unin13001-3-1_2005_een

76

Click here to load reader

Upload: alfonxxl

Post on 07-Nov-2014

138 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: UNIN13001-3-1_2005_EEN

SPECIFICATECNICA

Pagina IUNI CEN/TS 13001-3-1:2005

© UNI Riproduzione vietata. Tutti i diritti sono riservati. Nessuna parte del presente documentopuò essere riprodotta o diffusa con un mezzo qualsiasi, fotocopie, microfilm o altro, senzail consenso scritto dell’UNI.

www.uni.com

UNIEnte Nazionale Italianodi Unificazione

Via Battistotti Sassi, 11B20133 Milano, Italia

UNI CEN/TS13001-3-1

SETTEMBRE 2005

Apparecchi di sollevamento

Criteri generali per il progetto

Parte 3-1: Stati limite e verifica della sicurezza delle strutture di acciaio

Cranes

General design

Part 3-1: Limit states and proof of competence of steel structures

La specifica tecnica specifica, con le parti 1 e 2, le condizioni gene-rali, i requisiti e i metodi per prevenire pericoli di natura meccanicadegli apparecchi di sollevamento attraverso il progetto e le verifiche

teoriche.

TTT EEE SSS TTT OOO III NNN GGG LLL EEE SSS EEE

La presente specifica tecnica è la versione ufficiale in linguainglese della specifica tecnica europea CEN/TS 13001-3-1 (edi-

zione dicembre 2004).

ICS 53.020.20

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 2: UNIN13001-3-1_2005_EEN

© UNI Pagina IIUNI CEN/TS 13001-3-1:2005

Le norme UNI sono elaborate cercando di tenere conto dei punti di vista di tutte le partiinteressate e di conciliare ogni aspetto conflittuale, per rappresentare il reale statodell’arte della materia ed il necessario grado di consenso.Chiunque ritenesse, a seguito dell’applicazione di questa norma, di poter fornire sug-gerimenti per un suo miglioramento o per un suo adeguamento ad uno stato dell’artein evoluzione è pregato di inviare i propri contributi all’UNI, Ente Nazionale Italiano diUnificazione, che li terrà in considerazione per l’eventuale revisione della norma stessa.

Le norme UNI sono revisionate, quando necessario, con la pubblicazione di nuove edizioni odi aggiornamenti. È importante pertanto che gli utilizzatori delle stesse si accertino di essere in possessodell’ultima edizione e degli eventuali aggiornamenti. Si invitano inoltre gli utilizzatori a verificare l’esistenza di norme UNI corrispondenti allenorme EN o ISO ove citate nei riferimenti normativi.

PREMESSA

La presente specifica tecnica costituisce il recepimento, in lingua in-glese, della specifica tecnica europea CEN/TS 13001-3-1 (edizionedicembre 2004), che assume così lo status di specifica tecnica na-zionale italiana.

La scadenza del periodo di validità del CEN/TS 13001-3-1 è statafissata inizialmente dal CEN per dicembre 2007. Eventuali osserva-zioni sulla specifica tecnica devono pervenire all’UNI entro dicem-bre 2006.

La presente specifica tecnica è stata elaborata sotto la competenzadella Commissione Tecnica UNI

Apparecchi di sollevamento e relativi accessori

La presente norma è stata ratificata dal Presidente dell’UNI ed è en-trata a far parte del corpo normativo nazionale il 14 settembre 2005.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 3: UNIN13001-3-1_2005_EEN

TECHNICAL SPECIFICATION

SPÉCIFICATION TECHNIQUE

TECHNISCHE SPEZIFIKATION

CEN/TS 13001-3-1

December 2004

ICS 53.020.20

English version

Cranes - General design - Part 3-1: Limit states and proof ofcompetence of steel structures

Appareils de levage à charge suspendue - Conceptiongénérale - Partie 3-1: Etats limites et vérification d'aptitude

des structures métalliques

Krane - Konstruktion allgemein - Teil 3-1: Grenzzuständeund Sicherheitsnachweis von Stahltragwerken

This Technical Specification (CEN/TS) was approved by CEN on 25 November 2003 for provisional application.

The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to submit theircomments, particularly on the question whether the CEN/TS can be converted into a European Standard.

CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS availablepromptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS)until the final decision about the possible conversion of the CEN/TS into an EN is reached.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia,Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATIONC O M I T É E U R O P É E N D E N O R M A LI S A T I O NEUR OP ÄIS C HES KOM ITEE FÜR NOR M UNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2004 CEN All rights of exploitation in any form and by any means reservedworldwide for CEN national Members.

Ref. No. CEN/TS 13001-3-1:2004: E

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 4: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

2

Contents Page

Introduction .............................................................................................................................................5

1 Scope...........................................................................................................................................5

2 Normative references...................................................................................................................5

3 Terms and definitions..................................................................................................................6

4 General ......................................................................................................................................104.1 Materials ....................................................................................................................................104.1.1 Structural members...................................................................................................................104.1.2 Connecting devices ...................................................................................................................134.2 Bolt connections........................................................................................................................134.2.1 General ......................................................................................................................................134.2.2 Shear and bearing connections.................................................................................................134.2.3 Slip resistant connections .........................................................................................................134.2.4 Connections loaded in tension..................................................................................................144.3 Pin connections.........................................................................................................................144.4 Welded connections ..................................................................................................................144.5 Proofs of structural members and connections.........................................................................14

5 Proof of static strength..............................................................................................................145.1 General ......................................................................................................................................145.2 Limit design stresses and forces...............................................................................................155.2.1 General ......................................................................................................................................155.2.2 Limit design stress in structural members................................................................................155.2.3 Limit design forces in bolt connections.....................................................................................165.2.4 Limit design forces in pins ........................................................................................................225.2.5 Limit design stresses in welded connections............................................................................245.3 Execution of the proof ...............................................................................................................255.3.1 Proof for structural members ....................................................................................................255.3.2 Proof for bolt connections.........................................................................................................265.3.3 Proof for pin connections..........................................................................................................265.3.4 Proof for welded connections....................................................................................................27

6 Proof of fatigue strength............................................................................................................276.1 General ......................................................................................................................................276.2 Limit design stresses.................................................................................................................286.2.1 Characteristic values of the stress range ..................................................................................286.2.2 Weld quality...............................................................................................................................306.2.3 Effect of test loads.....................................................................................................................306.2.4 Requirements for fatigue testing ...............................................................................................316.3 Classes S of stress history parameter s....................................................................................316.3.1 Simplified method based on service conditions........................................................................316.3.2 Selection based on experience..................................................................................................356.4 Execution of the proof ...............................................................................................................356.5 Determination of the permissible stress range..........................................................................366.5.1 Applicable methods...................................................................................................................366.5.2 Direct use of stress history parameter ......................................................................................366.5.3 Use of class S............................................................................................................................36

7 Proof of static strength of hollow section girder joints..............................................................38

8 Proof of elastic stability.............................................................................................................38

Annex A (normative) Values of inverse slope of σ/N-curve m and permissible stress range ∆σc, ∆τc ..39

Annex B (informative) Guidance for selection of classes S due to experience .....................................54

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 5: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

3

Annex C (normative) Calculated values of permissible stress range ∆σRd ............................................55

Annex D (normative) Design weld stress σW,Sd and τW,Sd .......................................................................57D.1 Butt joint ....................................................................................................................................57D.2 Fillet weld and groove weld with uniform distributed load.........................................................58D.3 Relevant distribution length under punctiform load ..................................................................59

Annex E (informative) Hollow Sections .................................................................................................60

Annex F (informative) Selection of a suitable set of crane standards for a given application ...............71

Annex ZA (informative) Relationship between this European Standard and the Essential Requirementsof EU Directive 98/37/EC ............................................................................................................72

Bibliography ..........................................................................................................................................73

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 6: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

4

Foreword

This document (CEN/TS 13000-3.1:2004) has been prepared by Technical Committee CEN/TC 147 “Cranes — Safety”, the secretariat of which is held by BSI.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive 98/37/EC, amended by 98/79/EC.

According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary Iceland, Ireland, Italy, Latavia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

This European Standard is one Part of EN 13001. The other parts are as follows:

Part 1: General principles and requirements

Part 2: Load actions

The annexes A, C and D are normative. The annexes B, E and F are informative.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 7: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

5

Introduction

This European Standard has been prepared to be a harmonised standard to provide one means for the mechanicaldesign and theoretical verification of cranes to conform with the essential health and safety requirements of theMachinery Directive, as amended. This standard also establishes interfaces between the user (purchaser) and thedesigner, as well as between the designer and the component manufacturer, in order to form a basis for selectingcranes and components.

This European Standard is a type C standard as stated in EN 1070.

The machinery concerned and the extent to which hazards, hazardous situations and events are covered areindicated in the scope of this document.

When provisions of this type C standard are different from those which are stated in type A or B standards, theprovisions of this type C standard take precedence over the provisions of the other standards, for machines thathave been designed and built according to the provisions of this type C standard.

The machinery concerned and the extent to which hazards are covered are indicated in the scope of this standard.

1 Scope

This European Standard is to be used together with Part 1 and Part 2 and as such they specify general conditions,requirements and methods to prevent mechanical hazards of cranes by design and theoretical verification.

NOTE Specific requirements for particular types of crane are given in the appropriate European Standard for the particularcrane type.

The following is a list of significant hazardous situations and hazardous events that could result in risks to personsduring normal use and foreseeable misuse. Clauses 4 to 8 of this standard are necessary to reduce or eliminatethe risks associated with the following hazards:

a) Exceeding the limits of strength (yield, ultimate, fatigue);

b) Exceeding temperature limits of material or components;

c) Elastic instability of the crane or its parts (buckling, bulging).

This European Standard is applicable to cranes which are manufactured after the date of approval by CEN of thisstandard and serves as reference base for the European Standards for particular crane types.

NOTE prCEN/TS 13001-3-1 deals only with limit state method according to EN 13001-1.

As an alternative to the herein presented limit state method using partial safety factors, the allowable stress methodusing a global safety factor according to Part 1 and Part 2 may also be applied for special crane systems with linearbehaviour.

As crane structures are basically dynamically loaded only the linear theory of elasticity is applicable and only limitedlocal plasticity is allowed. The use of the theory of plasticity for calculation of ultimate load bearing capacity is notallowed.

2 Normative references

This European Standard incorporates by dated or undated reference, provisions from other publications. These

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 8: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

6

normative references are cited at the appropriate places in the text, and the publications are listed hereafter. Fordated references, subsequent amendments to or revisions of, any of these publications apply to this EuropeanStandard only when incorporated in it by amendment or revision. For undated references the latest edition of thepublication referred to applies (including amendments).

EN 1070:1998, Safety of machinery — Terminology.

EN 1990-1:2002, Eurocode – Basic of structural design

EN 1993-1-1:1992: Eurocode 3: Design of steel structures — Part 1-1: General rules and rules for buildings.

EN 10025:1990/A1:1993, Hot rolled products of non-alloy structural steels — Technical delivery conditions(includes amendment A1:1993).

EN 10045-1:1989, Charpy impact test on metallic material — Part 1: Test method.

EN 10113-1:1993, Hot-rolled products in weldable fine grain structural steels — Part 1: General delivery conditions.

EN 10113-2:1993, Hot-rolled products in weldable fine grain structural steels — Part 2: Delivery conditions fornormalized/normalized rolled steels.

EN 10113-3:1993, Hot-rolled products in weldable fine grain structural steels — Part 3: Delivery conditions forthermomechanical rolled steels.

EN 10137-2:1995, Plates and wide flats made of high yield strength structural steels in the quenched and temperedor precipitation hardened conditions — Part 2: Delivery conditions for quenched and tempered steels.

EN 10149-1:1995, Hot-rolled flat products made of high yield strength steels for cold forming — Part 1: Generaldelivery conditions.

EN 10149-2:1995, Hot-rolled flat products made of high yield strength steels for cold forming — Part 2: Deliveryconditions for thermomechanically rolled steels.

EN 10149-3:1995, Hot-rolled flat products made of high yield strength steels for cold forming — Part 3: Deliveryconditions for normalized or normalized rolled steels.

EN 10164:1993, Steel products with improved deformation properties perpendicular to the surface of the product —Technical delivery conditions.

EN 12345:1996, Welding — Multilingual terms for welding joints with illustrations (trilingual version).

EN 13001-1:2004, Cranes — General Design — Part 1:General principles and requirements.

EN 13001-2:2004, Cranes — General Design — Part 2: Load actions.

EN 22553:1994, Welded, brazed and soldered joints — Symbolic representation on drawings (ISO 2553:1992).

EN 25817:1992, Arc-welded joints in steel — Guidance on quality levels for imperfections (ISO 5817:1992).

EN ISO 898-1:1999, Mechanical properties of fasteners — Part 1: Bolts, screws and studs (ISO 898-1:1999).

EN ISO 9013:2002, Thermal cutting — Classification of thermal cuts — Geometrical specification and qualitytolerances (ISO 9013:2002).

EN ISO 12100-1:2003, Safety of machinery — Basic concepts, general principles for design — Part 1: Basicterminology, methodology (ISO 12100-1:2003).

EN ISO 12100-2:2003, Safety of machinery — Basic concepts, general principles for design — Part 2: Technicalprinciples and specifications (ISO 12100-2:2003).

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 9: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

7

ISO 286-2:1990, ISO system of limits and fits — Part 2: Tables of standard tolerance grades and limit deviations forholes and shafts.

ISO 4306-1:1990, Cranes — Vocabulary — Part 1: General.

3 Terms and definitions

3.1Terms and definitionsFor the purposes of this European Standard, the terms and definitions given in EN 292-1, EN 292-2 and EN 1070and the basic list of definitions as provided in EN 1990-1 apply. For the definitions of loads, clause 6 ofISO 4306-1:1990 applies.

3.2Symbols and abbreviationsThe symbols and abbreviations used in this Part of the EN 13001 are given in Table 1.

Table 1 — Symbols and abbrevations

Symbols,abbreviations Description

A cross section

AS stress area of a bolt

ar relevant weld thickness

Do, Di outer, inner diameter of hollow pin

d diameter (shank of bolt, pin)

do diameter of hole

e1, e2 distances

Fb tensile force in bolt

Fd limit force

FK characteristic value (force)

Fp preloading force in bolt

FRd limit design force

Ft external force (on bolted connection)

Fb, Rd limit design bearing force

Fb, Sd; Fbi, Sd design bearing force

Fp, d design preloading force

Fs, Rd limit design slip force per bolt and friction interface

Ft, Rd limit design tensile force in bolt

Fv, Rd limit design shear force per bolt/pin and shear plane

Fv, Sd design shear force per bolt/pin and shear plane

Fσ,τ acting normal/shear force

fd limit stress

fK characteristic value (stress)

fRd limit design stress

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 10: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

8

Table 1 (continued)

Symbols,abbreviations

Description

fu ultimate strength of material

fub ultimate strength of bolts

fw, Rd limit design weld stress

fy yield point of material

fyb yield point of bolts

fyk yield point (nominal value) of material or member

fyp yield point of pins

Gt mass of the moving crane parts during a representative working cycle

h distance between weld and contact area of acting load

Kb stiffness (slope) of bolt

Kc stiffness (slope) of flanges

k* specific spectrum ratio factor

k(m) stress spectrum factor based on m of the detail under consideration

k(m=3) stress spectrum factor based on m = 3

lr relevant weld length

lW weld length

MRd limit design bending moment

MSd design bending moment

m inverse slope of σ/N-curve

NC notch class

min σ, max σ extreme values of stresses

PS probability of survival

p1, p2 distances

Q mass of the maximum hoist load

q impact toughness parameter

Rd design resistance

r radius of wheel

Sd design strain

s(m) stress history parameter

T temperature

t thickness

Wel elastic section modulus

α characteristic factor for bearing connection

αw characteristic factor for limit weld stress

γm general resistance coefficient

γMf fatigue strength specific resistance factor

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 11: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

9

Table 1 (concluded)

Symbols,abbreviations

Description

γp partial safety factor

γR resulting resistance coefficient

γS specific resistance factor

γRb resulting resistance coefficient of bolt

γsb specific resistance factor of bolt

γRm resulting resistance coefficient of members

γsm specific resistance factor of members

γRp resulting resistance coefficient of pins

γsp specific resistance factor of pins

γRs resulting resistance coefficient of slip-resistance connection

γss specific resistance factor of slip-resistance connection

γRw resulting resistance coefficient of welding connection

γsw specfic resistance factor of welding connection

φ2 dynamic factor

κ spread angle

λ width of contact area in weld direction

δp elongation from preloading

∆Fb additional force

∆δ additional elongation

µ slip factor

∆σc characteristic value of stress range (normal stress)

∆τc characteristic value of stress range (shear stress)

σSd design stress (normal)

τSd design stress (shear)

σw, Sd design weld stress (normal)

τw, Sd design weld stress (shear)

∆σRd permissible (limit) stress range (normal)

∆σRd,1 permissible stress range for k* = 1

∆τRd permissible (limit) stress range (shear)

∆σSd design stress range (normal)

∆τSd design stress range (shear)

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 12: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

10

4 General

4.1 Materials

4.1.1 Structural members

European Standards specify materials and specific values. This standard gives a preferred selection.

For structural members, steel according to following European Standards should be used:

⎯ Non-alloy structural steels EN 10025.

⎯ Weldable fine grain structural steels in conditions:

⎯ normalised (N) EN 10113-2;

⎯ thermomechanical (M) EN 10113-3.

⎯ High yield strength structural steels in the quenched and tempered condition EN 10137-2.

⎯ High yield strength steels for cold forming in conditions:

⎯ thermomechanical (M) EN 10149-2;

⎯ normalised (N) EN 10149-3.

Table 2 shows specific values for the nominal value of strength fu, fy and limit design stress fRd (see 5.2). For moreinformation see the specific European Standard.

Grades and qualities other than those mentioned in the above standards and in Table 2 can be used if themechanical properties and the chemical composition are guaranteed by the manufacturer and conform to therelevant European Standard. If necessary, the weldability shall be demonstrated by the steel manufacturer.

When selecting grade and quality of the steel for tensile members, the sum of impact toughness parameters qi shallbe taken into account. Table 3 gives the impact toughness parameters qi for various influences. Table 4 gives therequired steel quality and impact energy/test temperature in dependence of Σqi. Grades and qualities of steel otherthan mentioned in Table 4 may be used, if the steel manufacturer guarantees and certifies an impact energy/testtemperature, tested according to EN 10045-1.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 13: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

11

Table 2 — Specific values of steels for structural members

Nominal strengthLimit design stress

for γRm=1,1Steel Standard Thickness t

(mm) fy

yield(N/mm2)

fu

ultimate(N/mm2)

fRd, normal(N/mm2)

fRd, shear(N/mm2)

S235

t≤16

16<t≤40

40<t≤100

100<t≤150

235

225

215

195

340

214

205

195

177

123

118

113

102

S275

t≤16

16<t≤40

40<t≤63

63<t≤80

80<t≤100

100<t≤150

275

265

255

245

235

225

430

250

241

232

223

214

205

144

139

134

129

123

118

S355

EN 10025

t≤16

16<t≤40

40<t≤63

63<t≤80

80<t≤100

100<t≤150

355

345

335

325

315

295

490

323

314

305

296

287

268

186

181

176

171

166

155

S355

t<16

16<t≤40

40<t≤63

63<t≤80 (N)

80<t≤100 (N)

100<t≤150 (N)

355

345

335

325

315

295

450

323

314

305

295

286

268

186

181

176

171

165

155

S420

t<16

16<t≤40

40<t≤63

63<t≤80 (N)

80<t≤100 (N)

100<t≤150 (N)

420

400

390

370

360

340

500

382

364

355

336

327

309

220

210

205

194

189

178

S460

EN 10113-2(N)

EN 10113-3(M)

t<16

16<t≤40

40<t≤63

63<t≤80 (N)

80<t≤100 (N)

460

440

430

410

400

530

418

400

391

373

364

241

231

226

215

210

S4603<t≤50

50<t≤100

460

440550

418

400

241

231

S5003<t≤50

50<t≤100

500

480590

455

436

262

252

S5503<t≤50

50<t≤100

550

530640

500

482

289

278

S6203<t≤50

50<t≤100

620

580700

564

527

325

304

S6903<t≤50

50<t≤100

690

650770

760

627

591

362

341

S8903<t≤50

50<t≤100

890

830940

880

809

755

467

436

S960

EN 10137-2

3<t≤50 960 980 873 504

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 14: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

12

Table 2 (concluded)

Nominal strengthLimit design stress

for γRm=1,1Steel Standard Thickness

t (mm) fyyield

(N/mm2)

fu ultimate(N/mm2)

fRd, normal(N/mm2)

fRd, shear(N/mm2)

S315 315 390 286 165

S355 355 430 323 186

S420 420 480 382 220

S460 (M) 460 520 418 241

S500 (M)500

550455 262

S550 (M)550

600500 289

S600 (M)

all t

600 650 545 315

S650 (M)t≤8

t>8

650

630700

591

573

341

331

S700 (M)

EN 10149–2(M)

EN 10149-3(N)

t≤8

t>8

700

680750

636

618

367

357

Table 3 — Impact toughness parameters qi

i Influence qi

0 ≤ T0

-20 ≤ T < 0 1

-40 ≤ T < -20 2

1 Temperature T (°C)

-50 ≤ T < -40 4

fy ≤ 300 0

300 < fy ≤ 460 1

460 < fy ≤ 700 2

700<fy ≤ 1 000 3

2 Yield point fy (N/mm2)

1 000<fy 4

Material thickness t (mm) t ≤ 10 0

Equivalent thickness t for solid bars: 10 < t ≤ 20 1

20 < t ≤ 50 2

50 < t ≤ 100 33

8,1d

t = for 8,1<h

b:

8,1b

t = t > 100 4

∆σc > 125 0

80 < ∆σc ≤ 125 1

56< ∆σc ≤ 80 24

Stress concentration and notch class ∆σc

(N/mm2) (see annex A and annex E)

∆σc ≤ 56 3

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 15: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

13

Table 4 — Impact toughness requirement and corresponding steel quality for ∑qi

∑qi ≤ 3 4 ≤ ∑qi ≤ 6 7 ≤ ∑qi ≤ 9 ∑qi ≥ 10

Impact energy/ testtemperaturerequirement

27 J / +20°C 27 J / 0°C 27 J / -20°C 27 J / -40°C

EN 10025 JR J0 J2 a)

EN 10113 N, M N, M N, M NL, ML

EN 10137-2 Q Q Q QL

EN 10149 NC, MC NC, MC NC, MC a)

a) May be used if the steel manufacturer guarantees and certifies an impact energy/test temperature of at least 27 J at–40 °C, tested according to EN 10045-1.

4.1.2 Connecting devices

For bolt connections bolts of the property classes 4.6, 5.6, 8.8, 10.9 or 12.9 according to EN ISO 898-1 shall beused. Nominal values of the strengths:

Table 5 — Property classes

Property class 4.6 5.6 8.8 10.9 12.9

fyb (N/mm2) 240 300 640 900 1 080

fub (N/mm2) 400 500 800 1 000 1 200

4.2 Bolt connections

4.2.1 General

For the purpose of this standard bolt connections are specified as connections, where

⎯ bolts are tightened and thus compress the joint surfaces together;

⎯ the joint surfaces are secured against rotation (e. g. by using multiple bolts).

4.2.2 Shear and bearing connections

Connections with fitted bolts, where

⎯ the loads act perpendicular to the bolt axis and cause shear and bearing stresses in the bolts;

⎯ clearance between bolt and hole shall be according to ISO 286-2 tolerances h13 and H11;

⎯ at maximum 10 % of the clamping length may be covered by the threaded part of the bolt;

⎯ special surface treatment of the contact surfaces is not required.

4.2.3 Slip resistant connections

Connections with high strength bolts of property classes 8.8, 10.9 or 12.9, where

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 16: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

14

⎯ the loads are transmitted by friction between the joint surfaces;

⎯ bolts are tightened by a controlled method to the full preloading state;

⎯ the surface condition of the contact surfaces shall be specified and taken into account accordingly.

4.2.4 Connections loaded in tension

Connections with high strength bolts of property classes 8.8, 10.9 or 12.9, where

⎯ the loads act in the direction of the bolt axis and cause axial stresses in the bolts;

⎯ bolts are tightened by a controlled method to the full preloading state;

⎯ fatigue assessment of the bolts shall be done considering the structural features of the joint, e. g. stiffness ofthe connected parts and the leverage action caused by the joint geometry;

⎯ an even contact over the whole intended contact area of the joint shall be ensured.

4.3 Pin connections

Pin connections are regarded as connections that allow turning of the connected parts.

4.4 Welded connections

Terms for welded joints shall be as given in EN 12345. Symbolic representation on drawings shall be according toEN 22553.

4.5 Proofs of structural members and connections

It has to be proven that the strains dS do not exceed the resistances dR :

dd RS ≤ (1)

The strains Sd shall be determined by applying the loads, load combinations and partial safety factors accordingTable 10 of EN 13001-2.

In the following clauses, the resistances dR are presented as limit stresses df or limit forces dF .

For the ultimate limit state, the following proofs shall be delivered:

⎯ proof of strength of structural members and connections under quasi-static stress according to 5;

⎯ proof of fatigue strength according to 6;

⎯ proof of strength of hollow section girder joints under quasi-static stress according to 7;

⎯ proof of elastic stability of structural members and special elements according to 8.

5 Proof of static strength

5.1 General

The proof of strength under quasi-static stress protects against excessive deformations due to yielding of thematerial or sliding of friction-grip connections as well as against static rupture of structural members or connections.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 17: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

15

The proof shall be delivered for structural members and connections taking into account the most unfavourableload effects from the load combinations A, B or C according to Table 10 of EN 13001-2: and applying theresistances according to 5.2.

5.2 Limit design stresses and forces

5.2.1 General

The limit design stresses and forces shall be calculated by:

Limit design stresses Rdf = function ( kf , Rγ ) or

(2)Limit design forces RdF = function ( kF , Rγ )

where

kf or kF are characteristic values (or nominal values)

Rγ is the resulting resistance coefficient smR γγγ ⋅=

mγ is the resistance coefficient 1,1=mγ (see Table 10 of EN 13001-2)

sγ is the general specific resistance coefficient for special parts of this standard

NOTE Rdf and RdF are equivalent to mR γ/ in Figure 2 of EN 13001-1.

5.2.2 Limit design stress in structural members

The limit design stress Rdf , used for the design of structural members, shall be calculated by:

Rm

ykRd

ff

γ= for normal stresses (3)

3Rm

ykRd

ff

γ= for shear stresses (4)

with γRm = γm⋅γsm

where

ykf is the nominal value of the yield point of the material (see Table 2)

γsm is the specific resistance coefficient for material as follows:

For non-rolled material

0,1=smγ

For rolled materials (e. g. plates and profiles):

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 18: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

16

smγ = 1,0 for stresses in the plane of rolling

smγ = 1,0 for compressive and shear stresses

For tensile stresses perpendicular to the plane of rolling (see Figure 1):

smγ = 1,0 for material in quality classes Z25 or Z35 according to EN 10164

smγ = 1,16 for material in quality class Z15 according to EN 10164

smγ = 1,34 without quality classification

Figure 1 — Tensile load perpendicular to plane of rolling

Hence follow the limit design stresses, which are dependent on the material and the kind of stressing which aregiven in Table 2.

5.2.3 Limit design forces in bolt connections

5.2.3.1 Shear and bearing connections

The resistance of a connection shall be determined by applying the limit forces of the individual connecting devices.

The limit design shear force Fv,Rd per bolt and per shear plane shall be calculated by:

3, ⋅

⋅=

Rb

ybRdv

AfF

γ(5)

with sbmbR γγγ ⋅=

where

ybf is the yield point (nominal value) of the bolt material

A is the cross-section of the bolt shank at the shear plane

sbγ is the specific resistance factor for bolt connections

sbγ = 1,0 for multiple shear plane connections

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 19: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

17

sbγ = 1,3 for single shear plane connections

See Table 6 for limit design shear forces as an example.

Table 6 — Limit design shear force Fv,Rd per fitted bolt and per shear plane for multiple shear planeconnections

Fv,Rd (kN)

Fitted bolt Hole diameterShank resp.

hole sectionFitted bolt material

for γRb = 1,1

(mm) (mm2) 4.6 5.6 8.8 10.9 12.9

M12 13 133 16,7 20,9 44,6 62,8 75,4

M16 17 227 28,6 35,7 76,2 107,2 128,6

M20 21 346 43,5 54,4 116,2 163,2 196,1

M22 23 415 52,2 65,3 139,4 196,0 235,2

M24 25 491 61,8 77,3 164,9 231,9 278,3

M27 28 616 77,6 97,0 206,9 291,0 349,2

M30 31 755 95,1 111,8 253,6 356,6 428,0

The limit design bearing force Fb,Rd per bolt may be calculated by:

Rb

yRdb

tdfF

γα ⋅⋅⋅

=, (6)

with sbmbR γγγ ⋅=

where

0

1

3 d

e

41

3 0

1 −⋅dp

u

ub

f

f

Min=α

1.0

e1 ≥ 2,0 do

e2 ≥ 1,5 do (7)

p1 ≥ 3,0 do

p2 ≥ 3,0 do

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 20: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

18

Figure 2 — Illustration for formula (7)

ubf is the ultimate strength (nominal value) of the bolt (Table 5)

uf is the ultimate strength (nominal value) of the basic material (Table 2)

yf is the yield point (nominal value) of the basic material (Table 2)

d is the shank diameter of the bolt

t is the minimum of thicknesses of the basic material

sbγ is the specific resistance factor for bolt connections

sbγ = 0,7 for multiple shear plane connections

sbγ = 0,9 for single shear plane connections

5.2.3.2 Slip-resistant connections

The resistance of a connection shall be determined by applying the limit forces of the individual connecting devices.

For slip-resistant connections the limit design slip force Fs,Rd per bolt and per friction interface shall be calculatedby:

Rs

tdpRds

FFF

γµ )( ,

,

−⋅= (8)

with ssmRs γγγ ⋅=

where:

µ is the slip factor

µ = 0,50 for surfaces

⎯ blasted metallic bright with steel grit or sand, no unevennesses;

⎯ blasted with steel grit or sand and aluminised;

⎯ blasted with steel grit or sand and metallised with a product basing on zinc thatcauses a friction coefficient of min. 0,5

µ = 0,40 for surfaces

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 21: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3-1:2004 (E)

19

⎯ blasted with steel grit or sand and alkali-zinc-silicate coating of 50 µm to 80 µmthickness

µ = 0,30 for surfaces

⎯ cleaned metallic bright with wire brush or scarfing

µ = 0,20 for surfaces

⎯ cleaned of loose rust, oil and dirt

dpF , is the design preloading force.

tF is an external tensile force in direction of the axis of the bolt (see Figure 3)

It shall be ensured that the used preloading force is greater than or equal to the designpreloading force.

ssγ is the specific resistance factor for slip-resistant connections;

14,1=ssγ

See Table 7 for limit design slip forces using for example a design preloading force of

sybdp AfF ⋅⋅= 7,0, ,

where

ybf is the yield point (nominal value) of the bolt material (Table 5)

sA is the stress area of the bolt.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 22: UNIN13001-3-1_2005_EEN

prC

EN

/TS

130

01-3

-1:2

003

(E)

20

Tab

le 7

— L

imit

des

ign

slip

fo

rce

F S,R

d p

er b

olt

and

per

fri

ctio

n in

terf

ace

usi

ng

a d

esig

n p

relo

adin

g f

orc

e s

ybd

pA

fF

⋅⋅

=7.0

,

Bol

tst

ress

area AS

Des

ign

prel

oadi

ngfo

rce

F p,d

(kN

)

Bo

lt m

ater

ial

Lim

it de

sign

slip

for

ce F

s,R

d (k

N)

Bo

lt m

ater

ial

8.8

Slip

fac

tor

:

10.9

Slip

fac

tor

:

12.9

Slip

fac

tor

:

(mm

2 )

8.8

10.9

12.9

0.50

0.40

0.30

0.20

0.50

0.40

0.30

0.20

0.50

0.40

0.30

0.20

M12

84,3

37,8

53,1

63,7

15,1

12,1

9,1

6,0

21,2

17,0

12,7

8,5

25,5

20,4

15,3

10,2

M16

157,

070

,398

,911

9,0

28,1

22,5

16,9

11,2

39,6

31,6

23,7

15,8

47,6

38,1

28,6

19,0

M20

245,

011

0,0

154,

018

5,0

44,0

35,2

26,4

17,6

61,6

49,3

37,0

24,6

74,0

59,2

44,4

29,6

M22

303,

013

6,0

191,

022

9,0

54,4

43,5

32,6

21,8

76,4

61,1

45,8

30,6

91,6

73,3

55,0

36,6

M24

353,

015

8,0

222,

026

7,0

63,2

50,6

37,9

25,3

88,8

71,0

53,3

35,5

107,

085

,464

,142

,7

M27

459,

020

6,0

289,

034

7,0

82,4

65,9

49,4

33,0

116,

092

,569

,446

,213

9,0

111,

083

,355

,5

M30

561,

025

1,0

353,

042

4,0

100,

080

,360

,240

,214

1,0

113,

084

,756

,517

0,0

136,

010

2,0

67,8

M36

817,

036

6,0

515,

061

8,0

146,

011

7,0

87,8

58,6

206,

016

5,0

124,

082

,424

7,0

198,

014

8,0

98,9

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 23: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

21

5.2.3.3 Connections loaded in tension

The resistance of a connection shall be determined by applying the limit forces of the individual connectingdevices.

In principle the proof of competence has to take into account the stiffnesses of the bolt and the flanges to beconnected (see Figure 3).

Fp Preloading force in bolt

δp Bolt elongation from preloading

Ft External force

∆δ: Additional elongation

Fb Tensile force in bolt

∆Fb additional force in bolt

Slope Kb Stiffness of bolt

Slope Kc Stiffness of flanges

Figure 3 — Force-elongation-diagram

For simplification the limit design tensile force per bolt Ft,Rd may be calculated by:

Rb

dpRdt

FF

γ,

, = (9)

with γRb = γm ⋅ γsb

where

dpF , is the design preloading force. It shall be ensured that the used preloading force is

greater than or equal to the design preloading force

sbγ is the specific resistance factor for connections loaded in tension

sbγ = 1,0

See Table 8 for limit design tensile forces according to formula (9) using for example a design preloadingforce of

sybdp AfF ⋅⋅= 7,0,

where

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 24: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

22

ybf is the yield point (nominal value) of the bolt material (Table 5)

sA is the stress area of the bolt.

Table 8 — Limit design tensile force Ft,Rd per bolt in direction of the bolt axis, using a designpreloading force sybdp AfF ⋅⋅= 7,0,

Design preloading

force Fp,d (kN)

Bolt material

Limit design tensile forceper bolt

Ft,Rd (kN)

for γRb = 1.1

Bolt material

Bolt

stressarea

AS

(mm2)

8.8 10.9 12.9 8.8 10.9 12.9

M12 84,3 37,8 53,1 63,7 34,3 48,2 57,9

M16 157,0 70,3 98,9 119,0 63,9 88,9 108,1

M20 245,0 110,0 154,0 185,0 100,0 140,0 168,1

M22 303,0 136,0 191,0 229,0 123,6 173,6 208,1

M24 353,0 158,0 222,0 267,0 143,9 201,8 242,7

M27 459,0 206,0 289,0 347,0 187,2 262,7 315,4

M30 561,0 251,0 353,0 424,0 228,1 320,9 385,4

M36 817,0 366,0 515,0 618,0 332,7 468,1 561,8

5.2.4 Limit design forces in pins

The pin of a pin connection shall be designed taking into account bending, shearing and bearing. Thereforethe following simplified system may be assumed:

For pins the following limit design loads shall be taken into account:

⎯ Limit design bending moment Rp

ypelRd

fWM

γ⋅

= (10)

with spmRp γγγ ⋅=

where

elW is the elastic section modulus of the pin

ypf is the yield point (nominal value) of the pin material

spγ is the specific resistance factor for pin connections bending moment γsp = 1,0

⎯ Limit design shear force per shear plane for pinsRp

ypRdv

fA

uF

γ⋅⋅

⋅=3

1, (11)

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 25: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

23

with spmRp γγγ ⋅=

where

u3

4=u for solid pins

2

2

11

34

v

vvu

+++⋅= for hollow pins

where

O

i

D

D=ν ,

iD is the inner diameter of pin

OD is the outer diameter of pin

A is the cross-section of the pin

spγ is the specific resistance factor for pin connections shear force

spγ = 1,0 for multiple shear plane connections

spγ = 1,3 for single shear plane connections

⎯ Limit design bearing forceγ

α

Rp

yRdb

ftdF

=,

⋅⋅⋅(12)

with spmRp γγγ ⋅=

where

⎪⎪⎪

⎪⎪⎪

=0,1

y

yp

f

f

Minα

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 26: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

24

Figure 4 — Pin connections

yf is the yield point (nominal value) of basic material

d is the diameter of the pin

t is the minimum of thickness of the basic material

spγ is the specific resistance factor for pin connections bearing force

spγ = 0,7 for multiple shear plane connections

spγ = 0,9 for single shear plane connections

In case of significant movement between pin and bearing the limit bearing force shall be reduced in order toreduce wear.

5.2.5 Limit design stresses in welded connections

The limit design weld stress fw,Rd used for the design of a welded connection depends on:

⎯ the parent metal to be welded;

⎯ the type of the weld;

⎯ the type of stress;

⎯ the weld quality;

⎯ the kind of welding process.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 27: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

25

The limit design weld stress fw,Rd shall be calculated by:

γα

Rw

ykw

Rdw

ff

= ,

⋅ (13)

with swmRw γγγ ⋅=

where

wα is a factor given in Table 9 in dependence on the type of weld, the type of stress and the material

ykf is the minimal nominal value of the yield points of the parent and weld consumable materials in the

weld joint

swγ is the specific resistance factor for welded connections

swγ = 1,0

Table 9 — Factor αw for limit weld stress

αw

Direction ofstress Penetration Type of stress fyk < 690

(N/mm²)

690 ≤ fyk < 960

(N/mm²)

fyk ≥ 960

(N/mm²)

Tension 1,0 1,0 0,93Weld with fullpenetration orbackwelded Compression 1,0 1,0 0,93

Tension 0,7 0,7 0,65Weld withoutfull penetration Compression 0,8 0,8 0,74

Stress across theweld direction

Weldwith/without full

penetrationShear 1/√2 1/√3 0,54

Tension/Compression

1,0 1,0 0,93Stress in welddirection

Weldwith/without full

penetration Shear 1/√3 1/√3 0,54

5.3 Execution of the proof

5.3.1 Proof for structural members

For the structural member to be designed it shall be proven that:

RdSd f≤σ and RdSd f≤τ (14)

where

SdSd στ , are the design stresses

Rdf is the corresponding limit design stress according to 5.2.2.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 28: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

26

In case of plane states of stresses it shall additionally be proven that:

12

,,

,,

2

,

,

2

,

, ≤⎟⎟⎠

⎞⎜⎜⎝

⎛+

⋅⋅

−⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟⎠

⎞⎜⎜⎝

Rd

Sd

yRdxRd

ySdxSd

yRd

ySd

xRd

xSd

fffff

τσσσσ(15)

where

x, y indicate the orthogonal directions of stresses

Spatial states of stresses may be reduced to the most unfavourable plane state of stress.

5.3.2 Proof for bolt connections

For the most unfavourably loaded element of a connection it shall be proven that:

RdSd FF ≤ (16)

where

SdF is the design force of the element

RdF is the limit design force according to 5.2.3, in dependence on the type of the connection

and its type of stress, i. e.

limit design shear force Fv,Rd

limit design bearing force Fb,Rd

limit design slip force Fs,Rd

limit design tensile force Ft,Rd

In particular for connections loaded in tension (see 5.2.3.3) the tensile force in the bolt Fb shall always satisfy:

m

Sybb

AfF

γ⋅

≤ (17)

5.3.3 Proof for pin connections

For pins, it shall be proven that:

RdbSdbi

RdvSdv

RdSd

FF

FF

MM

,,

,,

≤≤≤

(18)

where

SdM is the design value of the bending moment in the pin

RdM is the limit design bending moment according to 5.2.4

SdvF , is the design value of the shear force in the pin

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 29: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

27

RdvF , is the limit design shear force according to 5.2.4

SdbiF , is the decisive design value of the bearing force in the joining plate i of the pin connection

RdbF , is the limit design bearing force according to 5.2.4

5.3.4 Proof for welded connections

For the weld to be designed it shall be proven that:

sdw,σ and RdwSdw f ,, ≤τ (19)

where

SdwSdw ,, , στ are the design weld stresses (see annex D)

Rdwf , is the corresponding limit design weld stress according to 5.2.5

In case of plane states of stresses in welded connections it shall additionally be proven that:

1,1

2

,

,

,,,,

,,,,

2

,,

,,

2

,,

,, ≤⎟⎟⎠

⎞⎜⎜⎝

⎛+

⋅⋅

−⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟⎠

⎞⎜⎜⎝

Rdw

Sdw

yRdwxRdw

ySdwxSdw

yRdw

ySdw

xRdw

xSdw

fffff

τσσσσ(20)

where

x,y indicate the orthogonal directions of stresses.

Spatial states of stresses may be reduced to the most unfavourable plane state of stress.

6 Proof of fatigue strength

6.1 General

The proof of fatigue strength prevents failure or formation of critical cracks of structural members orconnections under cyclic loading.

In general, the proof shall be executed by applying the load combinations A according to Table 10 ofEN 13001-2, setting all partial safety factors γp = 1, and the resistances (i. e. limit design stresses) accordingto 6.2.

The stresses are calculated as nominal stress concept. A nominal stress is a stress in the parent materialadjacent to a potential crack location, calculated in accordance with simple elastic strength of materials theory,excluding local stress concentration effects. Annex A and annex E contain the influences of constructionaldetails and thus include the effects of:

⎯ local stress concentrations due to the shape of the joint and the weld geometry;

⎯ size and shape of acceptable discontinuities;

⎯ the stress direction;

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 30: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

28

⎯ residual stresses;

⎯ metallurgical conditions;

⎯ in some cases, the welding process and post-weld improvement procedures.

The effect of additional geometric stress concentration (global stress concentration) shall be estimated withappropriate methods. This standard does not use other methods like Hot Spot Stress Method. Thebibliography gives information on literature about Hot Spot Stress Method.

For the execution of the proof of fatigue strength the stress history parameters (see 4.3.4 of EN 13001-1) isneeded. Values for this parameter can be determined by simulation, testing or using classes S (see 6.3). Thusthe service conditions and their effect on the stressing of the structure are taken into account.

Mean-stress influence, as presented in EN 13001-1, in structures in as-welded condition (without stressrelieving) is negligible. Therefore the stress history parameter s is independent of the mean-stress and thefatigue strength is based on the stress range only.

In non-welded details or stress relieved welded details, the effective stress range to be used in the fatigueassessment may be determined by adding the tensile portion of the stress range and 60 % of the compressiveportion of the stress range or by special investigation (see 6.4).

Uncertainties in assuming the fatigue strength and possible consequences of a damage shall be taken intoconsideration by a fatigue strength specific resistance factor γMf according to Table 10.

Table 10 — Fatigue strength specific resistance factor γMf

γMf

Non fail-safe componentsInspection and access Fail-safe

components without hazardsfor persons

with hazards forpersons

Periodic inspection and maintenance

Accessible joint detail1,0 1,15 1,25

Periodic inspection and maintenance

Poor accessibility1,15 1,25 1,35

⎯ „Fail-safe“ structural components are those with reduced consequences of failure, such that the localfailure of one component does not result in failure of the structure or falling of loads.

⎯ Non „fail-safe“ structural components are those where local failure of one component leads rapidly tofailure of the structure or falling of loads.

6.2 Limit design stresses

6.2.1 Characteristic values of the stress range

The limit design stress of a constructional detail stressed by fatigue is characterised by the characteristic

value of the stress range cσ∆ (notch condition). cσ∆ represents the fatigue strength under 6102 ⋅ constant

stress range cycles and a probability of survival of Ps = 97,7 % (mean value minus double standard deviation),see Figure 5.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 31: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

29

The several values cσ∆ are arranged in a sequence of notch classes (NC) with the constant ratio of 1,125

between the classes (see annex C, first column).

For shear stressing the above is also applicable and cτ∆ is used instead of cσ∆ .

The characteristic values of the stress range cσ∆ resp. cτ∆ and the related inverse slopes m of the σ/N-

curve are given in annex A (normative) and annex E (informative) as follows:

Table A.1: Basic material of structural members;

Table A.2: Bolted members, connecting devices;

Table A.3: Welded members;

Table E.1: Values of inverse slope of the σ/N-curve m and permissible stress range cσ∆ for

connections and joints of hollow section girders;

Table E.2: Values of inverse slope of the σ/N-curve m and permissible stress range cσ∆ for lattice type

connections of hollow section girders.

The given values apply for the defined basic conditions. For deviating conditions an appropriate notch class(NC) shall be selected one or more notch classes above (+ 1 NC, + 2NC, ...) or below (- 1 NC, - 2 NC, ...) thebasic reference class. The effects of several deviating conditions shall be summed up.

Principle figure above

Simplification (seeEN 13001-1)

Key

1 Constant stress range fatigue limit

2 Cut-off limit

Figure 5 — Illustration of s/N-curve and ?sc

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 32: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

30

6.2.2 Weld quality

cσ∆ -values in annex A and annex E depend on the quality level of the weld. Quality classes B, C, D shall be

according to EN 25817. In annex E class C is assumed. Usage of lower quality levels than D is not allowed.For the purpose of this standard an additional quality level B* can be used. The requirements in addition tothose of level B given hereafter define quality level B*.

Additional requirements for quality level B*:

For the purpose of this standard 100 % NDT (non destructive testing) means inspection of the whole length ofthe weld with an appropriate method to ensure that the specified quality requirements are met.

For butt welds:

⎯ full penetration without initial points;

⎯ both surfaces machined or flush ground down to plate surface; grinding in stress direction;

⎯ the weld toe post-treated by grinding, remelting by TIG, plasma welding or by needle peening;

⎯ eccentricity of the joining plates less than 5 % of thickness of greater plate;

⎯ sum of lengths of concavities of weld less than 5 % of the total length of the weld;

⎯ 100 % NDT.

For parallel and lap joints:

⎯ transition angle of the weld to the plate surface shall not exceed 25°;

⎯ the weld toe post-treated by grinding, remelting by TIG, plasma welding or by needle peening;

⎯ 100 % NDT.

All other joints:

⎯ full penetration;

⎯ transition angle of the weld to the web surface shall not exceed 25°;

⎯ the weld toe post-treated by grinding, remelting by TIG, plasma welding or by needle peening;

⎯ 100 % NDT;

⎯ eccentricity less than 10 % of thickness of greater plate.

If TIG dressing is used as a post treatment of the potential crack initialisation zone of a welded joint in order toincrease the fatigue strength, welds of quality class C for design purposes may be upgraded to quality class Bfor any joint configuration.

6.2.3 Effect of test loads

The characteristic value of stress range cσ∆ respective cτ∆ of a welded detail that was subjected to a test

load (see EN 13001-2, 4.1.4.3) is higher than the value of that detail not subjected to a test load.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 33: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

31

cσ∆ values of annex A and annex E are related to details as test loaded. Therefore application of these

values requires test loads as given in EN 13001-2.

6.2.4 Requirements for fatigue testing

Details not given in annex A and annex E or consideration of mean stress influence require specialinvestigation into cσ∆ and m by tests.

Requirements for such tests are:

⎯ test specimen in real size (1:1);

⎯ test specimen produced under workshop conditions;

⎯ at least 7 tests per stress range level.

Requirements for determination of m and cσ∆ are:

⎯ cσ∆ shall be determined from numbers of cycles based on mean value minus double standard deviation

in a log/log presentation;

⎯ at least one stress range level that results in a number of stress cycles to failure of less than 2·104 cycles;

⎯ at least one stress range level that results in a number of stress cycles to failure between 1,5·106 and2,5·106 cycles.

A simplified method for the determination of m and cσ∆ may be used:

⎯ m shall be set to m = 3;

⎯ only stress range levels that result in a number of stress cycles to failure of less than 1⋅105 cycles shall beused.

6.3 Classes S of stress history parameter s

6.3.1 Simplified method based on service conditions

Determination of the class S (see EN 13001-1) decisively depends on:

⎯ the class U of working cycles;

⎯ the class Q of the load spectrum;

⎯ the factor 2φ respective hoisting class HC.

The structure or parts of the structure can be related to a class S according to Table 11 and Table 12dependent on the classes U, Q and a parameter Gt/( 2φ ⋅ Q), under consideration of an average influence ofthe class Dlin and/or class Dang and class P,

where

tG is the mass of the moving crane parts during a representative working cycle, such as:

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 34: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

32

⎯ for a bridge crane: Gt is the mass of the trolley and load lifting attachments;

⎯ for slewing cranes:

⎯ when considering load supporting slewing parts: Gt is the mass of the jibtransformed to the load suspension point;

⎯ when considering non slewing parts: Gt is the mass of the entire slewing parts,transformed to the load suspension point;

Q is the mass of the maximum hoist load influencing the part under consideration; (i. e. ifthe hoist load is of no influence, Q is set to 0);

2φ is the dynamic factor (see EN 13001-2).

The derivation of Table 11 and Table 12 is based on the damage theory of Corten-Dolan and on theassumption that the average horizontal displacement of the load centre is about 2/3 of the span or 2/3 of themaximum working radius.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 35: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

33

Table 11 — Class S for trolley frames and main girders between two supports, as well as forstructures of wall and slewing cranes with constant working radius of the load centre

Class of total number of working cyclesClass of loadspectrum Q

Gt

⋅2φ U0 U1 U2 U3 U4 U5 U6 U7 U8 U9

0 S0 S1 S2 S3 S4 S5

≤ 0,25

≤ 0,5

S0S1 S2 S3 S4 S5 S6

≤ 1

≤ 2

S0

S1 S2 S3 S4 S5 S6 S7

Q0

S0 S0

S1 S2 S3 S4 S5 S6 S7 S8

0 S0 S1 S2 S3 S4 S5 S6

≤ 0,25

≤ 0,5

≤ 1

S0S1 S2 S3 S4 S5 S6 S7

≤ 2

Q1

S0 S0

S1 S2 S3 S4 S5 S6 S7 S8

0

≤ 0,25

≤ 0,5

S0 S1 S2 S3 S4 S5 S6 S7

≤ 1

≤ 2

Q2

S0 S0

S1 S2 S3 S4 S5 S6 S7 S8

0

≤ 0,25

≤ 0,5

≤ 1

≤ 2

Q3

S0 S0 S1 S2 S3 S4 S5 S6 S7 S8

0

≤ 0,25

≤ 0,5

≤ 1

S1 S2 S3 S4 S5 S6 S7 S8 S9

≤ 2

Q4

S0

S0 S1 S2 S3 S4 S5 S6 S7 S8

0

≤ 0,25S1 S2 S3 S4 S5 S6 S7 S8 S9

≤ 0,5

≤ 1

≤ 2

S1 S2 S3 S4 S5 S6 S7 S8

S9Q5

S0

S0 S1 S2 S3 S4 S5 S6 S7 S8

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 36: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

34

Table 12 — Class S for stringers, supports and parts of main girders project over the supports, as wellas for structures of wall and slewing cranes with variable working radius of the load centre

Class of total number of working cyclesClass of loadspectrum Q

Gt

⋅2φ U0 U1 U2 U3 U4 U5 U6 U7 U8 U9

0 S0 S1 S2 S3 S4

≤ 0,25S0

S1 S2 S3 S4 S5

≤ 0,5

S0

S1 S2 S3 S4 S5 S6

≤ 1

≤ 2

S0

S1 S2 S3 S4 S5 S6 S7

Q0

S0 S0

S1 S2 S3 S4 S5 S6 S7 S8

0 S0 S1 S2 S3 S4 S5

≤ 0,25

≤ 0,5

S0S1 S2 S3 S4 S5 S6

≤ 1

≤ 2

S0

S1 S2 S3 S4 S5 S6 S7

Q1

S0 S0

S1 S2 S3 S4 S5 S6 S7 S8

0 S0 S1 S2 S3 S4 S5

≤ 0,25S0

S1 S2 S3 S4 S5 S6

≤ 0,5

≤ 1

≤ 2

S0

S1 S2 S3 S4 S5 S6 S7Q2

S0 S0

S1 S2 S3 S4 S5 S6 S7 S8

0 S0 S1 S2 S3 S4 S5 S6

≤ 0,25

≤ 0,5

≤ 1

S0S1 S2 S3 S4 S5 S6 S7

≤ 2

Q3

S0 S0

S1 S2 S3 S4 S5 S6 S7 S8

0 S0 S1 S2 S3 S4 S5 S6 S7

≤ 0,25

≤ 0,5

≤ 1

≤ 2

Q4

S0 S0S1 S2 S3 S4 S5 S6 S7 S8

0

≤ 0,25

≤ 0,5

≤ 1

≤ 2

Q5

S0 S0 S1 S2 S3 S4 S5 S6 S7 S8

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 37: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

35

6.3.2 Selection based on experience

The members of crane structures may be related to classes S due to experience. If a single class S is used forthe whole structure the most severe class shall be used. Guidance is given in annex B.

6.4 Execution of the proof

For the detail under consideration it shall be proven that:

RdSd σσ ∆≤∆ (21)

σσσ minmax −=∆ Sd (22)

where

Sdσ∆ is the calculated maximum range of design stresses

maxσ, minσ are the extreme values of design stresses resulting from load combinations A accordingto Table 10 of EN 13001-2, by applying γP = 1 (compression stresses with negativesign). For design weld stress see annex D. For thermally stress relieved or non-weldedstructural members the compressive portion of the stress range may be reduced to 60%.

Rdσ∆ is the permissible stress range

Shear stresses τ are treated similarly.

For each stress component xσ , yσ and τ the proof shall be executed separately.

where

x,y indicate the orthogonal directions of stresses.

In case of non welded details, if the normal and shear stresses induced by the same loading event varysimultaneously, or if the plane of the maximum principal stress does not change significantly in the course of aloading event, the maximum principal stress range shall be used.

In case of non welded details with independently varying ranges of normal and shear stresses it shall beproven that:

Mf

mm

m

c

Sdmy

m

yc

ySdmx

m

xc

xSd sssy

y

x

x

γττ

σσ

σσ

τ

τ

τ0.1

)()(,

,)(

,

, ≤⋅⎟⎟⎠

⎞⎜⎜⎝

⎛∆∆+⋅⎟

⎟⎠

⎞⎜⎜⎝

∆∆

+⋅⎟⎟⎠

⎞⎜⎜⎝

⎛∆∆

(23)

where

Sdσ∆ , Sdτ∆ are the calculated maximum ranges of design stresses

cσ∆ , cτ∆ are the characteristic values of stress range

s(m) is the stress history parameter

m inverse slope of σ/N-curve (the maximum value of mx, my, mτ shall be taken as radical

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 38: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

36

index)

x, y indicate the orthogonal direction of normal stresses

τ indicate the respective shear stress

6.5 Determination of the permissible stress range

6.5.1 Applicable methods

The permissible stress ranges Rdσ∆ for the detail under consideration shall be determined either by direct

use of stress history parameter s(m) or simplified by use of class S.

6.5.2 Direct use of stress history parameter

The permissible stress range shall be calculated by:

mMf

cRd

ms )(⋅∆

=∆γ

σσ (24)

where

Rdσ∆ is the permissible stress range

cσ∆ , m are the characteristic values of stress range and the respective inverse slope of the log

σ/log N-curve (see annex A and annex E)

Mfγ is the fatigue strength specific resistance factor (see Table 10)

)(ms is the stress history parameter (calculated according to the formula of 4.3.4 of EN 13001-1:1997)

NOTE When s(m) is obtained on the basis of m = 3, the permissible stress range may be calculated using k* asshown in formula (26).

6.5.3 Use of class S

6.5.3.1 Slope m

When the detail under consideration is related to a class S according to 6.3, the simplified determination of thepermissible stress range is dependent on the (negative inverse) slope m of the log σ/log N-curve.

6.5.3.2 Slope m = 3

In dependence on the S-classes the values of the classified stress history parameter )3( =ms are as follows:

Table 13 — s (m = 3) of classes S

Class SO S1 S2 S3 S4 S5 S6 S7 S8 S9

s(m=3) 0.008 0.016 0.032 0.063 0.125 0.25 0.5 1.0 2.0 4.0

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 39: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

37

The permissible stress range shall be calculated by:

3 )3( =⋅∆

=∆msMf

cRd γ

σσ (25)

where

Rdσ∆ is the permissible stress range;

cσ∆ is the characteristic value of stress range of details with m = 3 (see annex A and annex E);

s(m=3) is the classified stress history parameter (see Table 13);

Mfγ is the fatigue strength specific resistance factor (see Table 10).

For Mfγ = 1,25 Annex C gives the values of Rdσ∆ in dependence on the class S and cσ∆ .

6.5.3.3 Slope m ≠ 3

If the negative inverse slope m of the log σ/log N-curve is not equal to 3, the permissible stress range isdependent on the class S and the stress spectrum factor k(m) (see 4.3.4 of EN 13001-1).

The permissible stress range Rdσ∆ shall be calculated by:

*1, kRdRd ⋅∆=∆ σσ (26)

mmMf

cRd

s )3(

1,

=⋅∆=∆

γσσ (27)

1*)(

)3( ≥= =m

m

m

k

kk (28)

where

Rdσ∆ is the permissible stress range

1,Rdσ is the permissible stress range for k* = 1

*k is the specific spectrum ratio factor

cσ∆ , m are the characteristic values of stress range and the respective inverse slope of the log

σ/log N-curve (see annex A and annex E)

)3( =ms is the classified stress history parameter (see Table 13)

Mfγ is the fatigue strength specific resistance factor (see Table 10)

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 40: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

38

)3( =mk is the stress spectrum factor based on m = 3

)(mk is the stress spectrum factor based on m of the detail under consideration

k(m=3) and k(m) shall be based on the same stress spectrum that is derived either from calculation orsimulation

For Mfγ = 1,25 and m = 5. Annex C gives the values of Rdσ∆ in dependence on the class S and cσ∆ .

6.5.3.4 Simplified method for slope m ≠ 3

As k* = 1 covers the most unfavourable stress spectra, 1,Rdσ∆ may be used as permissible stress range. The

value of k* may be calculated for k(m=3) and k(m) from the stress spectrum estimated by experience.

7 Proof of static strength of hollow section girder joints

The proof of design strength of hollow section girder joints guards against failure due to:

⎯ plasticising of the boom member flange;

⎯ plasticising or instability of the boom member web;

⎯ shearing of the boom member cross-section;

⎯ punching-through of the boom member flange;

⎯ tearing-off of the web member with effective cross-section;

⎯ local bulging.

The proof shall be executed according to the rules of Eurocode 3, ENV 1993-1-1:1993, annex K.

8 Proof of elastic stability

The proof of elastic stability prevents structural members from the loss of stability by lateral deformation(e. g. buckling, bulging).

NOTE This clause is still under consideration and will be given in a later revision. It is intended to follow the principlesof DIN 18800 and applicable literature.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 41: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

39

Annex A(normative)

Values of inverse slope of σ/N-curve m andpermissible stress range ∆σc, ∆τc

Table A.1 — Basic material of structural members

No.

∆σc

∆τc

(N/mm2)

Constructional detail Requirements

m = 5

Plates, flat bars, rolled profiles under normal stresses

250 fy ≤ 275

280 275 < fy ≤ 355

1

315 355 < fy

⎯ Rolled surfaces andedges,

⎯ Surface conditionaccording toEN 10163-A3/C3,

⎯ No thermal cutting,

⎯ No notches orgeometrical notcheffects (e. g.cutouts)

m = 5

Plates, flat bars, rolled profiles under normal stresses

2

200 fy ≤ 275

225 275 < fy

⎯ Flame cut edges,quality according toEN ISO 9013-IA

⎯ No geometricalnotch effects (e. g.cutouts)

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 42: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

40

Table A.1 (concluded)

No.

∆σc

∆τc

(N/mm2)

Constructional detail Requirements

m = 5

Holes in a plate under normal stresses

200 fy ≤ 275

3

225 275 < fy

⎯ Nominal stresscalculated for thenet cross-section

⎯ Holes not flame cut,

⎯ Bolts may bepresent, when theseare stressed

⎯ up to 20 % oftheir strengthin shear/bearingconnectionsor

⎯ up to 100 %of theirstrength inslip-resistantconnections

m = 5

Plates, flat bars, rolled profiles under shear stress

140 fy ≤ 275

160 275 < fy ≤ 355

4

180 355 < fy

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 43: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

41

Table A.2 — Bolted members, connecting devices

No.

∆σc

∆τc

(N/mm2)

Constructional detail Requirements

Double shear

Supported single-shear

(example)

Single-shear

m = 5

Perforated parts in slip-resistant bolt connections under normalstresses

200 fy ≤ 275

1

225 275 < fy

⎯ The proof of fatiguestrength is notrequired for bolts ofslip resistant boltconnections

⎯ Nominal stresscalculated for the netcross-section

m = 5Perforated parts in shear/bearing connections under normal stresses

double-shear and supported single-shear2

180 Normal stress

⎯ Nominal stresscalculated for the netcross-section

m = 5Perforated parts in shear/bearing connections under normal stresses

single-shear joints, not supported3

125 Normal stress

⎯ Nominal stresscalculated for the netcross-section

m = 5 Fitted bolts in double-shear or supported single-shear joints

140 Shear stress ( cτ∆ )4

355 Bearing stress ( cσ∆ )

⎯ Uniform distribution ofstresses is assumed

m = 5 Fitted bolts in single-shear joints, not supported

100 Shear stress ( cτ∆ )5

250 Bearing stress ( cσ∆ )

⎯ Uniform distribution ofstresses is assumed

m=3 Threaded bolts loaded in tension

32 Machined thread6

45 Rolled thread

⎯ σ∆ calculated forthe stress-area of the

bolt, using bF∆ (see

5.2.3.3)

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 44: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

42

Table A.3 — Welded members

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

Basic conditions:

⎯ symmetric plate arrangement

⎯ fully penetrated weld

⎯ Manual or partially mechanizedwelding

⎯ Components with usual residualstresses

⎯ Angular misalignment < 1°

t1 = t2

or

slope <1:3

1 m = 3

Symmetric butt joint, normal stress across the weld Special conditions:

⎯ Components with considerableresidual stresses (e. g. joint ofcomponents with restraint ofshrinkage) - 1 NC

180 Butt weld, quality level B*- 2 NC

160 Butt weld, quality level B- 4 NC

140 Butt weld, quality level C 4 NC

m = 3

Symmetric butt joint, normal stress across the weld

2

90 Butt weld on remaining backing, quality level C

Basic conditions:

⎯ symmetric plate arrangement

⎯ fully penetrated weld

⎯ Manual or partially mechanisedwelding

⎯ Components with usual residualstresses

⎯ Angular misalignment < 1°

Special conditions:

⎯ Components with considerableresidual stresses (e. g. joint ofcomponents with restraint ofshrinkage) -1 NC

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 45: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

43

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

Basic conditions:

⎯ fully penetrated weld

⎯ Supported parallel to butt weld:⎯ e < 2⋅t2 + 10mm

⎯ Supported vertical to butt weld:⎯ e < 12⋅t2⎯ Manually or partially mechanized

welding

⎯ Components with usual residualstresses

slope ≤ 1:3

⎯ 12 tt − ≤ 4 mm

⎯ Special conditions:

⎯ Components with considerableresidual stresses (e. g. joint ofcomponents with restraint ofshrinkage) -1 NC

⎯ Influence of slope and thickness

12 tt − :

m = 3

Unsymmetrical supported butt joint, normal stressacross the butt weld

140 Butt weld, quality level B*

125 Butt weld, quality level B

3

112 Butt weld, quality level C

thickness 12 tt −

slope ≤4 ≤ 10 ≤ 50 > 50

≤1:3 – -1NC -1NC -2NC

≤1:2 -1NC -1NC -2NC -2NC≤1:1 -1NC -2NC -2NC -3NC

>1:1 - 2NC -2NC -3NC -3NC

m = 3

Unsymmetrical supported butt joint, normal stressacross the butt weld

4

90 Butt weld on remaining backing, quality level C

Basic conditions:

⎯ fully penetrated weld

⎯ Supported parallel to butt weld:

⎯ e < 2⋅t2 + 10mm

⎯ Supported vertical to butt weld:

⎯ e < 12⋅t2⎯ Manually or partially mechanised

welding

⎯ Components with usual residualstresses

⎯ 12 tt − ≤ 10 mm

Special conditions:

⎯ Components with considerableresidual stresses (e. g. joint ofcomponents with restraint ofshrinkage) -1 NC

⎯ 12 tt − > 10 mm -1 NC

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 46: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

44

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

Basic conditions:

⎯ fully penetrated weld

⎯ Manually or partially mechanisedwelding

⎯ Components with usual residualstresses

⎯ t1/t2 > 0,84

slope ≤ 1:1

Slope inweld orparentmaterial

Special conditions:

⎯ Components with considerableresidual stresses (e. g. joint ofcomponents with restraint ofshrinkage) -1NC

m = 3

Unsymmetrical unsupported butt joint, stress acrossthe butt weld

-2 NC

112 Butt weld, quality level B*

100 Butt weld, quality level B

5

90 Butt weld quality level C

⎯ t1/t2 > 0,74 -1 NC

⎯ t1/t2 > 0,63 -2 NC

⎯ t1/t2 > 0,50 -3 NC

m = 3

Butt joint with crossing welds, stress across the buttweld

125 Butt weld, quality level B*

100 Butt weld, quality level B

6

90 Butt weld, quality level C

Basic conditions:

⎯ Manually or partially mechanisedwelding

⎯ Components with usual residualstresses

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 47: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

45

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 3

Normal stress in weld direction

180 Full penetration, continuous weld, quality level B

160 Full penetration, continuous weld, quality level C

140 Partial penetration, continuous welds, quality level C

7

90 Intermittent weld, quality level C

Basic conditions:

⎯ Manual or partially mechanisedwelding

Special conditions:

⎯ Automatic welding,no initial points + 1 NC

⎯ Welding with restraintof shrinkage - 1 NC

m = 3

Cross or T-Joint, groove weld, normal stress acrossthe weld

125 K-weld, quality level B*

112 K-weld, quality level B

100 K-weld, quality level C

80 Semi V-weld on remaining backing quality level B

8

71 Semi V-weld on remaining backing quality level C

Basic conditions:

⎯ Continous weld

⎯ Manual or partially mechanisedwelding

Special conditions:

⎯ Automatic welding,no initial points + 1 NC

⎯ Welding withrestraint of shrinkage - 1 NC

m = 3

Cross or T-Joint, symmetric double fillet weld, normalstress across the weld

71 Quality level B

9

63 Quality level C

Basic conditions:

⎯ Continous weld

⎯ Manual or partially mechanizedwelding

⎯ weld thickness a > 0,8 t

Special conditions:

⎯ Automatic welding, no initial points + 1 NC

⎯ Welding with restraint of shrinkage - 1 NC

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 48: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

46

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 3

T-Joint, normal stresses in the plate from bending

90 Quality level B

10

80 Quality level C

m = 3

Full penetration weld (double sided) with transversecompressive load (e. g. wheel)

160 Quality level B

11

140 Quality level C

m = 3

Full penetration weld (with backing) withtransverse compressive load (e. g. wheel)

125 Quality level B

12

112 Quality level C

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 49: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

47

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 3

Single fillet weld with transverse compressiveload (e. g. wheel)

13

63 Quality level C

m = 3

Single fillet weld with transverse load (e. g.underslung crab)

14

63 Quality level C

m = 3

Continuous component with a welded cover plate

90 l ≤ 50 mm

80 50 mm < l ≤ 100 mm

15

71 l > 100 mm

Basic conditions:

⎯ Quality level C

⎯ Continuous weld

⎯ distance c between the weld toeand rim of continuous componentgreater than 10 mm

Special conditions:

⎯ Quality level B* +2 NC

⎯ Quality level B +1 NC

⎯ Quality level D - 1 NC

⎯ c < 10 mm - 1 NC

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 50: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

48

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 3

Continuous component with load carrying flangeplate, stress in continuous component at end of

connection

16

125Flange plate with end chamfer ≤ 1:3; edge weld and endof flank weld in weld quality level B*

Basic conditions:

⎯ Continuous fillet or groove weld

m = 3

Continuous component with load carrying flangeplate, stress in continuous component at end of

connection

17

100 Edge weld and end of flank weld in weld quality level B*

Basic conditions:

⎯ Continuous fillet or groove weld

⎯ t0 ≤ 1,5 ⋅tu

m = 3

Continuous component with load carrying flangeplate, stress in continuous component at end of

connection

80 Quality level B

18

71 Quality level C

Basic conditions:

⎯ Continuous fillet or groove weld

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 51: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

49

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 3

Overlapped welded joint, main plate

80 Quality level B*

71 Quality level B

19

63 Quality level C

Basic conditions:

⎯ Stressed area to be calculated by:

⎯ rs ltA ⋅=

⎯ )(min , lbbl Lmr +=

m = 3

Overlapped welded joint, lap plates

20

50

Basic conditions:

⎯ Stressed area to be calculated by:

)( 21 LLLs ttbA +⋅=

m = 3

Continuous component with longitudinally mountedparts, Parts rounded or chamfered

100 Quality level B*

90 Quality level B

21

80 Quality level C

Basic conditions:⎯ R ≥ 50 mm; α ≤ 60°

⎯ Groove weld or allround fillet weld

Special conditions:

⎯ R ≥ 100 mm; α ≤ 45° +1 NC

⎯ End welds in a zone ofat least 5 t fully penetrated +2 NC

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 52: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

50

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 3

Continuous component with parts endingperpendicularly

80 l ≤ 50 mm

71 50 mm < l ≤ 100 mm

22

63 l > 100 mm

Basis conditions:

⎯ Allround fillet weld

⎯ Quality level B, C

Special conditions:

⎯ Single fillet weld -1 NC

⎯ Weld quality level B* +1 NC

⎯ Weld quality level D -1 NC

m = 3

Continuous component with longitudinally mountedparts, welded to edge

100 Quality level B, weld ends in weld quality level B*

90 Quality level B

80 Quality level C

23

71 Quality level D

Basic conditions:⎯ R ≥ 50 mm or α ≤ 60°

⎯ t2 ≤ t1⎯ Butt weld or all-round fillet weld

Special conditions:

⎯ R ≥ 100 mm or α ≤ 45° +1 NC

⎯ R < 50mm or α > 60° -2 NC

⎯ End welds in a zone of at least 5 t2fully penetrated +1 NC

m = 3

Continuous component with overlapping parts

80 b ≤ 50 mm

71 50 mm < b ≤ 100 mm

24

63 b > 100 mm

Basic conditions

⎯ c ≥ 10 mm

⎯ Quality level C

Special conditions:

⎯ Quality level B* +2 NC

⎯ Quality level B +1 NC

⎯ Quality level D -1 NC

⎯ c < 10 mm -1 NC

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 53: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

51

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 3

Continuous component to which parts are weldedtransversally

125 Double fillet weld, quality level B*

112 Double fillet weld, quality level B

100 Double fillet weld, quality level C

90 Single fillet weld, quality level B, C

25

80 Semi V-weld on remaining backing, quality level B, C

Basic conditions:

⎯ Manual or partially mechanisedwelding

⎯ Plate thickness t ≤ 12 mm

⎯ c ≥ 10 mm

⎯ Quality level D not allowed for Kweld

Special conditions:

⎯ Plate thickness t > 12 mm(Double fillet welds only) -1 NC

⎯ c < 10 mm -1 NC

⎯ K weld instead of doublefillet weld +1 NC

⎯ Quality level D insteadof C -1 NC

m = 3

Continuous component to which stiffeners arewelded transversally

125 Double fillet weld, quality level B*

112 Double fillet weld, quality level B

100 Double fillet weld, quality level C

80 Single fillet weld, quality level B, C

26

80 Semi V-weld on remaining backing, quality level B, C

Basic conditions:

⎯ Manual or partially mechanisedwelding

⎯ Plate thickness t ≤ 12 mm

⎯ c ≥ 10 mm

Special conditions:

⎯ Plate thickness t > 12 mm

⎯ (double fillets only) -1 NC

⎯ c< 10 mm -1 NC

⎯ K weld instead ofdouble fillet weld +1 NC

m = 3

Continuous component to which transverse parts orstiffeners are welded intermittently

63 Quality level C

27

50 Quality level D

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 54: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

52

Table A.3 (continued)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 3

Continuous component with longitudinally mountedparts, parts through hole

90 Parts rounded or chamfered

28

56 Parts ending perpendicularly

For parts rounded or chamfered:Basic conditions:⎯ R ≥ 50 mm, α ≤ 60°

Special conditions:

⎯ R ≥ 100 mm, α ≤ 45° +1 NC

⎯ End welds in the zoneof at least 5 t fullypenetrated +2 NC

m = 3

Tubes, normal stress across the weld

90 Butt weld, cylindrical tube

63 Groove weld, cylindrical tube

56 Groove weld, rectangular tube

45 Double fillet weld, cylindrical tube

29

40 Double fillet weld, rectangular tube

Basic conditions:

⎯ Manual or partially mechanisedwelding

⎯ Quality level C

⎯ Groove weld fully penetrated

⎯ Fillet weld thickness a > 0,7 tubethickness

⎯ Flange thickness greater than twotimes tube thickness (for middlefigure)

Special conditions:

⎯ Quality B +1 NC

⎯ Quality B* +2 NC

m = 5

Continuous weld under uniform shear flow

Basic conditions:

⎯ Quality level C

⎯ Manual or partially mechanisedwelding

⎯ Components with usual residualstresses

Special conditions:

⎯ Components with considerableresidual stresses (e. g. joint ofcomponents with restraint ofshrinkage -1 NC

⎯ No initial points +1 NC

112 With full penetration

30

90 Partial penetration

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 55: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

53

Table A.3 (concluded)

No.∆σc

∆τc

(N/mm2)Constructional detail Requirements

m = 5

Weld in lap joint, shear with stress concentration

71 Quality level B

31

63 Quality level C

Basic conditions:

⎯ Load is assumed to be transferredby longitudinal welds only

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 56: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

54

Annex B(informative)

Guidance for selection of classes S due to experience

No. Type of crane Operation method S-class

1 Hand-operated cranes S0 – S2

2 Assembly cranes S0 – S2

3 Powerhouse cranes S1 – S3

4 Warehouse cranes intermittent operation S4 – S5

5Warehouse cranes, lifting beam cranes,scrapyard cranes

continuous operation S6 – S8

6 Workshop cranes S3 – S5

7 Bridge cranes, skull cracker cranes grabbing or magnet service S6 – S8

8 Ladle cranes S6 – S8

9 Pit cranes S7 – S9

10 Stripper cranes, charging cranes S8 – S9

11 Forging cranes S6 – S8

12Unloaders, stocking and reclaiming bridges,semi-portal cranes, portal cranes with trolley orslewing crane

hook service S4 – S6

13Unloaders, stocking and reclaiming bridges,semi-portal cranes, portal cranes with trolley orslewing crane

grabbing or magnet service S6 – S8

14Travelling conveyor gantries with fixed or slidingconveyor(s) S3 – S5

15Shipbuilding cranes, slipway cranes, fitting-outcranes

hook service S3 – S5

16 hook service S4 – S6

17

Wharf cranes, slewing cranes, floating cranes,level-luffing slewing cranes grabbing or magnet service S6 – S8

18High-capacity floating cranes, high capacitygantry cranes S1 – S3

19 Shipdeck cranes hook service S3 – S5

20 Shipdeck cranes grabbing or magnet service S4 – S6

21 Revolving tower cranes for construction service S1 – S3

22 Erection cranes, derricks hook service S1 – S3

23 Rail-mounted slewing cranes hook service S3 – S5

24 Rail-mounted slewing cranes grabbing or magnet service S4 – S6

25 Locomotive cranes, licensed for in-train haulage S4 – S5

26 Loader cranes, mobile cranes hook service S2 – S5

27 Loader cranes, mobile cranes grabbing or magnet service S4 – S6

28 High capacity loader and mobile cranes S1 – S3

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 57: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

55

Annex C(normative)

Calculated values of permissible stress range ∆σRd

Table C.1 — Details with m = 3 and γMF = 1,25

∆σRd (Ν/mm2)NC, ∆σc

(N/mm2) S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

355 1420,0 1127,1 894,5 713,7 568,0 450,8 357,8 284,0 225,4 178,9

315 1260,0 1000,1 793,8 633,3 504,0 400,0 317,5 252,0 200,0 158,8

280 1120,0 888,9 705,6 562,9 448,0 355,6 282,2 224,0 177,8 141,1

250 1000,0 793,7 630,0 502,6 400,0 317,5 252,0 200,0 158,7 126,0

225 900,0 714,3 567,0 452,4 360,0 285,7 226,8 180,0 142,9 113,4

200 800,0 635,0 504,0 402,1 320,0 254,0 201,6 160,0 127,0 100,8

180 720,0 571,5 453,6 361,9 288,0 228,6 181,4 144,0 114,3 90,7

160 640,0 508,0 403,2 321,7 256,0 203,2 161,3 128,0 101,6 80,6

140 560,0 444,5 352,8 281,5 224,0 177,8 141,1 112,0 88,9 70,6

125 500,0 396,9 315,0 251,3 200,0 158,7 126,0 100,0 79,4 63,0

112 448,0 355,6 282,2 225,2 179,2 142,2 112,9 89,6 71,1 56,4

100 400,0 317,5 252,0 201,1 160,0 127,0 100,8 80,0 63,5 50,4

90 360,0 285,7 226,8 180,9 144,0 114,3 90,7 72,0 57,1 45,4

80 320,0 254,0 201,6 160,8 128,0 101,6 80,6 64,0 50,8 40,3

71 284,0 225,4 178,9 142,7 113,6 90,2 71,6 56,8 45,1 35,8

63 252,0 200,0 158,8 126,7 100,8 80,0 63,5 50,4 40,0 31,8

56 224,0 177,8 141,1 112,6 89,6 71,1 56,4 44,8 35,6 28,2

50 200,0 158,7 126,0 100,5 80,0 63,5 50,4 40,0 31,7 25,2

45 180,0 142,9 113,4 90,5 72,0 57,1 45,4 36,0 28,6 22,7

40 160,0 127,0 100,8 80,4 64,0 50,8 40,3 32,0 25,4 20,2

36 144,0 114,3 90,7 72,4 57,6 45,7 36,3 28,8 22,9 18,1

32 128,0 101,6 80,6 64,3 51,2 40,6 32,3 25,6 20,3 16,1

28 112,0 88,9 70,6 56,3 44,8 35,6 28,2 22,4 17,8 14,1

25 100,0 79,4 63,0 50,3 40,0 31,7 25,2 20,0 15,9 12,6

22,5 90,0 71,4 56,7 45,2 36,0 28,6 22,7 18,0 14,3 11,3

20 80,0 63,5 50,4 40,2 32,0 25,4 20,2 16,0 12,7 10,1

18 72,0 57,1 45,4 36,2 28,8 22,9 18,1 14,4 11,4 9,1

16 64,0 50,8 40,3 32,2 25,6 20,3 16,1 12,8 10,2 8,1

14 56,0 44,4 35,3 28,1 22,4 17,8 14,1 11,2 8,9 7,1

12,5 50,0 39,7 31,5 25,1 20,0 15,9 12,6 10,0 7,9 6,3

11,5 46,0 36,5 29,0 23,1 18,4 14,6 11,6 9,2 7,3 5,8

10 40,0 31,7 25,2 20,1 16,0 12,7 10,1 8,0 6,3 5,0

9 36,0 28,6 22,7 18,1 14,4 11,4 9,1 7,2 5,7 4,5

8 32,0 25,4 20,2 16,1 12,8 10,2 8,1 6,4 5,1 4,0

7,1 28,4 22,5 17,9 14,3 11,4 9,0 7,2 5,7 4,5 3,6

6,3 25,2 20,0 15,9 12,7 10,1 8,0 6,4 5,0 4,0 3,2

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 58: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

56

Table C.2 — Details with m = 5 and γMF = 1,25

NC, ∆σc ∆σRd,1 (Ν/mm2)

(N/mm2) S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

355 745,9 649,4 565,3 493,7 430,5 374,7 326,2 284,0 247,2 215,2

315 661,9 576,2 501,6 438,1 382,0 332,5 289,5 252,0 219,4 191,0

280 588,3 512,2 445,9 389,4 339,5 295,6 257,3 224,0 195,0 169,8

250 525,3 457,3 398,1 347,7 303,1 263,9 229,7 200,0 174,1 151,6

225 472,8 411,6 358,3 312,9 272,8 237,5 206,8 180,0 156,7 136,4

200 420,2 365,8 318,5 278,1 242,5 211,1 183,8 160,0 139,3 121,3

180 378,2 329,3 286,6 250,3 218,3 190,0 165,4 144,0 125,4 109,1

160 336,2 292,7 254,8 222,5 194,0 168,9 147,0 128,0 111,4 97,0

140 294,2 256,1 222,9 194,7 169,8 147,8 128,7 112,0 97,5 84,9

125 262,7 228,7 199,1 173,8 151,6 132,0 114,9 100,0 87,1 75,8

112 235,3 204,9 178,4 155,8 135,8 118,2 102,9 89,6 78,0 67,9

100 210,1 182,9 159,2 139,1 121,3 105,6 91,9 80,0 69,6 60,6

90 189,1 164,6 143,3 125,2 109,1 95,0 82,7 72,0 62,7 54,6

80 168,1 146,3 127,4 111,3 97,0 84,4 73,5 64,0 55,7 48,5

71 149,2 129,9 113,1 98,7 86,1 74,9 65,2 56,8 49,4 43,0

63 132,4 115,2 100,3 87,6 76,4 66,5 57,9 50,4 43,9 38,2

56 117,7 102,4 89,2 77,9 67,9 59,1 51,5 44,8 39,0 34,0

50 105,1 91,5 79,6 69,5 60,6 52,8 45,9 40,0 34,8 30,3

45 94,6 82,3 71,7 62,6 54,6 47,5 41,4 36,0 31,3 27,3

40 84,0 73,2 63,7 55,6 48,5 42,2 36,8 32,0 27,9 24,3

36 75,6 65,9 57,3 50,1 43,7 38,0 33,1 28,8 25,1 21,8

32 67,2 58,5 51,0 44,5 38,8 33,8 29,4 25,6 22,3 19,4

28 58,8 51,2 44,6 38,9 34,0 29,6 25,7 22,4 19,5 17,0

25 52,5 45,7 39,8 34,8 30,3 26,4 23,0 20,0 17,4 15,2

22,5 47,3 41,2 35,8 31,3 27,3 23,8 20,7 18,0 15,7 13,6

20 42,0 36,6 31,8 27,8 24,3 21,1 18,4 16,0 13,9 12,1

18 37,8 32,9 28,7 25,0 21,8 19,0 16,5 14,4 12,5 10,9

16 33,6 29,3 25,5 22,3 19,4 16,9 14,7 12,8 11,1 9,7

14 29,4 25,6 22,3 19,5 17,0 14,8 12,9 11,2 9,8 8,5

12,5 26,3 22,9 19,9 17,4 15,2 13,2 11,5 10,0 8,7 7,6

11,5 24,2 21,0 18,3 16,0 13,9 12,1 10,6 9,2 8,0 7,0

10 21,0 18,3 15,9 13,9 12,1 10,6 9,2 8,0 7,0 6,1

9 18,9 16,5 14,3 12,5 10,9 9,5 8,3 7,2 6,3 5,5

8 16,8 14,6 12,7 11,1 9,7 8,4 7,4 6,4 5,6 4,9

7,1 14,9 13,0 11,3 9,9 8,6 7,5 6,5 5,7 4,9 4,3

6,3 13,2 11,5 10,0 8,8 7,6 6,7 5,8 5,0 4,4 3,8

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 59: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

57

Annex D(normative)

Design weld stress σW,Sd and τW,Sd

D.1 Butt joint

Normal weld design stress SdW ,σ and shear weld design stress SdW ,τ are calculated by:

rrSdW la

F

⋅= σσ ,

rrSdW la

F

⋅= ττ , (D.1)

where

σF is the acting normal force (see Figure D.1);

τF is the acting shear force (see Figure D.1);

ra is the relevant weld thickness;

rl is the relevant weld length.

Figure D.1 — Butt weld

The relevant weld thickness ra is limited to:

( )21,min ttar ≤ .

In general, the relevant weld length lr is given by:

rWr all ⋅−= 2 (welded non intermittently)

( )∑ ⋅−=i

rWir all 2 (welded intermittently)

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 60: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

58

where

Wl is the weld length (see Figure D.1);

Wil are the weld lengths when welded intermittently (see Figure D.1);

ra is the relevant weld thickness.

D.2 Fillet weld and groove weld with uniform distributed load

Normal weld design stress σW,Sd and shear weld design stress τW,Sd are calculated by:

2211,

rrrrSdW lala

F

⋅+⋅= σσ

2211,

rrrrSdW lala

F

⋅+⋅= ττ (D.2)

where

σF is the acting normal force (see Figure D.2);

τF is the acting shear force (see Figure D.2);

ria are the relevant weld thicknesses (see Figure D.2);

iri aa = for case 1;

hiiri aaa += for case 2;

ril are the relevant weld lengths.

case 1

case 2

Figure D.2 — Joint dimensions

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 61: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

59

The relevant weld thickness ar is limited to:

),min(7,0 21 ttar ⋅≤ .

For the relevant weld lengths see D.1.

Single sided welds may be used loaded with forces as shown in Figure D.2.

For single sided welds, SdW ,σ and SdW ,τ are calculated analogous using the relevant weld parameters.

D.3 Relevant distribution length under punctiform load

For simplification the normal weld design stress σw,Sd and shear weld design stress τw,Sd may be calculatedusing the relevant distribution length under punctiform load:

λκ +⋅⋅= tan2 hlr (D.3)

where

rl is the relevant distribution length ;

h is the distance between weld and contact area of acting load;

λ is the width of contact area in weld direction. For wheels λ may be set to :

r⋅= 2,0λ with mm50max =λ

where

r is the radius of wheel;

k2 is the spread angle. k shall be set to °≤ 45κ .

Figure D.3 — Punctiform load

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 62: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

60

Annex E(informative)

Hollow Sections

Table E.1 — Values of inverse slope of σ/N-curve m and permissible stress range ∆σc for connectionsand joints of hollow sections girders, m = 5

For site welding the given values of ∆σc should be multiplied by the factor 0,9.

No. ∆σc(N/mm2)

Dimensions(mm) Constructional detail Requirements

90 2 < t0 ≤ 25

90 8 < t0 ≤ 251

71 2 < t0 ≤ 8

Butt joint with I- or V-weld

a) with weld backing

b) without backing weld

The admissiblemismatch of thesections due to achange of the platethickness is ≤ t0/3, butnot more than max.2 mm. In case of ahigher mismatch,especially for atransverse plate buttof rectangle hollowsection girders ofdifferent dimensions,∆σc is reduced to80 % of the givenvalues.

80 2 < t0 ≤ 25

80 8 < t0 ≤ 252

63 2 < t0 ≤ 8

Butt joint with I- or V-weld

a) with weld backing

b) without weld backing

Requirementsanalogous to No. 1

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 63: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

61

Table E.1 (continued)

No. ∆σc

(N/mm2)Dimensions

(mm) Constructional detail Requirements

63 2 < t0 ≤ 25

63 8 < t0 ≤ 253

56 2 < t0 ≤ 8

Transverse plate butt with semi V-welds (tp ≥ 2 to )

a) with weld backing

b) without weld backing

Requirementsanalogous to No. 1

56 2 < t0 ≤ 25

56 8 < t0 ≤ 254

50 2 < t0 ≤ 8

Transverse plate butt with semi V-welds (tp ≥ 2 to )

a) with weld backing

b) without weld backing

Requirementsanalogous to No. 1

5 45 2 < t0 ≤ 8

Transverse plate butt with semi V-welds (tp ≥ 2 to )

Requirementsanalogous to No. 1

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 64: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

62

Table E.1 (continued)

No. ∆σc

(N/mm2)Dimensions

(mm) Constructional detail Requirements

6 40 2 < t0 ≤ 8

Transverse plate butt with semi V-welds (tp ≥ 2 to )

Fillet weld thicknessa = t0

80 l ≤ 50

71 50 < l ≤ 1007

56 l > 100

Longitudinally welded outer fin not bearing transverseloading in y-direction (2 < t0 ≤ 25)

Fillet weld thicknessa:

for

2 < t0 ≤ 3:a = 2

for

3 ≤ t0 ≤ 25:a = 0,7⋅t0

100 t ≤ 6

90 6 < t ≤ 128

80 12 < t ≤ 25

Transversally welded outer fin with projection, notbearing transverse loading in y-direction (2 < to ≤ 25),(b > b0)

Fillet weldthickness a:

for

2 < t0 ≤ 3:a = 2

for

3 ≤ t0 ≤ 25:a ≤ 0,7⋅t0,

but not more thana = 10

80 t ≤ 6

71 6 < t ≤ 129

63 12 < t ≤ 25

Transversally welded outer fin with projection, notbearing transverse loading in y-direction (2 < t0 ≤ 25),(b > b0) Fillet weld

thickness a:

for

2 < t0 ≤ 3:a = 2

for

3 ≤ t0 ≤ 25:a ≤ 0,7⋅t0,

but not more thana = 10

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 65: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

63

Table E.1 (continued)

No. ∆σc

(N/mm2)Dimensions

(mm) Constructional detail Requirements

80 t ≤ 6

71 6 < t ≤ 1210

63 12 < t ≤ 25

Transversally welded outer fin without projection, notbearing transverse loading in y-direction(2 < t0 ≤ 25), (b ≤ 0,8 d0)

Fillet weldthickness a:

for

2 < t0 ≤ 3:a = 2

for

3 ≤ t0 ≤ 25:a ≤ 0,7⋅t0,

but not more thana = 10

100 t ≤ 6

90 6 < t ≤ 1211

80 6 < t ≤ 12

Transversally welded outer fin without projections, notbearing transverse loading in y-direction (2 < t0 ≤ 25),(b ≤ 0,8 b0) Fillet weld

thickness a:

for

2 < t0 ≤ 3:a = 2

for

3 ≤ t0 ≤ 25:a ≤ 0,7⋅t0,

but not more thana = 10

12 63 2 < t0 ≤ 8

Welded-on hollow section girder, not bearingtransverse loading in y-direction (b,d ≤ b0,d0)

Fillet weld thickness

a = t0

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 66: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

64

Table E.1 (continued)

No. ∆σc

(N/mm2)Dimensions

(mm) Constructional detail Requirements

10t0/t = 1

(b,d)/d0 = 0,6

36t0/t = 1

(b,d)/d0 = 1

16t0/t ≥ 1

(b,d)/d0 = 0,6

13

50t0/t ≥ 1

(b,d)/d0 = 0,6

Welded-on hollow section girder, bearing transverseloading F in y-direction (b,d ≤ d0), (2 < t0 ≤ 8)

Fillet weld thickness

a = t0

6t0/t = 1

(b,d)/b0 = 0,6

32t0/t = 1

(b,d)/b0 = 1

12,5t0/t ≥ 1

(b,d)/b0 = 0,6

14

40t0/t ≥ 1

(b,d)/b0 = 0,6

Welded-on hollow section girder, bearing transverseloading F in y-direction (b,d ≤ b0), (2 < t0 ≤ 8)

Fillet weld thickness

a = t0

15 80 2 < t0 ≤ 8

Single butt strap at chamfered end of tube (d0/t0 < 25)

Pinched end of tube

a = 2 t0

16 80 2 < t0 ≤ 8

Welded double butt strap ((b0,d0)/t0 < 25)

Hot-bended strap,rounded slot milled atend of tube

Fillet weld thickness

a = t0

17 71 2 < t0 ≤ 8

Inserted dovetail strap ((b0,d0)/t0 < 25)

Fillet weld thickness

a = t0

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 67: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

65

Table E.1 (continued)

No. ∆σc

(N/mm2)Dimensions

(mm) Constructional detail Requirements

18 56 2 < t0 ≤ 8

End face strap (d0/t0 < 25), (tP ≥ 2.5 t0) Fillet weld thicknessfor the hollow sectiongirder:

a = t0

for the strap:

a = 0,7 ⋅ tL

19 45 2 < t0 ≤ 8

End face strap (b0/t0 < 25), (tP ≥ 2,5 t0) Fillet weld thicknessfor the hollow sectiongirder:

a = t0

for the strap:

a = 0,7 ⋅ tL

20 45 2 < t0 ≤ 8

Inserted rectangular strap ((b0,d0)/t0 < 25)

Fillet weld thickness

a = t0

56 8 < t0 ≤ 25

21

50 2 < t0 ≤ 8

Mitre joint with I- or V-weld without weld backing,stressed by bending (d0/t0 < 25), (ϕ ≥ 90°)

Requirementsanalogous to No. 1

50 8 < t0 ≤ 25

22

45 2 < t0 ≤ 8

Mitre joint with I- or V- weld without weld backing,stressed by bending (b0/t0 < 25), (ϕ ≥ 90°)

Requirementsanalogous to No. 1

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 68: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

66

Table E.1 (continued)

No. ∆σc

(N/mm2)Dimensions

(mm) Constructional detail Requirements

50

Weldthickness a:

2 < a ≤ 8

23

45 8 < a ≤ 14

Mitre joint with transverse plate and fillet welds,stressed by bending (d0/t0 < 25), (ϕ ≥ 90°), (tP ≥ 2,5 t0)

Requirementsanalogous to No. 1

45

Weldthickness a:

2 < a ≤ 8

24

40 8 < a ≤ 14

Mitre joint with transverse plate and fillet welds,stressed by bending (b0/t0 < 25), (ϕ ≥ 90°), (tP ≥ 2,5 t0)

Requirementsanalogous to No. 1

45

Weldthickness a:

2 < a ≤ 8

25

40 8 < a ≤ 14

Joint of column and transverse girder with fillet welds,stressed by bending (b0/t0 < 25), (b0 ≤ b + 3 r)

Fillet weld thickness a= t0

where t0 is theexisting

minimum platethickness

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 69: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

67

Table E.2 — Values of inverse slope of σ/N-curve m and permissible stress range ∆σc for lattice typeconnections of hollow section girders, m = 5

Basic symbols for all items

with gap (e ≥ 0) with overlapping (e < 0)

Basic requirements for all items

⎯ Bending in individual members should be taken into account when calculating the nominal stress.

⎯ 0,0 db ≤ 120 mm. For 0,0 db > 120 mm, the given values of cσ∆ should be multiplied by the factor

),/(1204ooa dbf =

⎯ 0t ≤ 12,5 mm

⎯ Weld thickness a = min t

⎯ Incline of the diagonal members: °≤Θ≤° 5035 i

⎯ 25/)( 00,0 <tdb ; 1)/()(6,0;1/ 0,0,,0 ≤≤≥ dbdbtt iii

⎯ Eccentricity

⎯ in the plane of the lattice work: 25,0)/(5,0 0,0 ≤≤− dhe

⎯ perpendicular to the plane of the lattice work: ≤ 0,02 )( 0,0 db

⎯ Welding under shop conditions. For site welding the given values of cσ∆ should be multiplied by the

factor 0,9.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 70: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

68

Table E.2 (continued)

No. ∆σc (N/mm2)Intermediate values by straight-line interpolation!

Requirements

K-gussett with direct strut joint

a) with gap:

1/0 =itt 2/0 ≥itt

6,0/ 0 =dd i 36 80

1/ 0 =ddi 45 90

03,0 dg ≤

idg 3/2≤

1/0 =itt 2/0 ≥itt

6,0/ 0 =ddi 50 80

1/ 0 =ddi 56 90

1/3,0 ≤≤ pq

1

b) with overlapping

K-T-gusset with direct strut joint

1/0 =itt 2/0 ≥itt

6,0/ 0 =ddi 36 71

1/ 0 =ddi 35 80

21/3,0 ≤≤ pq

N-gusset with direct strut joint

c) with gap:

1/0 =itt 2/0 ≥itt

6,0/ 0 =dd i 18 56

1/ 0 =ddi 25 63

03,0 dg ≤

idg 3/2≤

1/0 =itt 2/0 ≥itt

6,0/ 0 =ddi 45 80

1/ 0 =ddi 50 90

1/3,0 ≤≤ pq

3

d) with overlapping

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 71: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

69

Table E.2 (continued)

No. ∆σc (N/mm2)Intermediate values by straight-line interpolation!

Requirements

T- and X-gusset with direct strut joint

1/0 =itt 2/0 ≥itt °≤Θ≤° 9060

6,0/ 0 =ddi 10 16

1/ 0 =ddi 36 504

Bending of boom member should beconsidered!

K-gusset with direct strut joint

e) with gap:

1/0 =itt 2/0 ≥itt

03,0 bg ≤

ibg 3/2≤

6,0/ 0 =bbi 32 63

1/ 0 =bbi 36 71 1/3,0 ≤≤ pq

5

f) with overlapping

K-T-gusset with direct strut joint

1/0 =itt 2/0 ≥itt

6,0/ 0 =bbi 32 56

1/ 0 =bbi 36 63

6 1/3,0 ≤≤ pq

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 72: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

70

Table E.2 (concluded)

No. ∆σc (N/mm2)Intermediate values by straight-line interpolation!

Requirements

N-gusset with direct strut joint

a) with gap:

1/0 =itt 2/0 ≥itt

03,0 bg ≤

ibg 3/2≤

6,0/ 0 =bb i 29 50

1/ 0 =bbi 36 56

1/3,0 ≤≤ pq

7

b) with overlapping

T- and X-gusset with direct strut joint

1/0 =itt 2/0 ≥itt °≤Θ≤° 9060

6,0/ 0 =bbi 6 12,5

1/ 0 =bbi 32 408

Bending of boom member should beconsidered!

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 73: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

71

Annex F(informative)

Selection of a suitable set of crane standards for a given application

Is there a product standard in the following list that suits the application?

EN 13000:2004 Cranes – Mobile cranes

prEN 14439:2002 Cranes – Tower cranes

prEN 14985:2004 Cranes – Slewing jib cranes

WI 00147 032 Cranes – Bridge and gantry cranes

EN 13852-1:2004 Cranes – Offshore cranes – Part 1: General purpose offshore cranes

EN 13852-2:2004 Cranes – Offshore cranes – Part 2: Floating cranes

prEN 14492-1:2004 Cranes – Power driven winches and hoists – Part 1: Power driven winches

prEN 14492-2:2002 Cranes – Power driven winches and hoists – Part 2: Power driven hoists

EN 12999:2002 Cranes – Loader cranes

EN 13157:2002 Cranes – Hand powered cranes

prEN 13155:1998 Cranes – Non-fixed load lifting attachments

EN 14238:2004 Cranes – Manually controlled load manipulating devices

YES NO

Use it directly, plus the standardsthat are referred to

Use the following:

EN 13001-1:2004 Cranes — General design — Part 1: General principles and requirements

EN 13001-2:2004 Cranes — General design — Part 2: Load effects

prCEN/TS 13001-3-1:2003 Cranes — General design — Part 3-1: Limit states and proof of competence of steelstructures

prCEN/TS 13001-3-2:2003 Cranes — General design — Part 3.2: Limit states and proof of competence of wireropes

WI 00147 050 Cranes — General design — Part 3.3: Limit states and proof of competence of wheel/ rail contacts

EN 13135-1:2003 Cranes — Equipment — Part 1: Electrotechnical equipment

prEN 13135-2:2000 Cranes — Equipment — Part 2: Non-electrotechnical equipment

EN 13557:2003 Cranes — Controls and control stations

EN 12077-2:1998 Cranes safety — Requirements for health and safety — Part 2: Limiting andindicating devices

EN 13586:2003 Cranes — Access

prEN 14502-1:2002 Cranes — Equipment for the lifting of persons — Part 1: Suspended baskets

prEN 14502-2:2002 Cranes — Equipment for the lifting of persons — Part 2: Moveable cabins

EN 12644-1:2001 Cranes — Information for use and testing — Part 1: Instructions

EN 12644-2:2000 Cranes — Information for use and testing — Part 1: Marking

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 74: UNIN13001-3-1_2005_EEN

CEN/TS 13001-3.1:2004 (E)

72

Bibliography

Selection of literature that contains information about Hot Spot Stress Method:

[1] prEN 1993-1-9: Eurocode 3: Design of steel structures — Part 1-9: Fatigue strength of steel structures.

[2] IIW International Institute of Welding. Subcommission XV-E-92-244: Recommended Fatigue Design Procedure for Welded Hollow Section Joints, 2nd edition, June 1999.

[3] IIW – XV-E: Recommended Fatigue Design Procedure for Welded Hollow Section Joints.

⎯ Part 1: Recommendations. 1999; Document XIII-1804-99.

⎯ Part 2: Commentary, 1999, Document XV-1035-99.

[4] I. HUTHER, H-P. LIEURADE, L. VELLUET, Contraintes admissibles dans les assemblages soudés, 1A4085/1A4087, rapport CETIM, avril 2000.

[5] IIW – document XIII-WG3-06-99, Designer’s guide for hot spot fatigue analysis, 6. Draft, E. Niemi, May 2000.

[6] American Petroleum Institute - API RP 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms, july 1, 1993, and supplement 1, December 1996.

[7] Romeijn, A., Stress and strain concentration factors of welded multiplanar tubular joints, Delft University Press, Delft, 1994, ISBN 90-407-1057-0.

Selection of literature that contains information about hollow sections:

[8] Zhao, X-L., Herion, S. Packer, J. A., Puthli, R. S., Sedlacek, G. Wardenier, J. Weymand, K., Wingerde, A. M., van, and Yeomans, N. F.: Design Guide for circular and rectangular hollow section welded joints under fatigue loading, CIDECT and Verlag TÜV Rheinland, Cologne, 2000, ISBN 3-8249-0565-5.

[9] Wardenier, J., Dutta, D., Yeomans, N., Packer, J. A., and Bucak, O.: Design Guide for structural hollow sections in mechanical applications, CIDECT and Verlag TÜV Rheinland, Cologne, 1995, ISBN 3-8249-0302-4.

[10] Zirn, R.: Schwingfestigkeitsverhalten geschweißter Rohrknotenpunkte und Rohrlaschenverbindungen, Techni. Wiss. Bericht MPA Stuttgart, 1975, Heft 75-01.

[11] DIN 18800, Stahlbauten – Stabilitätsfälle.

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 75: UNIN13001-3-1_2005_EEN

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )

Page 76: UNIN13001-3-1_2005_EEN

Riproduzione vietata - Legge 22 aprile 1941 Nº 633 e successivi aggiornamenti.

UNIEnte Nazionale Italianodi Unificazione

Via Battistotti Sassi, 11B20133 Milano, Italia

L icenza d 'uso concessa a ENEA CENTRO DI FRASCATI pe r l ’ abbonamento anno 2005 .

L icenza d 'uso in te rno su pos taz ione s ingo la . R ip roduz ione v ie ta ta . E ' p ro ib i to qua ls ias i u t i l i zzo in re te (LAN, in te rne t , e tc . . . )