unit 8 (chp 15,17): chemical & solubility equilibrium (k eq, k c, k p, k sp ) john d. bookstaver...

81
Unit 8 (Chp 15,17) : Chemical & Solubility Equilibrium (K eq , K c , K p , K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Upload: bennett-shepherd

Post on 19-Jan-2016

239 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Unit 8 (Chp 15,17):

Chemical & Solubility Equilibrium

(Keq , Kc , Kp , Ksp )

John D. Bookstaver

St. Charles Community College

St. Peters, MO

2006, Prentice Hall

Chemistry, The Central Science, 10th editionTheodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Page 2: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Dynamic

N2O4(g) 2 NO2(g)

(forward & reverse rxns occur simultaneously)

double arrow

Equilibrium:

Page 3: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Initially, forward & reverse rxns occur at different rates.(based on collisions, one slows down; other speeds up)

N2O4(g) 2 NO2(g)

Ratef

Rat

e r

At equilibrium: Rateforward = Ratereverse

Dynamic Equilibrium:

Page 4: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

A System at EquilibriumAt equilibrium, concentrations (M, mol, P, etc.) of reactant and product remain constant.

N2O4(g) 2 NO2(g)

Page 5: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

N2O4(g) 2 NO2(g)

HW p. 660 #2

…concentrations are ________constant

…forward and reverse rates are ________equal

At Equilibrium…

Page 6: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

The Equilibrium Constant

Page 7: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

The Equilibrium Constant• Consider the reaction

Keq = [C]c[D]d

[A]a[B]b

aA + bB cC + dD

At equilibrium…

Ratef = Rater

kf [A]a[B]b = kr [C]c[D]d

kf [C]c[D]d

kr [A]a[B]b

=

[products][reactants]

Page 8: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

The Equilibrium Constant

• The equilibrium constant expression (Keq) is

Kc = [C]c[D]d

[A]a[B]b

[ ] is conc. in M

K expressions do not include:pure solids(s) or pure liquids(l)

(b/c concentrations are constant)

K = [products][reactants]

• Consider the reaction

aA + bB cC + dD

Page 9: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

In three experiments at the same temperature, equilibrium was achieved & data were collected.

The Equilibrium Constant

Calculate Kc for each experiment at this temperature and compare the values.

Exp.Butanoic

acid(moles)

Ethanol

(moles)

Ethyl butanoate

(moles)

Water

(moles)

ProductsReactants

(Kc)

1 10.0 10.0 20.0 20.0

2 5.0 20.0 10.0 40.0

3 30.0 1.0 12.0 10.0

4

4

4same ratio(constant)

Page 10: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

What Does the Value of K Mean?

• If K > 1, the reaction is product-favored;more productat equilibrium.

• If K < 1, the reaction is is reactant-favored;more reactantat equilibrium.

K = [products][reactants]Reactants Products

Page 11: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Kp =(PC)c (PD)d

(PA)a (PB)b

The Equilibrium ConstantBecause pressure is proportional to concentration for gases in a closed system, the equilibrium expression can also be written

Example:

3 Fe(s) + 4 H2O(g) ↔ Fe3O4(s) + 4 H2(g)

Page 12: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Heterogeneous Equilibria

The concentrations of solids and liquids do not appear in the equilibrium expression.

Kc = ?

PbCl2 (s) Pb2+ (aq) + 2 Cl−(aq)

Kc = [Pb2+] [Cl−]2

Page 13: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

As long as some CaCO3 or CaO remains, the amount of CO2 above the solid be constant.

CaCO3 (s) CO2 (g) + CaO(s)

Kc = [CO2]

Kp = PCO2

Kc = ?

Kp = ?

Page 14: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

K of reverse rxn = 1/K

Kc = = 4.0 [NO2]2

[N2O4]

N2O4 2 NO2

Kc = = 1 .

(4.0)

[N2O4] [NO2]2

N2O42 NO2

K of multiplied reaction

= K^# (raised to power)Kc = = (4.0)2[NO2]4

[N2O4]2

4 NO22 N2O4 ↔

Manipulating K

Page 15: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

K of combined reaction = K1 x K2 …

A + 3 D 3 B + 4 E Kovr = ?

A 3 B + 2 C K1 = 2.5

2 C + 3 D 4 E K2 = 60

Manipulating K

Kovr = (2.5)(60)

HW p. 661#14, 16, 20

Page 16: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Equilibrium Calculations

Page 17: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Equilibrium CalculationsA closed system initially containing

0.100 M H2 and 0.200 M I2 at 448C is allowed to reach equilibrium. At equilibrium, the concentration of HI is 0.187 M. Calculate Kc at 448C for the reaction taking place, which is

H2 (g) + I2 (g) 2 HI (g)

1) find limiting reactant2) mol reactant completely to mol product, but…NOW we still have some reactant left and some product formed at equilibrium.

Page 18: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial

Change

Equilibrium

H2 I2 2 HI+

0.100 M H2 and 0.200 M I2 at 448C is allowed to reach equilibrium. At equilibrium, the concentration of HI is 0.187 M.Calculate Kc at 448C.

RICE Tables

Page 19: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial

Change

Equilibrium

H2 I2 2 HI+

0.100 M H2 and 0.200 M I2 at 448C is allowed to reach equilibrium. At equilibrium, the concentration of HI is 0.187 M.

[H2]in = 0.100 M [I2]in = 0.200 M

What Do We Know?

[HI]eq = 0.187 M

[HI]in = 0 M

0 M

0.187 M

0.100 M 0.200 M

Page 20: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Initial 0.100 M 0 M

Change +0.187

Equilibrium 0.187 M

Reaction

Initial 0.200 M

Change

Equilibrium

[HI] Increases by 0.187 M

H2 I2 2 HI+

0.100 M H2 and 0.200 M I2 at 448C is allowed to reach equilibrium. At equilibrium, the concentration of HI is 0.187 M.Calculate Kc at 448C.

Page 21: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial 0.100 M 0.200 M 0 M

Change

Equilibrium

Initial

Change –0.0935 –0.0935 +0.187

Equilibrium 0.187 M

Stoichiometry shows [H2] and [I2]decrease by half as much

H2 I2 2 HI+

0.187 M HI x 1 mol H2 = 0.0935 M H2

2 mol HI

Page 22: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial

Change

Equilibrium

Initial 0.100 M 0.200 M 0 M

Change –0.0935 –0.0935 +0.187

Equilibrium 0.0065 M 0.1065 M 0.187 M

We can now calculate the equilibrium concentrations of all three compounds…

H2 I2 2 HI+

Calculate Kc at 448C.

Kc = [HI]2

[H2] [I2]=

(0.187)2

(0.0065)(0.1065)= 51

HW p. 662 #27, 30, 40

Page 23: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

ICE Practicegiven K, solve for x

HW p. 663 #43

At 2000oC the equilibrium constant for the reaction

2 NO(g) ↔ N2(g) + O2(g)

is Kc = 2.4 x 103 . If the initial concentration of NO is 0.200 M , what are the equilibrium concentrations of NO , N2 , and O2 ?

Page 24: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

What Do We Know?

Reaction

Initial

Change

Equilibrium

2 NO N2 O2+

Kc = 2.4 x 103 the initial concentration of NO is 0.200 M

Page 25: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

What Do We Know?

Reaction

Initial 0.200 M 0 M 0 M

Change

Equilibrium

2 NO N2 O2+

Kc = 2.4 x 103 the initial concentration of NO is 0.200 M

What do we NOT know?

? ? ?

Page 26: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Initial 0.200 0

Change – 2x + x + x

Equilibrium

2 NO N2 O2+

Stoichiometry shows [NO] decreases by twice as much as [N2] and [O2] increases.

Reaction

Initial 0 0

Change

Equilibrium

Page 27: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial 0

Change

Equilibrium

Initial 0.200 0 0

Change – 2x + x + x

Equilibrium 0.200 – 2x x x

We now have the equilibrium concentrations of all three compounds…

(in terms of x)

2 NO N2 O2+

Now, what was the question again?

what are the equilibrium concentrations of NO , N2 , and O2 ?

Page 28: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Kc = [N2] [O2]

[NO]2

HW p. 663 # 4449 =

x(0.200 – 2x)

x = 0.099

2.4 x 103 =(x)2

(0.200 – 2x)2

9.8 – 98x = x

9.8 = 99x [N2]eq = 0.099 M [O2]eq = 0.099 M[NO]eq = 0.0020 M

Equilibrium 0.200 – 2x x x

√√(next slide)

Page 29: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

ICE Practicegiven K, solve for x

HW p. 663 #44

For the equilibrium

Br2(g) + Cl2(g) ↔ 2 BrCl(g)

at 400 K, Kc = 7.0. If 0.30 mol of Br2 and 0.30 mol of Cl2 are introduced into a 1.0 L container at 400 K, what will be the equilibrium concentrations of Br2, Cl2, and BrCl?

Page 30: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

What Do We Know?

Reaction

Initial

Change

Equilibrium

Br2 Cl2 2 BrCl+

Kc = 7.0[Br2]in = 0.30 M[Cl2]in = 0.30 M

the initial concentrations of Br2 and Cl2 are 0.30 M

Page 31: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

What Do We Know?

Reaction

Initial 0.30 M 0.30 M 0 M

Change

Equilibrium

What do we NOT know?

? ? ?

Br2 Cl2 2 BrCl+

Kc = 7.0[Br2]in = 0.30 M[Cl2]in = 0.30 M

the initial concentrations of Br2 and Cl2 are 0.30 M

Page 32: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial 0.30 M

Change

Equilibrium

Initial 0.30 M 0 M

Change – x – x + 2x

Equilibrium

Br2 Cl2 2 BrCl

Stoichiometry shows [BrCl] increases by twice as much as [Br2] and [Cl2] decrease.

+

Page 33: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial

Change

Equilibrium

Initial 0.30 M 0.30 M 0 M

Change – x – x + 2x

Equilibrium 0.30 – x 0.30 – x 2x

We now have the equilibrium concentrations of all three compounds…

(in terms of x)

Now, what was the question again?

what are the equilibrium concentrations of Br2, Cl2, and BrCl?

Br2 Cl2 2 BrCl+

Page 34: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Kc = [BrCl]2

[Br2][Cl2]

2.6 =2x

(0.30 – x)

x = 0.17

7.0 =(2x)2

(0.30 – x)2

0.78 – 2.6x = 2x

0.78 = 4.6x [Br2]eq = 0.13 M [Cl2]eq = 0.13 M[BrCl]eq = 0.34 M

Equilibrium 0.30 – x 0.30 – x 2x

√√HW p. 664

#64(next slide)

Page 35: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

ICE Practicegiven K, solve for x

HW p. 664 #64

For the equilibrium

2 IBr(g) ↔ I2(g) + Br2(g)

Kp = 8.5 x 10–3 at 150oC. If 0.025 atm of IBr is placed in a 2.0 L container, what is the partial pressure of this substance after equilibrium is reached?

Page 36: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

What Do We Know?

Reaction

Initial

Change

Equilibrium

2 IBr I2 Br2+

Kp = 8.5 x 10–3 the initial pressure of IBr is 0.025 atm

Page 37: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

What Do We Know?

Reaction

Initial 0.025 atm 0 atm 0 atm

Change

Equilibrium

2 IBr I2 Br2+

What do we NOT know?

? ? ?

Kp = 8.5 x 10–3 the initial pressure of IBr is 0.025 atm

Page 38: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial 0 atm

Change

Equilibrium

Initial 0.025 atm 0 atm

Change – 2x + x + x

Equilibrium

2 IBr I2 Br2+

Stoichiometry shows [NO] decreases by twice as much as [N2] and [O2] increases.

Page 39: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial 0 atm

Change

Equilibrium

Initial 0.025 atm 0 atm

Change – 2x + x + x

Equilibrium 0.025 – 2x x x

We now have the equilibrium concentrations of all three compounds…

(in terms of x)

2 IBr I2 Br2+

Now, what was the question again?

What is the equilibrium partial pressure of IBr?

Page 40: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Kp = (PI2)(PBr2)

(PIBr)2

0.092 =x

(0.025 – 2x)

x = 0.0019

8.5 x 10–3 =(x)2

(0.025 – 2x)2

0.0023 – 0.184x = x

0.0023 = 1.184x (PIBr)eq = 0.021 atm

Equilibrium 0.025 – 2x x x

√√HW p. 664

#66(next slide)

Page 41: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

ICE Practice

HW p. 664 #66

Solid NH4HS is introduced into an evacuated flask at 24oC. The following reaction takes place:

NH4HS(s) ↔ NH3(g) + H2S(g)

At equilibrium the total pressure in the container is 0.614 atm.What is Kp for this equilibrium at 24oC?

Page 42: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Reaction

Initial

Change

Equilibrium

Reaction

Initial … 0 atm 0 atm

Change

Equilibrium

What Do We Know?

NH4HS(s) NH3 H2S+

At equilibrium,the total pressure (PT)eq is 0.614 atm.

Kp = ?

Solid NH4HS is introduced into an evacuated flask at 24oC.

0.614 atm

Page 43: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

What Do We Know?

Reaction

Initial … 0 atm 0 atm

Change

Equilibrium

What do we NOT know?

? ? ?

NH4HS(s) NH3 H2S+

0.614 atmAt equilibrium,the total pressure (PT)eq is 0.614 atm.

Kp = ?

? ?

Page 44: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Initial … 0 atm

Change – x + x + x

Equilibrium

Reaction

Initial 0 atm

Change

Equilibrium

Stoichiometry shows [NH3] increases by the same amount as [H2S] increases.

NH4HS(s) NH3 H2S+

0.614 atm

Page 45: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Initial … 0 atm

Change – x + x + x

Equilibrium … x x

Reaction

Initial 0 atm

Change

Equilibrium

We now have the equilibrium concentrations of all three compounds…

(in terms of x)

Now, what was the question again?What is Kp ?

NH4HS(s) NH3 H2S+

0.614 atm

Page 46: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Kp = (PNH3)(PH2S)

Kp = (x)2

Kp = (0.307)2

Kp = 0.0942

Equilibrium … x x

WS Equil Calc’s III

PT = PNH3 + PH2S

0.614 = x + x

0.614 = 2x

PT = 0.614 atm

x = 0.307

Page 47: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

The Reaction Quotient (Q)

• A Q expression gives the same ratio as the equilibrium (K) expression, but ……for a system that is NOT at equilibrium.

Kc =

[C]c[D]d

[A]a[B]b

aA + bB cC + dD

• Calculate Q by substituting INITIAL (current) concentrations into the Q expression.

Q =[C]c[D]d

[A]a[B]bNOT

(given on exam)

(given on exam)

Page 48: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

K

Q

ratef = rater

R P

KQ

Q =[P][R]

K

Q

If Q = K, system is at equilibrium (K).

Q = K

= K

Page 49: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

If Q < K, too much reactant, system willshift right faster to reach equilibrium (K).

ratef > rater

R P

ratef = rater

R P

Q =[P][R]

K

Q

KQ K

Q

Q < K

Q =[P]

[R]

Page 50: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

If Q > K, too much product, system willshift left faster to reach equilibrium (K).

ratef < rater

R P

ratef = rater

R P

Q =[P][R]

K

Q

KQ K

Q

Q > K

HW p. 662#36, 38

Q =[P][R]

Page 51: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Le Châtelier’s Principle

Page 52: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

ratef > rater

R P

Le Châtelier’s Principle:“Systems at equilibrium disturbed by a change

• amount (M , PP) of reactants or products• volume (V) of container• temperature (T) (changes K value)

…will shift ( or ) to counteract the change.”

Because…

…the rxn goes faster in one direction (Q K)

until ratef = rater (Q = K again, R P ).

R P

(that affects collision frequency) like:

ratef < rateror

Page 53: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

The conversion of nitrogen (N2) & hydrogen (H2) into ammonia (NH3) is tremendously significant in agriculture, where ammonia-based fertilizers are of utmost importance.

The Haber Process

N2(g) + 3 H2(g) 2 NH3(g)

Page 54: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

N2(g) + 3 H2(g) 2 NH3(g)

K = [NH3]2

[N2][H2]3

Q = [NH3]2

[N2][H2]3

K = [NH3]2

[N2][H2]3

Q < K

Q = K

(same K)

Q = K

Addreactant:

(changes Q)

Page 55: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

This apparatus pushes the equilibrium to the right by removing the product ammonia (NH3) from the system as a liquid.

Removeproduct:

N2(g) + 3 H2(g) 2 NH3(g)

(changes Q)

Page 56: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Change Volume (moles of gas)

• ↓V (↑PT) shifts to

• ↑V (↓PT) shifts to

• V has no shift if

fewer mol of gas (↓ngas)

more mol of gas (↑ngas)

N2(g) + 3 H2(g) 2 NH3(g)

equal mol of gas R & P

1. 2 NO(g) N2(g) + O2(g) , ↑V will shift ____.

2. N2O4(g) 2 NO2(g) , ↓V will shift ____.

3. CaCO3(s) CO2(g) + CaO(s) , shift by _V.

NOT

• ↑PT by adding noble gas?

no shift b/c same R & P pressures

(changes Q)

Page 57: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Change Temperature

Changing temp. is the ONLY way to

change the value of ___.K Why?

K1 =[P][R]

K2 =[P]

[R] K2 =[P]

[R]

(larger)(smaller)(original)

T (add heat) shifts… T (add heat) shifts…

…in the _____thermic direction to ______ heat

…in the _____thermic direction to ______ heat

endoabsorb

exoproduce

Page 58: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Change TemperatureCoCl4

2– + 6 H2O(l) 4 Cl– + Co(H2O)62+

∆H = __heat + + heat

Remove heat

Add heat

ice

Remove product:Add product:–

Page 59: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

increase

ratef and rater .

R

PEquilibrium occurs faster, but…at no shift (composition [P]/[R] is same).

[P][R]

K =

(same)

Catalysts

Page 60: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

N2(g) + 3 H2(g) 2 NH3(g) ∆H = –92

Le Châtelier’s Principle

Change in external factor

Shift to restore equilibrium

Reason

Increase pressure(decrease volume)

Increase temp.

Increase [N2]

Increase [NH3]

Add a catalyst

(practice)

Right

Left

Right

Left

No Shift

↑P (↓V) shifts to side of fewer moles of gas

∆H = – , adding heat shifts in the endo- dir.Adding reactant shifts right to consume it

Adding product shifts left to consume it

Catalysts change how fast, but not how far.

+ heat

∆H = –

Page 61: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Le Châtelier’s Principle

Change in external factor

Shift to restore equilibrium

Reason

________ pressure(_______ volume)

_________ temp.

_________ PO2

_________ PH2O

Decrease H2O2

Left

Left

Right

Left

No Shift

↓P (↑V) shifts to side of more moles of gas

∆H = + , remove heat shifts in the exo- dir.Adding reactant shifts right to consume it

Removing reactant shifts left to produce it

(s) & (l) do not affect Q & K (usually)

2 H2O(g) + O2(g) 2 H2O2(l) ∆H = +108

(practice)

DecreaseIncrease

Decrease

heat +

Increase

Decrease

∆H = +

Page 62: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

- add R or P:

- remove R or P:

- volume: ↓V shifts to

↑V shifts to

- temp. ↑T shifts T shifts

- catalyst:

shift away faster (consume)

shift toward faster (replace )

fewer mol of gas (↓ngas)

Le Châtelier’s Principle

more mol of gas (↑ngas)

R P(summary)

no shift

(H + R P) (R P + H)

WS Eq Pract. 2 #4

(changes K)

(Ptotal)

(M, PPR, PPP)

in endo dir. to use up heatin exo dir. to make more heat

Page 63: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Unit 8 (Chp 15, 17):Chemical & Solubility

Equilibria(Keq , Kc , Kp , Ksp )

John D. Bookstaver

St. Charles Community College

St. Peters, MO

2006, Prentice Hall

Chemistry, The Central Science, 10th editionTheodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Page 64: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Ksp = [X+]a [Y–]b

Solubility Product Constant(Ksp)

Write the K expression for a saturated solution of PbI2 in water:

PbI2(s) Pb2+(aq) + 2 I−(aq)

XaYb(s) aX+(aq) + bY−(aq)

K =

For “insoluble” solids, the equilibrium constant,Ksp , is the solubility product constant, or the…

…product of M’s of dissolved ions at equilibrium.

[Pb2+][I−]2sp

Page 65: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

grams of solid (s) dissolved in 1 L (g/L)

mol of solid (s) dissolved in 1 L (M)

product of conc.’s (M) of ions(aq) at equilibrium

solubility:

molar solubility:

Ksp :

XaYb aX+ + bY–

[XaYb] [X+] [Y–]molar solubility molar conc.’s of ions

Ksp = [X+]a[Y–]b

Ksp is NOT the Solubility

Page 66: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Ksp is NOT the Solubility

4.2 g/L 0.027 M CaCrO4 0.027 M Ca2+

0.027 M CrO42–

CaCrO4(s) Ca2+ + CrO42–

[CaCrO4] [Ca2+] [CrO42–]

molar mass:156.08 g/mol

0.00073

HW p. 763 #46 Ksp = [Ca2+][CrO42–]

grams of solid (s) dissolved in 1 L (g/L)

mol of solid (s) dissolved in 1 L (M)

product of conc.’s (M) of ions (aq) at equilibrium

solubility:

molar solubility:

Ksp :

Page 67: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Ksp Calculations

PbBr2(s) Pb2+ + 2 Br–

0.010 M 0 M 0 M–0.010 +0.010 +0.020 0 M 0.010 M 0.020 M

If solubility (or molar solubility) is known, solve for Ksp . [PbBr2] is 0.010 M at 25oC .

HW p. 763 #48a

Ksp = (0.010)(0.020)2

Ksp = 4.0 x 10–61 PbBr2 dissociates into…

1 Pb2+ ion & 2 Br– ions

R ICE

Ksp = [Pb2+][Br–]2

(maximum that can dissolve)

(all dissolved = saturated) (any excess solid is irrelevant)

Page 68: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

R ICE

Ksp Calculations

PbI2(s) Pb2+ + 2 I–

0.0012 M 0 M 0 M–0.0012 +0.0012 +0.0024 0 M 0.0012 M 0.0024 M

Ksp = [Pb2+][I–]2

Solubility (or molar solubility) is known, solve for Ksp .

[PbI2] = 0.0012 M

HW p. 763 #50

Ksp = (0.0012)(0.0024)2

Ksp = 6.9 x 10–9

0.54 g x 1 mol461 g

= 0.0012 mol

solubility:0.54 g/L

Molar solubility:0.0012 M

Page 69: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

If only Ksp is known, solve for x (M).

AgCl(s) Ag+ + Cl–

x 0 M 0 M –x +x +x 0 M x x

Ksp = [Ag+][Cl–]

Ksp = x2

1.8 x 10–10 = x2

√1.8 x 10–10 = x

1.3 x 10–5 = x

Ksp for AgCl is 1.8 x 10–10 .

[AgCl] = 1.3 x 10–5 M [Ag+] = 1.3 x 10–5 M [Cl–] = 1.3 x 10–5 M

(molar solubility)

Ksp Calculations

R ICE

Page 70: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

If only Ksp is known, solve for x (M).

CaSO4(s) Ca2+ + SO42–

x 0 M 0 M –x +x +x 0 M x x

Ksp = [Ca2+][SO42–]

Ksp = x2

2.4 x 10–5 = x2

√2.4 x 10–5 = x

0.0049 = x

Ksp for CaSO4 is 2.4 x 10–5 .

[CaSO4] = 0.0049 M

[Ca2+] = 0.0049 M [SO4

2–] = 0.0049 M

HW p. 663 #47

(molar solubility)

Ksp Calculations

R ICE

Page 71: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

PbCl2(s) Pb2+ + 2 Cl–

x 0 M 0 M –x +x +2x 0 M x 2x

Ksp = [Pb2+][Cl–]2

Ksp = (x)(2x)2

Ksp = 4x3

[PbCl2] = 0.016 M

[Pb2+] = 0.016 M [Cl–] = 0.032 M

1.6 x 10–5 = 4x3

3√4.0 x 10–6 = x

0.016 = x

If only Ksp is known, solve for x (M).

Ksp for PbCl2 is 1.6 x 10–5 .

(molar solubility)

Ksp Calculations

R ICE

Page 72: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Cr(OH)3(s) Cr3+ + 3 OH–

x 0 M 0 M –x +x +3x 0 M x 3x

Ksp = [Cr3+][OH–]3

Ksp = (x)(3x)3

Ksp = 27x4

[Cr(OH)3] = 1.6 x 10–8 M

[Cr3+] = 1.6 x 10–8 M [OH–] = 4.8 x 10–8 M

1.6 x 10–30 = 27x4

4√5.9 x 10–32 = x

1.6 x 10–8 = x

If only Ksp is known, solve for x (M).

Ksp for Cr(OH)3 is 1.6 x 10–30 .

(molar solubility)

Ksp Calculations

R ICE

Page 73: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

LaF3(s) La3+ + 3 F–

x 0 M 0 M –x +x +3x 0 M x 3x

Ksp = [La3+][F–]3

Ksp = (x)(3x)3

2 x 10–19 = 27x4

x = 9 x 10–6 M LaF3

HW p. 763 #52a Ksp Calculations(in pure H2O)

#52b

(in 0.010 M KF)

LaF3(s) La3+ + 3 F–

x 0 M –x +x +3x 0 M x 0.010 + 3x

Ksp = [La3+][F–]3

Ksp = (x)(0.010 + 3x)3

2 x 10–19 = (x)(0.010)3

x = 2 x 10–13 M LaF3

0.010 M

≈ 0.010b/c K <<<1

Solubility is lower in _________________sol’n w/ common ion

Page 74: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Factors Affecting Solubility• Common-Ion Effect (more Le Châtelier)

– If a common ion is added to an equilibrium solution, the equilibrium will shift left and the solubility of the salt will decrease.

BaSO4(s) Ba2+(aq) + SO42−(aq)

BaSO4 would be least soluble in which of these 1.0 M aqueous solutions?

Na2SO4 BaCl2 Al2(SO4)3 NaNO3

most soluble?

•adding common ion shifts left (less soluble)

OR

WS Ksp #1-2

Page 75: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Factors Affecting Solubility

Mg(OH)2(s) Mg2+(aq) + 2 OH−(aq)

Greater solubility because…Added acid (H+) reacts with OH– thereby removing product causing a shift to the right to dissolve more solid Mg(OH)2.

Addition of HCl (acid) to this solution would cause…

Page 76: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Basic anions, more soluble in acidic solution.

Mg(OH)2(s) Mg2+(aq) + 2 OH−(aq)

H+

H+ NO Effect on:Cl– , Br–, I–,

NO3–, SO4

2–, ClO4–

Adding H+ would cause…

shift , more soluble.

HW p.

763 #55

Page 77: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Factors Affecting Solubility• Complex Ions

– Metal ions can and form complex ions with lone e– pairs in the solvent.

Page 78: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

forming complex ions…

…increases solubility

AgCl(s) Ag+(aq) + Cl−(aq)

NH3

Ag(NH3)2+

p. 765 #59

Page 79: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

Will a Precipitate Form?

• In a solution,– If Q = Ksp, at equilibrium (saturated).

– If Q < Ksp, more solid will dissolve (unsaturated) until Q = Ksp . (products too small, proceed right→)

– If Q > Ksp, solid will precipitate out (saturated) until Q = Ksp . (products too big, proceed left←)

HW p. 764 #62b, 66

Q = [X+]a [Y−]bWS Ksp #4 Ksp = [X+]a [Y–]b

XaYb(s) aX+(aq) + bY−(aq)

Page 80: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

AgIO3(s) Ag+ + IO3– Ksp = [Ag+][IO3

–]

Ksp = 3.1 x 10–8

HW p. 764 #62b (OR…is Q > K ?)

Q = [Ag+][IO3–]

Q =

100 mL of 0.010 M AgNO3

10 mL of 0.015 M NaIO3

[Ag+] = ________

(0.010 M)(100 mL) = M2(110 mL)

(mixing changes M and V)M1V1 = M2V2

0.0091 M

[IO3–] = ________

(0.015 M)(10 mL) = M2(110 mL)

0.0014 M

Will a Precipitate Form?

Q = (0.0091)(0.0014)

Q = 1.3 x 10–5

Q > K , so…rxn shifts leftprec. will form

Page 81: Unit 8 (Chp 15,17): Chemical & Solubility Equilibrium (K eq, K c, K p, K sp ) John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice

BaSO4(s) Ba2+ + SO42–

HW p. 764 #66a

(BaSO4) (SrSO4)SrSO4(s) Sr2+ + SO4

2–

Ksp = [Sr2+][SO42–]

When Will a Precipitate Form?

Ksp = [Ba2+][SO42–]

1.1 x 10–10 = (0.010)(x) 3.2 x 10–7 = (0.010)(x)

x = 1.1 x 10–8

[SO42–] = 1.1 x 10–8 M

x = 3.2 x 10–5

[SO42–] = 3.2 x 10–5 M

#66b

Ba2+ will precipitate first b/c… less SO42– is

needed to reach equilibrium (Ksp).