="

    MA RT

    k pm ="

    Choked Flow

    MA RT

    k pm ="

    Mass Flow Rate (ideal gas):

    12 12

    1 ! " #$

    % &

    +

    =k

    k

    o M k

    p p

    Recall, the stagnation pressure and Temperature ratio and substitute:

    ( )k k

    oo M

    k MA

    RT k

    pm

    +

    ! " #$

    % &

    +=12

    1

    2

    21

    1"

    12

    1 2 +

    = M k

    T T o

    ( ) ( )12

    12

    * 1121

    +

    !! " #$$%

    & ++=

    k k

    k M k

    M A A

    The critical area Ratio is:

    ( )k k

    oo

    k RT

    k A pm

    +

    ! " #$

    % & +

    =12

    1

    *

    21

    "

    If the critical area (A*) is where M=1: