unifying macroecology and macroevolution to answer

12
Global Ecol Biogeogr. 2019;28:1925–1936. wileyonlinelibrary.com/journal/geb | 1925 © 2019 John Wiley & Sons Ltd Received: 2 August 2019 | Revised: 23 September 2019 | Accepted: 25 September 2019 DOI: 10.1111/geb.13020 MACROECOLOGY 30TH ANNIVERSARY Unifying macroecology and macroevolution to answer fundamental questions about biodiversity Brian J. McGill 1 | Jonathan M. Chase 2,3 | Joaquín Hortal 4 | Isaac Overcast 5 | Andrew J. Rominger 6 | James Rosindell 7 | Paulo A. V. Borges 8 | Brent C. Emerson 9 | Rampal Etienne 10 | Michael J. Hickerson 5,11 | D. Luke Mahler 12 | Francois Massol 13,14 | Angela McGaughran 15 | Pedro Neves 10 | Christine Parent 16,17 | Jairo Patiño 18 | Megan Ruffley 17 | Catherine E. Wagner 19 | Rosemary Gillespie 20 1 School of Biology & Ecology, Mitchell Center for Sustainability Solutions, University of Maine, Orono, Maine, USA 2 German Centre for Integrative Biodiversity Research (iDiv), Halle‐Jena‐Leipzig, Leipzig, Germany 3 Institute of Computer Science, Martin‐Luther University Halle‐Wittenberg, Halle (Saale), Germany 4 Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN‐CSIC), Madrid, Spain 5 Graduate Center of the City University of New York, New York, New York, USA 6 Santa Fe Institute, Santa Fe, New Mexico, USA 7 Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK 8 cE3c – Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group, Faculdade de Ciências Agrárias e do Ambiente, Universidade dos Açores –, Angra do Heroísmo, Terceira, Portugal 9 Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA‐CSIC), Tenerife, Canary Islands, Spain 10 Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands 11 Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA 12 Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada 13 Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 ‐ UMR 8204 ‐ CIIL ‐ Center for Infection and Immunity of Lille, 59000 Lille, France 14 Univ. Lille, CNRS, UMR 8198 ‐ Evo‐Eco‐Paleo, SPICI group, 59000 Lille, France 15 Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia 16 Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, Idaho, USA 17 Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA 18 Department of Botany, Plant Ecology & Physiology, Faculty of Science, Univesity of La Laguna, La Laguna, Tenerife, Spain 19 Department of Botany, University of Wyoming, Laramie, Wyoming, USA 20 Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA Abstract The study of biodiversity started as a single unified field that spanned both ecology and evolution and both macro and micro phenomena. But over the 20th century, major trends drove ecology and evolution apart and pushed an emphasis towards the micro perspective in both disciplines. Macroecology and macroevolution re‐emerged as self‐consciously distinct fields in the 1970s and 1980s, but they remain largely separated from each other. Here, we argue that despite the challenges, it is worth working to combine macroecology and macroevolution. We present 25 fundamental questions about biodiversity that are answerable only with a mixture of the views and tools of both macroecology and macroevolution. Correspondence Brian J. McGill, School of Biology & Ecology, Mitchell Center for Sustainability Solutions, University of Maine, Orono, Maine, USA. Email: [email protected] Funding information USDA Hatch MAFES, Grant/Award Number: 1011538; sDiv, Grant/Award Number: sEcoEvo working group; National Science Foundation, Grant/Award Number: ABI grant #1660000 Editor: Adam Algar

Upload: others

Post on 01-Dec-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unifying macroecology and macroevolution to answer

Global Ecol Biogeogr. 2019;28:1925–1936. wileyonlinelibrary.com/journal/geb  | 1925© 2019 John Wiley & Sons Ltd

Received:2August2019  |  Revised:23September2019  |  Accepted:25September2019DOI: 10.1111/geb.13020

M A C R O E C O L O G Y 3 0 T H A N N I V E R S A R Y

Unifying macroecology and macroevolution to answer fundamental questions about biodiversity

Brian J. McGill1  | Jonathan M. Chase2,3  | Joaquín Hortal4 | Isaac Overcast5 | Andrew J. Rominger6 | James Rosindell7 | Paulo A. V. Borges8 | Brent C. Emerson9  | Rampal Etienne10 | Michael J. Hickerson5,11 | D. Luke Mahler12 | Francois Massol13,14 | Angela McGaughran15 | Pedro Neves10 | Christine Parent16,17 | Jairo Patiño18 | Megan Ruffley17 | Catherine E. Wagner19 | Rosemary Gillespie20

1SchoolofBiology&Ecology,MitchellCenterforSustainabilitySolutions,UniversityofMaine,Orono,Maine,USA2GermanCentreforIntegrativeBiodiversityResearch(iDiv),Halle‐Jena‐Leipzig,Leipzig,Germany3InstituteofComputerScience,Martin‐LutherUniversityHalle‐Wittenberg,Halle(Saale),Germany4DepartmentofBiogeographyandGlobalChange,MuseoNacionaldeCienciasNaturales(MNCN‐CSIC),Madrid,Spain5GraduateCenteroftheCityUniversityofNewYork,NewYork,NewYork,USA6SantaFeInstitute,SantaFe,NewMexico,USA7DepartmentofLifeSciences,ImperialCollegeLondon,Ascot,Berkshire,UK8cE3c–CentreforEcology,EvolutionandEnvironmentalChanges/AzoreanBiodiversityGroup,FaculdadedeCiênciasAgráriasedoAmbiente,UniversidadedosAçores–,AngradoHeroísmo,Terceira,Portugal9IslandEcologyandEvolutionResearchGroup,InstitutodeProductosNaturalesyAgrobiología(IPNA‐CSIC),Tenerife,CanaryIslands,Spain10GroningenInstituteforEvolutionaryLifeSciences,UniversityofGroningen,Groningen,TheNetherlands11DivisionofInvertebrateZoology,AmericanMuseumofNaturalHistory,NewYork,NewYork,USA12DepartmentofEcology&EvolutionaryBiology,UniversityofToronto,Toronto,Ontario,Canada13Univ.Lille,CNRS,Inserm,CHULille,InstitutPasteurdeLille,U1019‐UMR8204‐CIIL‐CenterforInfectionandImmunityofLille,59000Lille,France14Univ.Lille,CNRS,UMR8198‐Evo‐Eco‐Paleo,SPICIgroup,59000Lille,France15DivisionofEcologyandEvolution,ResearchSchoolofBiology,AustralianNationalUniversity,Canberra,AustralianCapitalTerritory,Australia16InstituteforBioinformaticsandEvolutionaryStudies(IBEST),UniversityofIdaho,Moscow,Idaho,USA17DepartmentofBiologicalSciences,UniversityofIdaho,Moscow,Idaho,USA18DepartmentofBotany,PlantEcology&Physiology,FacultyofScience,UnivesityofLaLaguna,LaLaguna,Tenerife,Spain19DepartmentofBotany,UniversityofWyoming,Laramie,Wyoming,USA20DepartmentofEnvironmentalScience,Policy,andManagement,UniversityofCalifornia,Berkeley,California,USA

AbstractThestudyofbiodiversitystartedasasingleunifiedfieldthatspannedbothecologyand evolution and bothmacro andmicro phenomena. But over the 20th century,majortrendsdroveecologyandevolutionapartandpushedanemphasistowardsthemicroperspectiveinbothdisciplines.Macroecologyandmacroevolutionre‐emergedas self‐consciously distinct fields in the1970s and1980s, but they remain largelyseparatedfromeachother.Here,wearguethatdespitethechallenges, it isworthworkingtocombinemacroecologyandmacroevolution.Wepresent25fundamentalquestionsaboutbiodiversitythatareanswerableonlywithamixtureoftheviewsandtoolsofbothmacroecologyandmacroevolution.

CorrespondenceBrianJ.McGill,SchoolofBiology&Ecology,MitchellCenterforSustainabilitySolutions,UniversityofMaine,Orono,Maine,USA.Email:[email protected]

Funding informationUSDAHatchMAFES,Grant/AwardNumber:1011538;sDiv,Grant/AwardNumber:sEcoEvoworkinggroup;NationalScienceFoundation,Grant/AwardNumber:ABIgrant#1660000

Editor:AdamAlgar

Page 2: Unifying macroecology and macroevolution to answer

1926  |     MCGILL et aL.

1  | HISTORIC AL CONTE X T

In Darwin's “On the origin of species”(1859),itisimpossibletofindadistinctionbetweenecologicalandevolutionaryprocesses;theyareintertwinedthroughout.AlthoughseveralofDarwin'schaptersaredevotedtowhatwenowperceiveaspurelyevolutionarytopics,suchastransformationsofspeciesinthefossilrecord(Chapters9and10)andhybridism(Chapter8),otherchapterswouldbeassignedtoecology, suchas the struggle for existence,which involves re‐productionandmortality(Chapters4and5).Therearealsoseveralchaptersaddressingtopicsthatarecurrentlyrecognizedascrossingboth ecology and evolution (intraspecific variation in Chapters 1and2;behaviourinChapter7).Equally,Darwinmadenodistinctionbetweenmicro andmacro scales.He interwove the fossil recordwithagriculturalbreedingprogrammes,andalocalentangledbankof interactingspecieswith thebiogeographicaldistributionofor‐ganisms.Similarbreadthcanbeseeninthewritingsofauthorswhopre‐datedDarwin, suchasvonHumboldt (vonHumboldt&Ross,1852).

Inthefirsthalfofthe20thcentury,awedgebegantoformbe‐tweentheevolutionaryandecologicalsidesofthefield(Figure1).Ontheonehand,ecologistsbecamemoreinterestedinsmaller‐scalephenomena,suchaspopulationdynamicsandspeciesinteractions,andcouldlargelyignoreevolutionaryprocesses(Clements,Weaver,&Hanson,1929;Elton,1927).Ontheotherhand,manyevolutionarybiologists,spurredonbylinkagestogenetics(Morgan&Biologiste,

1925) and the development of theoretical population genetics(Provine,2001),shiftedtheir focusto individualgenesratherthanthewholephenotype.Forexample,thedevelopmentofmathemat‐icalmodels that startwithassumptions suchas “let the fitnessofAAandAabe1andofaabe1−s”tendtounderplaytheecologicalprocessesthat leadtodifferencesinfitnessthatDarwin'swritingsso eloquently merged.

The latter half of the20th century began to see the re‐emer‐genceofaconnection.Someearlydescriptionsofthiscanbeseeninchaptersof theeditedvolume“Evolutionasaprocess” (Huxley,Hardy, & Ford, 1954),where evolutionary processeswere said toleadtocommunitiesofinteractingorganisms(muchlikeDarwin’sen‐tangledbank).Selectioninnaturalenvironmentsbegantobestudied(Ford,1971;Kettlewell,1955). Likewise, theemergenceofquanti‐tativegenetics (Crow&Kimura,1970)andmodelsofevolutionofmultivariatephenotypes(Lande,1979)broughtbackacomplexviewofphenotype.Fromtheecologyside,evolutionaryecologyemergedasafield,inspiredbyHutchinson'smetaphorofthe“ecologicalthe‐aterandtheevolutionaryplay”(Hutchinson,1965)andthemodelsbyMacArthurandcolleaguesthatlookedattheevolutionofecolog‐ically relevanttraits (MacArthur,1961,1962;MacArthur&Levins,1964;MacArthur&Pianka,1966).

The 1970s saw this reconnection of ecology and evolutiondevelop more fully as part of the field of “population biology”,explaining ecological and evolutionary questions through basicpopulationprocessesusingsimpledifferentialequationsinvolving

F I G U R E 1  AbriefhistoryofhowDarwin'sintegrativevisionoforganismalbiologybecamesplitintofirsttwoandthenfourseparatefields:microevolution,macroevolution,microecology(traditionalpopulationandcommunityecology)andmacroecology.Inthebottomrightpanel,effortstolinkmicroevolutiontomacroevolutionandmicroecologytomacroecology(narrowverticalpaths)areongoingbutdifficult.Effortstolinkmicroevolutionandmicroecology(horizontalbroadconnection)havebeenamajorfocusforrecentdecades.Effortstolinkmacroecologyandmacroevolution(missingareashownbyaquestionmark)havebeen,incomparison,muchmorelimitedbutareneededurgently[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 3: Unifying macroecology and macroevolution to answer

     |  1927MCGILL et aL.

birth,death, immigrationandemigration,andspeciation (Levins,1968;MacArthur&Wilson,1967;Wilson&Bossert,1971).Thispopulation biology framing opened up new fields that com‐bined evolutionary and ecological perspectives spanning a di‐versearrayofquestions,includingevolutionaryecology(Bulmer,1994;Fox,Roff,&Fairbairn,2001), behavioural ecology (Alcock&Rubenstein,1989)andlife‐historytheory(Roff,2002;Stearns,1976). The population biology approach has also seen a resur‐genceover the lastdecadeunder the labelof “eco‐evolutionarydynamics”,whichexplorestheevolutionarydynamicsoftraitsthatplayoutonthesametime‐scalesasecologicalprocesses(Carroll,Hendry,Reznick,&Fox,2007;Grant&Grant,1989;Hendry,2016;McGill & Brown, 2007; McPeek, 2017; Metz, Geritz, Meszena,Jacobs, & Heerwaarden, 1996; Schoener, 2011; Yoshida, Jones,Ellner,Fussmann,&HairstonJr.,2003).

Althoughthepopulationbiologyresearchprogrammesucceededinbringingecologyandevolutiontogether incertainways, itgaveprimacytosmall‐scaleprocesses.Thisisessentiallythephilosophicalnotionofreductionism;explainingasystembybreakingitintocom‐ponent parts and examining their interactions. This presumes theabilitytoscaleupdetailedmodelsofpopulationprocessestoanswermacroevolutionaryquestionsaboutspeciesdiversityandphenotypeevolutionormacroecologicalquestionsabout the spatial variationin diversity and the relative abundance of species. Although suchscalingupisanactiveandinterestingareaofresearch,progresshasbeenslowowingtospecificmathematicalobstacles(McGill,2019;O’Neill,1979).Theresult is thatembracingthepopulationbiologyview, while helping to reunite aspects of ecology and evolution,droveawedgebetweenthemicro‐andmacro‐scaleaspectsofeachdiscipline.

Withmicro‐scale processes predominating in the populationbiology paradigm, this arguably diminished the importance andrelevance of themacro‐scale disciplines. As a result,macroevo‐lution andmacroecology emerged as distinct, separately namedfields (Brown &Maurer, 1989; Stanley, 1975). In evolution, thelineissharpandwidelyagreedupon;studiesofprocesseswithinaspeciesaremicroevolution,whereasmacroevolutionaddressesquestions above the species level (phylogenies and comparativeevolution). In ecology, the line is more blurred. Microecology(more commonly called ecology) studies small scales, involvingphysiology, behaviour, populations and communities, whereasmacroecologystudieslargespatial,temporalortaxonomicscales(Brown, 1995; Gaston & Blackburn, 2000; McGill, 2019). Giventhatbothmacrofieldsspenttheirfirstdecadesestablishingthem‐selves as independent fields, they have not often looked exter‐nally, leading to comparatively few links betweenmacroecologyand macroevolution.

Tosummarize(andadmittedly,tooversimplify),thestudyofor‐ganismalbiologystartedasaunifiedfield,became,formostprac‐titioners, split into distinct fields of ecology and evolution, thenbecamesplitfurtherintofourfields,withmostpractitionersfocus‐ingonmicroversusmacroversionsofeachfield(Figure1).

2  | REL ATIONSHIP OF MACROECOLOGY AND MACROE VOLUTION

Are we on our way to the seamless integration of ecology andevolutionpractisedbyDarwin?Wewould suggest not yet in animportant way. The missing linkage in the history as describedabove is a direct linkage betweenmacroecology andmacroevo‐lution (questionmark inFigure1),despiteseeminganatural linkgiven their strongmatch in embracing large scales.Notably, theverticallinkagesofthetwomacro–microbridgeshaveprovedsur‐prisinglyresistanttoadvances(notwithstandingsomesuccesses;Avise,2000),andwesuggestthattheywillultimatelyprovetobeharderbarrierstocrossthantheecology–evolutiondivide(hencethe thicker line in Figure1) for some specificmathematical rea‐sons (McGill, 2019; O’Neill, 1979). Regardless of one's view onthe feasibility of spanning themacro–micro divide, the indirect,three‐legged route of linking macroevolution to microevolutionto microecology to macroecology is hopelessly unwieldy. Themainthesisofthispaperisthatorganismalbiologyismissing(andbadlyneeds)are‐unificationdirectlybetweenmacroecologyandmacroevolution.

Averysimpleexaminationofthelimitedinteractionsbetweenmacroecology and macroevolution can be made using bibliomet‐ricanalysis,albeitinanecessarilysimplisticfashion.Inparticular,manymacroecologicalandmacroevolutionarypapersoftendonotusethosekeywords (andnecessarilycouldnotbeforethewordswerecoined),meaningthatthisanalysisclearlyomitsrelevantpa‐pers,butwebelieveittobeasamplethatisnotbiased.Ananalysisofwordsfound inkeywordsandabstractsusingWebofSciencewasperformedinMarch2018.Asearchforderivativesofmacro‐ecology (“macroecolog*”) found 1,814 papers going back to thecoiningofthetermin1989(Brown&Maurer,1989)andc.150pa‐pers/yearinrecentyears.Derivativesofmacroevolution(“macro‐evolution*”) found 2,570 papers going back to Stanely's coiningof the term (Stanley, 1975), with c. 220 papers/year in recentyears.Although, again,bynomeansdoes this approachcaptureall macroecological or macroevolutionary papers, these resultssuggest that a substantial sample is obtained in searches usingthesekeywords.Thisanalysissupportsthenotionthatbothofthemacro fieldshavebeengrowing rapidly since their relatively re‐centlaunches.Italsosupportsthenotionthatmacroecologyandmacroevolution are infrequently practised as overlapping fields.Only105papersstartingin2000(c.10papers/year)containbothmacroecologyandmacroevolution(macroecolog*andmacroevo‐lution*).Bythismethod,only4%–6%ofthepapersthatareexplic‐itlymacroecological ormacroevolutionary recognize themselvesas interdisciplinarybetweenbothfields.Thiscrudeanalysissug‐gests that although linkages betweenmacroecology andmacro‐evolutiondoexist,theyarenotyetcommon.Inrecognitionoftheexistenceofsomelinksbetweenmacroecologyandmacroevolu‐tion,Box1givessomewell‐knownexamplesoflinkagesbetweenbothdisciplines.

Page 4: Unifying macroecology and macroevolution to answer

1928  |     MCGILL et aL.

Therearegoodreasonsforthisdisconnectbetweenthetwomacro fields. As noted, both fields are relatively new, placinganemphasisonself‐definitionrather thanreachingout tootherfields. Additionally, the two fields operationalize and measuretheir variables differently although they discuss the same con‐cepts (Table 1). This is in part because the sources of the dataare distinct and in part because the perspectives and priorities

are distinct.Macroevolutionists focus on changes through timeandthususeeitherstratifiedfossilsorphylogeniesderivedfromcurrent molecular sequences or both. Macroecologists focuson spaceand thususebiological inventories in thepresentday.Clearly,boththeseperspectivesarecrucialtounderstandingdi‐versityinspaceandtime,butintegratingtheseperspectivespres‐entschallenges.

Box 1 Examples of prominent existing work linking macroecology and macroevolution

• Biogeographyandpalaeontology(andpalaeoecology)arelong‐standingfieldsthatintegrateecologyandevolutionatmacroscales.Palaeontologyisfullofexamples,suchasthestudyofhowextinctionratesdependonbodysize(e.g.,Jablonski&Raup,1995)orhowphenotypechangesthroughtime(e.g.,Foote,1997)orrangesshiftbecauseofclimate(Lyons,2003)orecologicalprocessesinfossilcommunities(Bloisetal.,2014).

• MacArthurwaskeyinre‐introducingevolutionarythinkingintoecology(MacArthur,1961).Examplesthataremoremacroinnatureincludetheideaoflimitingsimilarity(MacArthur&Levins,1967),hisexplorationofthecausesofthelatitudinalgradientinrichness(MacArthur,1969),hisworkonRversusKselection(MacArthur,1962)orevenhisexplicitrecognitionoftheimportanceofevolution‐aryprocessesinthetheoryofislandbiogeography(Chapter7ofMacArthur&Wilson,1967).

• Theexplorationofadaptiveradiationsinisland‐likesystemshaslongnecessitatedthecombinationofmacroecologyandmacroevolu‐tion(Grant&Grant,1989;Schluter,2000).Thestudyofecologicalmorphotypesandtheirevolutionacrossmanyislandsisarelatedexample(Gillespie,2004;Losos,2011).

• Ecologicalneutraltheorywithspeciation(Hubbell,2001)clearlylinksthetwofields.Moregenerally,withgrowingrecognitionoftheimportanceoftheregionalpoolofspeciesforecology(Ricklefs&Schluter,1993a,1993b),therehasbeenincreasedinterestinexplor‐ingthemacroevolutionofregionalpoolsofspecies,whichthenconstrainlocalcommunityassembly(Mittelbach&Schemske,2015;Ricklefs,2015).Alsorelatedarestudiescomparingtheassemblyofcommunitiesthroughcolonizationversusspeciation(Rummel&Roughgarden,1985).

• Likewise,phylogeneticcommunityecologyhassoughttounderstandhowthemacroevolutionaryhistoryoftheregionalpoolinteractswithecologicalandbiogeographicalprocessestoproduceobservedassemblagesofco‐occurringtaxa(Webbetal.,2002;Emerson&Gillespie,2008;Cavender‐Bares,Kozak,Fine,&Kembel,2009).

• Nicheconservatismisexplicitlyanevolutionaryhypothesisaboutanecologicalconcept(thatnichesevolveslowlyandthusshowcon‐servatismoveraphylogeny;Ackerly,2003;Peterson,Soberón&Sánchez‐Cordero,1999;Wiens&Graham,2005).

• Ricklefandcolleagueshavestudiedtaxoncyclesonislands(Ricklefs&Cox,1972)andtheroleofdistinctmacroevolutionondifferentcontinentsinspeciesrichness(Latham&Ricklefs,1993),writtennumerouspapersattheinterfaceofniche,communityandmacroevo‐lution(Cox&Ricklefs,1977;Ricklefs,2010,2011)andmademultiplecallsfortheimportanceofmergingecologicalandevolutionarythinking(Ricklefs,2007;Ricklefs&Schluter,1993a,1993b).

• Rosenzweig'sexaminationofcompetitivespeciation(ecologicalconditionsleadingtosympatricspeciation;Rosenzweig,1978)andthestudyofincumbentreplacement(increaseddiversificationratesaftercompetitorsgoextinct;Rosenzweig&McCord,1991)arealsoexamples.

TA B L E 1  Comparisonofmacroecologicalversusmacroevolutionaryviewsofdifferentvariables

Variable Macroecology Macroevolution

Diversity Richness,evenness,abundance(oftenofpolyphyleticgroups)

Richness(typicallywithinamonophyleticclade)

Traits Morphospace;traitvolumesandnichesacrossan assemblage;functionaldiversity

Evolutionofmorphospace,traitvolumesandnichesacrossaphylogeny

Diversification Phylogeneticdiversityindices Speciation,extinction,diversificationrates

Distribution Rangesize,habitatpreferences Biogeographicalprovince

Speciesinteractions(e.g.,competition,predation,parasitism)

Interaction webs Co‐evolution

Abiotic environment Climatevariationacrossspace;staticviewofsoils/topography

Climatevariationacrosstime;geologicalchangeintopography

Page 5: Unifying macroecology and macroevolution to answer

     |  1929MCGILL et aL.

Thekeyvariablethatbothfieldsshare isan interest inspeciesrichness,althoughmacroevolutioninitiallyseesthisasanoutcomeof speciation and extinction through time,whereasmacroecologyinitiallyseesthisasanecologicaloutcomeofdispersalandofpastandpresentclimaticconditions(Belyea&Lancaster,1999)varyingacrossspaceatonepointintime(butasourpaperhighlights,eco‐logical conditions anddiversification are not independent of eachother;alsoseeRicklefs&Schluter,1993b).Moreover,macroevolu‐tiontendstofocusontherichnessofamonophyleticgroupofspe‐cies(e.g.,aspecificcladeoffrogs),whereasmacroecologytendstofocusontherichnessofanassemblage (e.g.,all trees) thatcanbepolyphyletic.

Such differences extend to other variables of interest. Bothareasfocusonphenotype.Macroecologistscanfocusonacom‐plexmultivariatesetoffeaturesbutarelimitedtoapointintime.Macroevolutionists bring a temporal perspective but are limitedto a simpler view of phenotype owing to the limitations of fos‐sils and phylogenetic methods. Likewise, both fields focus onabundanceanddistribution.Butabundance isnotestimatable inphylogeniesandisspottilypreservedinthefossilrecord,anddis‐tributionscanonlybeapproximatedfromfossilandphylogeneticinference,leadingtoaverycoarseviewofhistoricaldistribution.Macroecologistscanmeasurethesewithmuchmoreprecisionatfine‐grainedspatialscalesbutfailtoseeabundanceanddistribu‐tionasdynamicandchangingthroughevolutionarytime.Finally,bothfieldshavenotionsofcolonization,butmacroevolutionlooksatrarevicarianceorfoundereventsacrossbiogeographicalprov‐inces,whereasmacroecologylooksmoreatthescaleofmetapop‐ulation dynamics.

Aswe have shown, the overlap in concepts of interest tobothmacroecology andmacroevolutionhides deeper divides.Methodological challengesexistowing to theirdisparatedatasources. Butmore fundamentally, there is also a key concep‐tual difference. Macroevolution tends to focus on temporalprocesses, whereas macroecology tends to focus on spatialprocesses. Core questions in macroevolution tend to centreon questions of rates (speciation, extinction and net diversi‐fication)andhowtheserateschangethroughtimewithinandacrossclades.Corequestions inmacroecology tend tocentreon levels (not rates), such as abundance, richness, range sizeandtraits,andhowtheselevelschangeacrossspaceandacrosstaxa.

3  | RE A SONS WHY A UNIFIC ATION IS NEEDED

Scientificinquirydoesnotdivideitselfarbitrarilyintospatialques‐tionsversustemporalquestions.Nordoesscientificinquirylimitit‐selftoasinglesourceofdataatatime.Thesearebarrierscreatedbyhumans.Althoughtheremighthavebeenpragmaticreasons(includ‐ingsocialandcomputational limits)thathaveslowedthecoopera‐tionofmacroecologyandmacroevolution, theconceptualbarriers

arereadilyovercome.Indeed,althoughwehaveemphasizedthedif‐ferences and challenges thus far, the overlap in topics of interestbetweenmacroecologyandmacroevolutionisstriking(Table1).Tothedegreethatlargespatialprocessesplayoutacrosslongtempo‐raltime‐scalesandviceversa(Levin,1992;Stommel,1963;Wiens,1989),macroecologyandmacroevolutionwillalsonaturallylookto‐wardseachotherratherthantowardsthe“micro”versionsoftheirfields. In fact,we suggest thatmacroecology andmacroevolutionurgentlyneedtocooperate,becausethereareobviousandimpor‐tantquestions thatcombinemacroecologicalandmacroevolution‐aryvariablesandperspectives.

Figure 2 gives a conceptual framework that suggests manyoverlappingquestions,25ofwhicharethenlistedinmoredetail

F I G U R E 2  Therelationshipsbetweenmacroecologyandmacroevolution.Therowscontainpossibleexplanatoryvariables(labelledandcategorizedattheleft).Thecolumnscontainpossibledependentvariables(labelledandcategorizedatthetop).Someofthesevariablesareecological(inblue)andsomeareevolutionary(inred).Diversityandtaxonomicgrouparesharedbetweenecologyandevolution(inpurple).Abioticvariablesareshowninitalics,whereasbioticvariablesareshowninbold.Eachintersectionorgridcellisapotentialquestionoftheform,“HowdoesXaffectY?”.Historically,macroecologyfocusedpredominantlyonintersectionsofvariablesthatwereecological,whereasmacroevolutionfocusedonvariablesthatwereevolutionary,althoughthisdivisionhasneverbeenabsolute(Box1).Questionsinvolvingecologicalvariablesimpactingevolutionaryvariablesandviceversa(lightpurpleregions)representtheemergingsynthesisbetweenmacroecologyandmacroevolution,asarguedforhere.Thefactthatdiversityandtheimportanceofdistincttaxonomicgroupsissharedbetweenmacroecology and macroevolution creates a boundary region (darkpurple).Notethat“diversity”appearsasasinglefactorinthediagrambutcouldrefertotaxonomic,functionalorphylogeneticdiversityandcouldequallyrefertoalpha,betaorgammadiversity.Numbersinthegridcellsrepresentquestions,whicharelistedinTable2.Boldnumbersrepresentcasestudies,whichareexpandeduponinthispaper,andtheirsuperscriptletterindicatesthecasestudy(A–F)towhichtheyrefer.Abioticvariablesaffectingabioticvariablesareearthsciencequestionsandnotincludedhere.Onecanplacealliedfields,suchasbiogeography,asastripespanningtheabioticvariablesrunningacrossthewidthofthediagramandpalaeontologyacrossthebottomrow.Thisplacementshowsthatthereisclearlyoverlap,butthesefieldsdonotcoverthefullrangeofwhatweproposehere[Colourfigurecanbeviewedatwileyonlinelibrary.com]

Page 6: Unifying macroecology and macroevolution to answer

1930  |     MCGILL et aL.

in Table 2. All these questions are “big” questions in the sensethat they have long been speculated about, in some cases for>100 years. For example, the question, “are closely related spe‐cieslikelytohavesimilarnichesandcompetemoreintenselywitheachother?”(Question15inTable2)washypothesizedbyDarwin(1859). All the listed questions remain largely unanswered (butseeBox1),becausescientistshavenotyetbridgedthedividebe‐tweenmacroecologyandmacroevolutionmethodologically.NotethatthestructureofFigure2naturallydividesthequestionsintothreecategories:wherecausalityflowsfromecologytoevolution,wherecausalityflowsfromevolutiontoecology,andcross‐cuttingquestionswheretheflowofcausalityisbidirectionalorcomplex,andTable2isorganizedaccordingly.Inthenextsection,wegivesomecase studiesof a subsetof thequestions toprovidemoredepth.

4  | C A SE STUDIES

Itisbeyondthescopeofthispapertoreviewexistingliteratureandhighlightthekeypathsforwardforall25questionslistedinTable2(andthecountlessothersthatwehavenotidentified,butwhichareequallyimportant).However,toprovidesomedepthandmakeourclaimofimportanceforthesemostlyunansweredquestionsmoreconcrete,wehighlightsixofthesequestions(inboldinFigure2andTable2,alsoseeFigure3)andbrieflyaddressthemascasestudies.

4.1 | Case study A (Question 1, Figure 3a): What ecological conditions enable radiations?

What ecological conditions promote or inhibit evolutionary di‐versification? Adaptive radiations occur when a clade rapidly

TA B L E 2  Alistof25importantquestionsattheinterfacebetweenmacroecologyandmacroevolution

Ecologicalfactorsaffectingevolution

1 What ecological conditions enable radiations? (Case study A)

2 How do diversification rates scale with topography? (Case study B)

3 Howdoesareaandisolationinfluencerelativeimportanceofspeciationandcolonization?

4 Dodiversificationratesvarywithcommonnessandrarity?

5 Howdoesdispersalaffectdiversification?

6 Doesspatialsortingleadtospeciationofgooddispersersmorethanpoordispersers?

7 Howdotheenvironmentandenvironmentalchangeaffectdiversificationrates?

8 Dotightlycoupledbioticinteractionsleadingtoco‐evolutionreflectasparallelphylogeniesintheinteractingtaxa?

9 Doesevolutionintonewhabitatsoccurfasterorslowerthanvicarianceeventsbetweenislands?

Evolutionaryfactorsaffectingecology

10 How do relative abundance patterns respond to macroevolution? (Case study C)

11 Are ecological interactions determined by shared evolutionary history? (Case study D)

12 Howdoesrelativeabundancepersistorchangethroughgeologicaltimeandacrossthetreeoflife?

13 Howdoesdispersalabilityevolveandchange?

14 Howdoesdiversificationaffectthenumberofinteractionsperspecies?

15 Arecloselyrelatedspeciesmorelikelytobesimilarinphenotypeandniche?

16 Overwhattime‐scalesdospeciesinteractionsremainstrong?

17 Arenichesandphenotypesstatic?Oriftheychangeovertime,dotheychangeinadirectional,randomorothersystematicfashion?

Cross‐cuttingquestions

18 What is the role of evolution in invasion? (Case study E)

19 Does diversity saturate in space and/or time? (Case study F)

20 Howdotherelativeratesofcolonizationversusspeciationinfluencealpha,betaandgammataxonomic,functionalandphylogeneticdiversity?

21 Whatistherelativeimportanceofenvironmentalheterogeneityandbioticheterogeneityinspeciationrates?

22 Doesdiversitybegetdiversity?

23 Howdotherelativeratesofcolonizationversusspeciationinfluencenichepackingandfilling?

24 Doesspeciationcreatenichesordoesemptynichespacedrivespeciation?

25 Whatistheinterplaybetweendiversificationandcoexistencemechanisms?

Note: Questionsinboldarecasestudiesthatareexpandedoninthemaintext.Cross‐cuttingquestionsinvolvediversity,whichistheonevariablecurrentlysharedbetweenmacroecologyandmacroevolution.ThesEcoEvoworkinggroupgeneratedthislistofquestionsduringaworkinggroupatsDiv.

Page 7: Unifying macroecology and macroevolution to answer

     |  1931MCGILL et aL.

speciatesanddiversifiesintomanynovelniches,ofteninresponsetoecologicalopportunities(Schluter,2000).Theexistenceofdra‐maticallyspecies‐richadaptiveradiationsraisesthequestion,whatpropertiesofsystemswheretheseradiationsoccurpromotesuchdiversification?Conversely,aresystemswithlowspeciesrichness,often in harsh temperate areas and characterized by a few rep‐resentativesofdistantly relatedclades, limitedbydispersalovergeological time‐scalesor is theevolutionofnovel forms in suchlow‐richnesssystemslimitedbysomepropertyofthesesystems?

One long‐standing hypothesis for adaptive radiations is thattheecologyofinsularsystemsisdefinedbyreleaseofpopulationsfromtheirancestralpredators,parasitesand/orcompetitors(Losos,2010;Mahler, Revell,Glor,& Losos, 2010; Schluter, 2000; Stroud& Losos, 2016). Conversely, increased diversity in the tropics hasbeen attributed to increased, not decreased, interaction intensitybetweenanincreasednumberofinteractors(Gillespie,2004;Nosil&Crespi,2006).Clearly,ecologicaldriversofevolutionaryradiationexist,butwhichdirectionthosedriverspoint(fromincreasedinter‐action to diversity, or fromdecreased interaction to diversity) re‐mains unresolved.

Analternativebutcomplementaryperspectivepositsthateco‐logical stabilitycaneitherpromoteor inhibitdiversification. If thetropicshavemaintainedstableabioticconditions, thismight facili‐tateconsistentaccumulationofspecies(Jetz&Fine,2012;Pianka,1966). By the same argument, temperate areas, with frequent glacial–interglacialdisturbance,inhibitdiversification.Incontrast,ithasbeenhypothesizedrecently(Romingeretal.,2017)thatthenon‐equilibriumdynamicsofecosystemscouldprovidetheopportunity

forevolutionaryradiationstopermittherelaxationofthesystemsbacktoecologicalequilibrium. If insularsystemsquickly losetheirisolation(e.g.,throughhumanintroductionofnewspecies),thenre‐laxationcould insteadbeachievedby invasion (Helmus,Mahler,&Losos,2014).This couldhelp toexplainboth the incredible adap‐tive radiations on islands and the dramatic prevalence of invasivespecies.

4.2 | Case study B (Question 2, Figure 3b): How do diversification rates scale with topography?

Topographiccomplexity(ruggednessandelevationalrange)haslongbeenlinkedtohighstandingdiversityandtoprocessesofspeciation.Forexample,theAndesmountainsarehometothehighestdiversityinSouthAmericaforbothbirds(Rahbek&Graves,2001)andplants(Mutke,Sommer,Kreft,Kier,&Barthlott,),andalupinecladeintheAndeshasspeciatedatratesapproachingthoseofclassicislandra‐diations(Hughes&Eastwood,2006).Thegeologicalprocessesgen‐eratingoceanicislandslikewisecreatediverseandisolatedhabitats,longhypothesized to contribute todramatic radiations (Ricklefs&Cox,1972;Wilson,1961),asdoisolatedcontinentalmountaintops(sky islands; McCormack, Huang, Knowles, Gillespie, & Clague,2009).What ecological processes interactwith topographic com‐plexitytoleadultimatelytochangeddiversificationrates?

Topographiccomplexityinteractswithtwoecologicalpropertiesof species (dispersal ability and tolerance or niche breadth) to in‐fluenceevolutionaryprocesses.Specifically,moretopographiccom‐plexityandshorterdispersalandnarrowertolerances increasethe

F I G U R E 3  HypotheticalrelationshipsbetweendriverandresponsevariablesforsixcasestudiestakenfromTable2.ThefirstcolumnrepresentsCasestudiesAandB,whereecologicalfactorsprimarilyinfluenceevolutionarypatternsandprocesses.ThesecondcolumnrepresentsCasestudiesCandD,whereevolutionaryfactorsprimarilyinfluencetheecologicalprocess/pattern.Thethirdcolumnrepresentscross‐cuttingCasestudiesEandF,whichaddressecologicalandevolutionaryprocessesandfeedbacks[Colourfigurecanbeviewedatwileyonlinelibrary.com]

(c)(a) (e)

(d)(b) (f)

Page 8: Unifying macroecology and macroevolution to answer

1932  |     MCGILL et aL.

possibilityoflocaladaptation,geneticisolationandensuingallopat‐ric speciationprocesses.The interactionsbetweenmountainsandchangingclimate (suchas thePlio‐Pleistoceneglacial–interglacials)can add to the environmental heterogeneity and local adaptationincreasing speciation (McCormack,Bowen,&Smith,2008;Rangeletal.,2018)butsimultaneouslymakeiteasiertotrackclimate,withshort‐range dispersal decreasing extinction risk (Colwell, Brehm,Cardelús,Gilman,&Longino,2008).

4.3 | Case study C (Question 10, Figure 3c): How do relative abundance patterns respond to macroevolution?

Dothediversificationprocessesthatproduceasetofspeciesinflu‐encetherelativeabundances[speciesabundancedistribution(SAD)]ofthosespecies?

ThereareseveraldevelopinglinesofevidencethatsuggesthighlevelsofdiversificationleadtomoreunevenSADs,withafewhy‐perdominantspeciesandmanyveryrarespecies.ThehighlydiverseAmazon rain forest showsextremehyperdominance:1.4%of treespecies in theAmazonaccount for half of all individuals,whereasmost remaining species are extremely rare (Slik et al., 2015; TerSteegeetal.,2013),andona50haplotonBarroColoradoIsland,2.9%ofspeciesmakeupapproximatelyhalfofallindividuals.

Speciesabundancedistributionsalsoseemtochangeshapewithgreatertimeavailableformacroevolution.Proportionatelymorerarespeciestendtobeinmorespecies‐richgeneraandfamilies(Harte,Rominger,&Zhang,2015).Theexactprocessesbywhichthisevo‐lutionary outcome (high standing species diversity) translates tothisparticular formofSAD isanopenquestion.Onepossibility isthat food‐web theorypredicts that higherdominance is expectedtoresultinmorestablecommunities(Emmerson&Yearsley,2004).Conversely, abundancecouldaffect speciation rates (Makarieva&Gorshkov,2004).Buthowalltheseecologicalfactorscause,orarecausedby,theevolutionaryprocesses leadingtohighdiversityre‐mainsanopenquestion.

4.4 | Case study D (Question 11, Figure 3d): Are ecological interactions determined by shared evolutionary history?

Therelativelyhighlevelofspecializationobservedinhost–parasite andplant–herbivoreinteractionnetworksbegsthefollowingques‐tion: at macroecological scales, are ecological interactions con‐strained primarily by their (co‐)evolutionary history or by theirecologicaldistance (i.e., a combinationofgeographical rangesandpreferredenvironmentalconditions)?

Consideringhost–parasiteinteractionsinparticular,ontheonehand, there is evidence that differences in parasite communitiesassociatedwithdifferenthostspeciesaredrivenbyenvironmentaldissimilarity and phylogenetic distances among hosts, but not bygeographicaldistance (Krasnovetal.,2010).This findinghasbeeninterpreted as evidence of environmental filtering acting on the

communityofparasitesatthe“macro”scale(Krasnovetal.,2014).On the other hand, there is evidence that differences in parasitecommunitiesacrosshostsaredrivenbyparasitegeographicalrangesandnotphylogeneticdistance,despiteastrongapparentsignalofphylogeneticconservatism[Calatayudetal.,2016;alsoseesimilarresults in insect–hostassociations(Nylinetal.,2018)].Thefieldofcommunity phylogenetics also touches on interactions betweenspecies basedon the amountof their sharedevolutionaryhistory(Cavender‐Bares,Ackerly,Baum,&Bazzaz,2004;Webbetal.,2002;butseecautionsinMayfield&Levine,2010).

Thiscasestudyisagoodexampleoftheinterrelationshipsamongthequestions.Question11framesthisasevolutiondrivingecology,butQuestion8isqualitativelythesamequestion,withecologydriv‐ing evolution.

4.5 | Case study E (Question 18, Figure 3e): What is the role of evolution in invasion?

Invasivespeciesareamajorcomponentofglobalchange(MilleniumEcosystem Assessment, 2005). Invasion is largely perceived as asolely ecological processdespite evolutionary studies (Roderick&Navajas,2003).Buttherearemanywaysinwhichinvasionandevo‐lutioninteract(Panteletal.,2017;Vermeij,1996),including,before,duringandaftertheinvasionevent.Focusingontheevolutionofacommunity before it is invaded, note that invasion and speciationaretheprimaryalternativesfornewspeciestocontributetofaunalbuild‐up and assembly. Towhat degree does having a communityprimarilyderived from invasiondiffer froma communityprimarilyderivedfromspeciation?

Rummel and Roughgarden ( , 1985) suggest that invasion‐ structuredcommunitiesaremoretightlypackedinnichespacebutless stableandmoreopen to invasion. In contrast, thedistinctionbetweeninvasionandevolutioninplacehasbeenoneofthemainargumentsinsupportofthenotionthatremoteislands(withbiotaassemblyprimarilydrivenbyspeciation)aremoresusceptibletoin‐vasion,althoughtestsofhighislandinvasibilitysuggestthatitmightberestrictedtotropicalislands(Turbelin,Malamud,&Francis,2017).Lookingat theroleofevolutionduring invasion,manyhavenotedthat thedegreeof fit of the invading species into theestablishedmorphospace(Moulton&Pimm,1983),thephylogeneticpositionoftheinvaderrelativetospecieswithwhichitwill interact(Pearse&Altermatt,2013)andthephylogeneticclade(Binggeli,1996)canallbepredictiveof invasionsuccess.Therearealso interestingques‐tionsconcerningtheevolutionaryresponseoftheinvaderandtheinvadedcommunityafteraninvasionevent.Forexample,ithasbeensuggestedthatinvasivespeciesmightbefreedfromtheirpredatorsand parasites (the ‘enemy release’ hypothesis; Keane & Crawley,2002), leading to potential evolutionary opportunities, includingthe possibility of “evolution of increased competitive ability” orEICA(Blossey&Notzold,1995),althoughtheevidenceisnotcon‐clusive (Willis,Memmott,&Forrester,2000).Theactofbeing in‐vasivemightalsoselectforindividualsthataresuccessfulinvaders,includingincreaseddispersalability(Phillips,Brown,Webb,&Shine,

Page 9: Unifying macroecology and macroevolution to answer

     |  1933MCGILL et aL.

2006)or thenotion thatselectionduringan invasionmaybespa‐tiallystructured(e.g.,differentattheinvasionfront;Shine,Brown,&Phillips,2011)oradmixtures(geographicalhybrids;Krehenwinkel& Tautz, 2013). The species in the invaded community may alsoshow an evolutionary response to the invader (Goergen, Leger,&Espeland,2011)or exploit an invader as a resource (Carroll et al.,2005).Manyofthesequestionsarealsohighlyrelevantasclimatechangerearrangesspeciesthatco‐occurandleadstonon‐analoguecommunities.

4.6 | Case study F (Question 19, Figure 3f): Does diversity saturate in space and/or time?

Bothmacroecologyandmacroevolutionask thequestion, is thereanupperlimittodiversity?Macroecologiststendtofocusonspatialpatternsasanindicatorofsaturation(Figure3e).Oneclassicalap‐proach has been to ask how the size of the regional species poolinfluencesdiversityatlocalscales(Alroy,2018;Cornell&Harrison,2014; Harmon & Harrison, 2015; Mittelbach & Schemske, 2015;Pärtel,Zobel,Zobel,vanderMaarel,&Partel,1996;Ricklefs,1987).Incontrast,macroevolutionarystudiestendtofocusonsaturationof diversity through time (Etienne & Haegeman, 2012; Moen &Morlon,2014;Phillimore&Price,2008).Inthiscontext,saturationisrevealedbyaplateauofdiversityoverlongtime‐scales(Rabosky,2013;Rabosky&Lovette,2008;Sepkoski,1978),althoughaplateaucouldalsoindicateanequilibriumofspeciationandextinctionratesnotcausedbysaturation(Wagner,Harmon,&Seehausen,2014).Aunifiedapproachtosaturationoverspaceandtimewillrequirethefull integration of both ecological and evolutionary perspectives.Perhaps,forexample,localcommunitiescanbesaturatedovershorttime‐scales,butsuchsaturationbreaksdownoverlongtime‐scales,as evolution of novel traits and lifestyles allow coexistencewhennonewaspossiblebefore.

Wesuggestthatfuturestudiesshouldconsidersaturationfromboth temporal and spatial perspectives, unifying macroecologicalandmacroevolutionaryapproachestothiscrucialquestion.Twore‐centpapers,asimulation(Herrera‐Alsina,vanEls,&Etienne,2018)andanempiricalstudyofthefossilrecord(Closeetal.,2019),sug‐gest thatecologicalprocessesat localscalesmightconstrainmac‐roevolutionary processes of diversification and macroecologicalfactors,suchasspeciesrangesizes, takingplaceover largespatialandlongtemporalscales.

5  | CONCLUSIONS

The modern push to reconnect ecology to evolution (Hendry,2016;McPeek,2017) isoccurringpredominantlyatmicroscales,connecting microevolution (e.g., intraspecific phenotypic evolu‐tion)withmicroecology(e.g.,predator–preyspeciesinteractions).Darwinwouldneverhave attempted tounderstandonewithouttheother.Yetmacroecologyandmacroevolutionhavedevelopedlargelyindependently(butseeBox1)sincetheirconceptualization

(1975and1989,respectively).Giventhattherootsofthetwofieldshavebeensodistinctindataandquestions(Figure2;Table1),thefieldshavelargelyfunctionedindependently.However,aswehaveargued(Figure3;Table2),manyofthemostinterestingandimpor‐tantquestions spanboth fields andwill require synthesizing thedata,toolsandperspectivesofthetworesearchfieldstoproceed.We see signs of this happening. The British Ecological SocietySpecial InterestGrouponMacroecologyopenlyencouragespar‐ticipationby,andcontributionsfrom,bothmacroecologyandmac‐roevolution,asdoesthisjournal.Wehopethisconceptpiecewillprovidefurtherencouragementtothismuchneededunification.

ACKNOWLEDG MENTS

This paper is a joint effort of the working group sEcoEvo, kindlysupportedbysDiv,theSynthesisCentreoftheGermanCentreforIntegrativeBiodiversityResearch (iDiv),Halle‐Jena‐Leipzig, fundedby the German Research Foundation (FZT 118). Brian McGill ac‐knowledges US Department of Agriculture Hatch grant toMaineAgricultural and Forestry Experimental Station #1011538 andNationalScienceFoundationAdvances inBiological Infrastructuregrant#1660000.

ORCID

Brian J. McGill https://orcid.org/0000‐0002‐0850‐1913

Jonathan M. Chase https://orcid.org/0000‐0001‐5580‐4303

Brent C. Emerson https://orcid.org/0000‐0003‐4067‐9858

R E FE R E N C E S

Ackerly, D. D. (2003). Community assembly, niche conservatism, andadaptiveevolutioninchangingenvironments.International Journal of Plant Sciences,164(S3),S165–S184.

Alcock,J.,&Rubenstein,D.R.(1989).Animal behavior.Sunderland,MA:SinauerAssociates.

Alroy, J. (2018). Limits to species richness in terrestrial communities.Ecology Letters,21,1781–1789.https://doi.org/10.1111/ele.13152

Avise,J.C. (2000).Phylogeography: The history and formation of species. London,UK:HarvardUniversityPress.

Belyea,L.R.,&Lancaster,J.(1999).Assemblyruleswithinacontingentecology. Oikos,402–416.https://doi.org/10.2307/3546646

Binggeli,P.(1996).Ataxonomic,biogeographicalandecologicaloverviewof invasivewoodyplants.Journal of Vegetation Science,7,121–124.https://doi.org/10.2307/3236424

Blois, J.L.,Gotelli,N. J.,Behrensmeyer,A.K.,Faith, J.T.,Lyons,S.K.,Williams, J.W.,…Wing,S. (2014).A framework forevaluating theinfluenceofclimate,dispersallimitation,andbioticinteractionsusingfossilpollenassociationsacrossthe lateQuaternary.Ecography,37,1095–1108.https://doi.org/10.1111/ecog.00779

Blossey,B.,&Notzold,R.(1995).Evolutionofincreasedcompetitiveabil‐ityininvasivenonindigenousplants:Ahypothesis.Journal of Ecology,83,887–889.https://doi.org/10.2307/2261425

Brown, J. H. (1995).Macroecology. Chicago, IL: University of ChicagoPress.

Brown,J.H.,&Maurer,B.A.(1989).Macroecology:Thedivisionoffoodand space among species on continents.Science,243, 1145–1150.https://doi.org/10.1126/science.243.4895.1145

Page 10: Unifying macroecology and macroevolution to answer

1934  |     MCGILL et aL.

Bulmer, M. (1994). Theoretical evolutionary ecology. Sunderland, MA:SinauerAssociates.

Calatayud,J.,Hórreo,J.L.,Madrigal‐González,J.,Migeon,A.,Rodríguez,M.Á.,Magalhães,S.,&Hortal,J.(2016).Geographyandmajorhostevolutionary transitions shape the resourceuseofplantparasites.Proceedings of the National Academy of Sciences USA, 113, 9840–9845.https://doi.org/10.1073/pnas.1608381113

Carroll,S.P.,Hendry,A.P.,Reznick,D.N.,&Fox,C.W.(2007).Evolutiononecological time‐scales.Functional Ecology,21,387–393.https://doi.org/10.1111/j.1365‐2435.2007.01289.x

Carroll, S. P., Loye, J. E., Dingle, H., Mathieson, M., Famula, T. R., &Zalucki, M. P. (2005). And the beak shall inherit—Evolution in response to invasion. Ecology Letters, 8, 944–951. https://doi.org/ 10.1111/j.1461‐0248.2005.00800.x

Cavender‐Bares, J., Ackerly, D., Baum, D., & Bazzaz, F. (2004).Phylogenetic overdispersion in Floridian oak communities. The American Naturalist,163,823–843.https://doi.org/10.1086/386375

Cavender‐Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S.W. (2009).The merging of community ecology and phylogenetic biology.Ecology Letters, 12, 693–715. https://doi.org/10.1111/j.1461‐0248. 2009.01314.x

Clements, F. E.,Weaver, J. E., & Hanson, H. C. (1929). Plant competi‐tion: An analysis of community functions.Washington,DC:CarnegieInstituteofWashington.

Close, R. A., Benson, R. B. J., Alroy, J., Behrensmeyer, A. K., Benito,J., Carrano, M. T., … Butler, R. J. (2019). Diversity dynamics ofPhanerozoic terrestrial tetrapods at the local‐community scale.Nature Ecology and Evolution,3,590–597.

Colwell,R.K.,Brehm,G.,Cardelús,C.L.,Gilman,A.C.,&Longino,J.T. (2008). Global warming, elevational range shifts, and lowland bioticattritioninthewettropics.Science,322,258–261.https://doi.org/10.1126/scien ce.1162547

Cornell, H. V., & Harrison, S. P. (2014). What are species pools andwhen are they important?Annual Review of Ecology, Evolution, and Systematics, 45, 45–67. https://doi.org/10.1146/annurev‐ecolsys‐ 120213‐091759

Cox, G. W., & Ricklefs, R. E. (1977). Species diversity and ecologicalrelease inCaribbean landbird faunas.Oikos, 113–122. https://doi.org/10.2307/3543330

Crow, J. F.,&Kimura,M. (1970).An introduction to population genetics theory.NewYork,NY:Harper&Row.

Darwin,C.(1859).On the origin of species.London,UK:ClowsandSons.Elton,C.(1927).Animal ecology.Chicago,IL:UniversityofChicagoPress.Emerson,B.C.,&Gillespie,R.G.(2008).Phylogeneticanalysisofcommu‐

nityassemblyandstructureoverspaceandtime.Trends in Ecology and Evolution,23,619–630.https://doi.org/10.1016/j.tree.2008.07.005

Emmerson,M., & Yearsley, J.M. (2004).Weak interactions, omnivoryandemergentfood‐webproperties.Proceedings of the Royal Society B: Biological Sciences,271,397–405.

Etienne, R. S., & Haegeman, B. (2012). A conceptual and statisticalframework for adaptive radiations with a key role for diversitydependence. The American Naturalist, 180, E75–E89. https://doi.org/10.1086/667574

Foote,M.(1997).Theevolutionofmorphologicaldiversity.Annual Review of Ecology and Systematics, 28, 129–152. https://doi.org/10.1146/annur ev.ecols ys.28.1.129

Ford,E.(1971).Ecological genetics and evolution.Berlin:Springer.Fox, C.W., Roff, D. A., & Fairbairn, D. J. (2001). Evolutionary ecology:

Concepts and case studies.Oxford,UK:OxfordUniversityPress.Gaston,K.J.,&Blackburn,T.M.(2000).Pattern and process in macroecol‐

ogy.Oxford:BlackwellScienceLtd.Gillespie,R.(2004).Communityassemblythroughadaptiveradiationin

Hawaiian spiders. Science, 303, 356–359. https://doi.org/10.1126/scien ce.1091875

Goergen,E.M.,Leger,E.A.,&Espeland,E.K. (2011).NativeperennialgrassesshowevolutionaryresponsetoBromus tectorum(cheatgrass)invasion. PLoS ONE, 6, e18145. https://doi.org/10.1371/journal. pone.0018145

Grant,B.R.,&Grant,P.R.(1989).Evolutionary dynamics of a natural pop‐ulation: The large cactus finch of the Galápagos.Chicago,IL:UniversityofChicagoPress.

Harmon,L.J.,&Harrison,S.(2015).Speciesdiversityisdynamicandun‐bounded at local and continental scales. The American Naturalist,185,584–593.https://doi.org/10.1086/680859

Harte, J.,Rominger,A.,&Zhang,W. (2015). Integratingmacroecologi‐calmetricsandcommunitytaxonomicstructure.Ecology Letters,18,1068–1077.https://doi.org/10.1111/ele.12489

Helmus,M.R.,Mahler,D.L.,&Losos,J.B.(2014).IslandbiogeographyoftheAnthropocene.Nature,513,543–546.https://doi.org/10.1038/natur e13739

Hendry,A.P.(2016).Eco‐evolutionary dynamics.Princeton,NJ:PrincetonUniversityPress.

Herrera‐Alsina, L., van Els, P., & Etienne, R. S. (2018). Detecting thedependenceofdiversificationonmultiple traits fromphylogenetictrees and trait data. Systematic Biology, 68, 317–328. https://doi.org/10.1093/sysbi o/syy057

Hubbell, S. P. (2001).A unified theory of biodiversity and biogeography. Princeton,NJ:PrincetonUniversityPress.

Hughes, C., & Eastwood, R. (2006). Island radiation on a continentalscale: Exceptional rates of plant diversification after uplift of theAndes. Proceedings of the National Academy of Sciences USA, 103,10334–10339.https://doi.org/10.1073/pnas.0601928103

Hutchinson,G.E.(1965).The ecological theater and the evolutionary play. NewHaven,CO:YaleUniversityPress.

Huxley,J.,Hardy,A.C.,&Ford,E.B.(1954).Evolution as a process. George Allen&Unwin.

Jablonski,D.,&Raup,D.M.(1995).Selectivityofend‐Cretaceousmarinebivalveextinctions.Science,268,389–391.https://doi.org/10.1126/scien ce.11536722

Jetz,W.,&Fine,P.V.A.(2012).Globalgradientsinvertebratediversitypredicted by historical area‐productivity dynamics and contempo‐rary environment. PLoS ONE,10,e1001292.https://doi.org/10.1371/journal.pbio.1001292

Keane, R.M., & Crawley,M. J. (2002). Exotic plant invasions and theenemyreleasehypothesis.Trends in Ecology and Evolution,17,164–170.https://doi.org/10.1016/S0169‐5347(02)02499‐0

Kettlewell,H.B.D.(1955).Selectionexperimentsonindustrialmelanismin the Lepidoptera.Heredity,9, 323–342. https://doi.org/10.1038/hdy.1955.36

Krasnov,B.R.,Mouillot,D.,Shenbrot,G.I.,Khokhlova,I.S.,Vinarski,M.V., Korallo‐Vinarskaya,N.P.,&Poulin,R. (2010).Similarity inectopar‐asite faunas of Palaearctic rodents as a function of host phyloge‐netic, geographic or environmental distances: Which matters themost?International Journal for Parasitology,40,807–817.https://doi.org/10.1016/j.ijpara.2009.12.002

Krasnov, B. R., Pilosof, S., Stanko,M.,Morand, S., Korallo‐Vinarskaya, N.P.,Vinarski,M.V.,&Poulin,R.(2014).Co‐occurrenceandphyloge‐neticdistanceincommunitiesofmammalianectoparasites:Limitingsimilarityversusenvironmentalfiltering.Oikos,123,63–70.https://doi.org/10.1111/j.1600‐0706.2013.00646.x

Krehenwinkel, H., & Tautz, D. (2013). Northern range expansion ofEuropean populations of thewasp spiderArgiope bruennichi is as‐sociated with global warming–correlated genetic admixture andpopulation‐specifictemperatureadaptations.Molecular Ecology,22,2232–2248.

Lande,R.(1979).Quantitativegeneticanalysisofmultivariateevolutionappliedtobrain:Bodysizeallometry.Evolution,33,402–416.https://doi.org/10.2307/2407630

Page 11: Unifying macroecology and macroevolution to answer

     |  1935MCGILL et aL.

Latham,R. E.,&Ricklefs, R. E. (1993).Global patterns of tree speciesrichnessinmoistforests:Energy‐diversitytheorydoesnotaccountforvariation inspeciesrichness.Oikos,67(2),325–333.https://doi.org/10.2307/3545479

Levin,S.A.(1992).Theproblemofpatternandscaleinecology.Ecology,73,1943–1967.

Levins, R. (1968). Evolution in changing environments. Princeton, NJ:PrincetonUniversityPress.

Losos,J.B.(2010).Adaptiveradiation,ecologicalopportunity,andevo‐lutionarydeterminism:AmericanSocietyofNaturalistsEOWilsonAward address. The American Naturalist,175,623–639.

Losos, J. B. (2011). Lizards in an evolutionary tree: Ecology and adaptive radiation of anoles.Berkeley,CA:UniversityofCaliforniaPress.

Lyons, S. K. (2003). A quantitative assessment of range shifts ofPleistocenemammals.Journal of Mammalogy,84,385–402.

MacArthur, R. H. (1961). Population effects of natural selection. The American Naturalist,95,195–199.https://doi.org/10.1086/282175

MacArthur,R.H.(1962).Somegeneralizedtheoremsofnaturalselection.Proceedings of the National Academy of Sciences USA,48,1893–1897.https://doi.org/10.1073/pnas.48.11.1893

MacArthur, R. H. (1969). Patterns of communities in the tropics.Biological Journal of the Linnean Society, 1, 19–30. https://doi.org/10.1111/j.1095‐8312.1969.tb01809.x

MacArthur, R., & Levins, R. (1964). Competion, habitat selection andcharacterdisplacementinapatchyenvironment.Proceedings of the National Academy of Sciences USA,51,1207–1210.

MacArthur,R.,&Levins,R.(1967).Thelimitingsimilarity,convergence,anddivergenceofcoexistingspecies.The American Naturalist,101,377–385.https://doi.org/10.1086/282505

MacArthur,R.H.,&Pianka,E.R.(1966).Onoptimaluseofapatchyen‐vironment. The American Naturalist,100, 603–609.https://doi.org/ 10.1086/282454

MacArthur,R.H.,&Wilson,E.O.(1967).The theory of island biogeogra‐phy.Princeton,NJ:PrincetonUniversityPress.

Mahler,D. L.,Revell, L. J.,Glor,R.E.,&Losos, J.B. (2010). Ecologicalopportunityandtherateofmorphologicalevolutioninthediversifi‐cationofGreaterAntilleananoles.Evolution,64,2731–2745.https://doi.org/10.1111/j.1558‐5646.2010.01026.x

Makarieva,A.M.,&Gorshkov,V.G.(2004).Onthedependenceofspe‐ciation rates on species abundance and characteristic populationsize. Journal of Biosciences, 29, 119–128. https://doi.org/10.1007/BF02702569

Mayfield,M.M.,&Levine,J.M.(2010).Opposingeffectsofcompetitiveex‐clusiononthephylogeneticstructureofcommunities.Ecology Letters,13,1085–1093.https://doi.org/10.1111/j.1461‐0248.2010.01509.x

McCormack,J.E.,Bowen,B.S.,&Smith,T.B.(2008).Integratingpaleo‐ecologyandgeneticsofbirdpopulationsintwoskyislandarchipel‐agos. BMC Biology,6,28.https://doi.org/10.1186/1741‐7007‐6‐28

McCormack,J.E.,Huang,H.,Knowles,L.L.,Gillespie,R.,&Clague,D.(2009).Skyislands.Encyclopedia of Islands,4,841–843.

McCormack,J.E.,Huang,H.,Knowles,L.L.,Gillespie,R.,&Clague,D.(2009).Sky islands. InEncyclopedia of islands (Vol.4,pp.841–843).Berkeley,CA:UniversityofCaliforniaPress.

McGill, B. J. (2019). The what, how and why of doing macroecology.Global Ecology and Biogeography,28,6–17.https://doi.org/10.1111/geb.12855

McGill, B. J., & Brown, J. S. (2007). Evolutionary game theory andadaptive dynamics of continuous traits. Annual Review of Ecology, Evolution, and Systematics, 38, 403–435. https://doi.org/10.1146/annur ev.ecols ys.36.091704.175517

McPeek, M. A. (2017). Evolutionary community ecology. Princeton, NJ:PrincetonUniversityPress.

Metz, J. A. J., Geritz, S. A. H., Meszena, G., Jacobs, F. J. A., & vanHeerwaarden,J.(1996).Adaptivedynamics:Ageometricalstudyoftheconsequencesofnearlyfaithfulreproduction.InS.J.VanStrien

& S.M. V. Lunel (Eds.), Stochastic and spatial structures of dynami‐cal systems (pp. 183–231). Amsterdam, The Netherlands: KNAWVerhandelingen.

Millenium Ecosystem Assessment. (2005) Ecosystems and human well‐being.WashingtonDC:WorldResourcesInsitute.

Mittelbach,G.G.,&Schemske,D.W.(2015).Ecologicalandevolutionaryperspectivesoncommunityassembly.Trends in Ecology and Evolution,30,241–247.https://doi.org/10.1016/j.tree.2015.02.008

Moen, D., & Morlon, H. (2014). Why does diversification slowdown? Trends in Ecology and Evolution, 29, 190–197. https://doi.org/10.1016/j.tree.2014.01.010

Morgan, T. H. (1925). Evolution and genetics. Princeton: PrincetonUniversity.

Moulton,M.P.,&Pimm,S.L.(1983).TheintroducedHawaiianavifauna:Biogeographic evidence for competition. The American Naturalist,121,669–690.https://doi.org/10.1086/284094

Nosil,P.,&Crespi,B.J.(2006).Experimentalevidencethatpredationpro‐motesdivergence inadaptive radiation.Proceedings of the National Academy of Sciences USA,103,9090–9095.https://doi.org/10.1073/pnas.0601575103

Nylin,S.,Agosta,S.,Bensch,S.,Boeger,W.A.,Braga,M.P.,Brooks,D.R.,… Janz,N. (2018).Embracingcolonizations:Anewparadigmforspe‐cies association dynamics. Trends in Ecology and Evolution,33,4–14. https://doi.org/10.1016/j.tree.2017.10.005

O’Neill,R.V. (1979).Transmutationsacrosshierarchical levels. InG.S.Innis&R.V.O’Neill(Eds.),Systems analysis of ecosystems(pp.59–78).Fairland,Maryland:InternationalCo‐operativePublishignHouse.

Pantel,J.H.,Bohan,D.,Calcagno,V.,David,P.,Duyck,P.‐F.,Kamenova,S.,…Thébault,E. (2017).Chaptersix‐14questionsfor invasioninecologicalnetworks.Advances in ecological research,56,293–340.

Pärtel,M.,Zobel,M.,Zobel,K.,vanderMaarel,E.,&Partel,M.(1996).Thespeciespoolanditsrelationtospeciesrichness:EvidencefromEstonian plant communities. Oikos, 75(1), 111–117. https://doi.org/10.2307/3546327

Pearse,I.S.,&Altermatt,F.(2013).Predictingnoveltrophicinteractionsin a non‐nativeworld. Ecology Letters,16, 1088–1094. https://doi.org/10.1111/ele.12143

Peterson, A. T., Soberón, J., & Sánchez‐Cordero, V. (1999, August).Conservatismofecologicalnichesinevolutionarytime.Science,285,1265–1267.

Phillimore, A. B., & Price, T. D. (2008). Density‐dependent cladogen‐esis in birds. PLoS Biology, 6, e71. https://doi.org/10.1371/journal.pbio.0060071

Phillips, B. L., Brown, G. P.,Webb, J. K., & Shine, R. (2006). Invasionand the evolutionof speed in toads.Nature,439, 803. https://doi.org/10.1038/439803a

Pianka, E. R. (1966). Latitudinal gradients in species diversity: A re‐viewofconcepts.The American Naturalist,100,33–46.https://doi.org/10.1086/282398

Provine,W.B.(2001).The origins of theoretical population genetics: With a new afterword.Chicago,IL:UniversityofChicagoPress.

Rabosky,D.L.(2013).Diversity‐dependence,ecologicalspeciation,andtheroleofcompetitioninmacroevolution.Annual Review of Ecology, Evolution, and Systematics, 44, 481–502. https://doi.org/10.1146/annurev‐ecolsys‐110512‐135800

Rabosky,D.L.,&Lovette,I.J.(2008).Density‐dependentdiversificationinNorthAmericanwoodwarblers.Proceedings of the Royal Society B: Biological Sciences, 275, 2363–2371. https://doi.org/10.1098/rspb.2008.0630

Rahbek,C.,&Graves,G.R. (2001).Multiscale assessmentofpatternsof avian species richness. Proceedings of the National Academy of Sciences USA, 98, 4534–4539. https://doi.org/10.1073/pnas.071034898

Rangel,T.F.,Edwards,N.R.,Holden,P.B.,Diniz‐Filho,J.A.F.,Gosling,W.D.,Coelho,M.T.P.,…Colwell,R.K.(2018).Modelingtheecology

Page 12: Unifying macroecology and macroevolution to answer

1936  |     MCGILL et aL.

and evolution of biodiversity: Biogeographical cradles, museums,and graves. Science, 361, eaar5452. https://doi.org/10.1126/science.aar5452

Ricklefs,R.E. (1987).Communitydiversity:Relative rolesof local andregionalprocesses.Science,235,167–171.https://doi.org/10.1126/scien ce.235.4785.167

Ricklefs,R.E.(2007).Historyanddiversity:Explorationsattheintersec‐tionofecologyandevolution.The American Naturalist,170,S56–S70.https://doi.org/10.1086/519402

Ricklefs,R.E.(2010).Evolutionarydiversification,coevolutionbetweenpopulations and their antagonists, and the filling of niche space.Proceedings of the National Academy of Sciences USA,107,1265–1272.https://doi.org/10.1073/pnas.0913626107

Ricklefs, R. E. (2011). Applying a regional community concept to for‐est birds of eastern North America. Proceedings of the National Academy of Sciences USA,108,2300–2305.https://doi.org/10.1073/pnas.1018642108

Ricklefs, R. E. (2015). Intrinsic dynamics of the regional community.Ecology Letters,18,497–503.https://doi.org/10.1111/ele.12431

Ricklefs, R. E., & Cox, G.W. (1972). Taxon cycles in theWest Indianavifauna. The American Naturalist, 106, 195–219. https://doi.org/ 10.1086/282762

Ricklefs,R.,&Schluter,D.(1993a).Species diversity in ecological commu‐nities: Historical and geographical perspectives.Chicago,IL:UniversityofChicagoPress.

Ricklefs,R.E.,&Schluter,D.(1993b).Speciesdiversity:Regionalandhis‐toricalinfluences.InR.E.Ricklefs,&D.Schluter(Eds.),Species diver‐sity in ecological communities: Historical and geographical perspectives. Chicago,IL:UniversityofChicagoPress.

Roderick, G. K., & Navajas, M. (2003). Genes in new environments:Genetics and evolution in biological control. Nature Reviews Genetics,4,889–899.https://doi.org/10.1038/nrg1201

Roff,D.(2002).Life history evolution.Sunderland,MA:SinauerAssociates.Rominger, A., Overcast, I., Krehenwinkel, H., Gillespie, R., Harte, J., &

Hickerson,M.(2017)Linkingevolutionaryandecologicaltheoryillumi‐natesnon‐equilibriumbiodiversity.arXivpreprintarXiv:1705.04725.

Rosenzweig,M. L. (1978). Competitive speciation.Biological Journal of the Linnean Society, 10, 275–289. https://doi.org/10.1111/j.1095‐ 8312.1978.tb00016.x

Rosenzweig, M. L., & McCord, R. D. (1991). Incumbent replacement:Evidenceforlong‐termevolutionaryprogress.Paleobiology,17,202–213.https://doi.org/10.1017/S0094837300010563

Rummel,J.D.,&Roughgarden,J.(1985).Atheoryoffaunalbuildupforcommuities. Evolution,39,1009–1033.

Schluter,D.(2000).The ecology of adaptive radiation.Oxford,UK:OxfordUniversityPress.

Schoener,T.W.(2011).Thenewestsynthesis:Understandingtheinter‐playofevolutionaryandecologicaldynamics.Science,331,426–429.https://doi.org/10.1126/science.1193954

Sepkoski,J.J. (1978).AkineticmodelofPhanerozoictaxonomicdiver‐sityI.Analysisofmarineorders.Paleobiology,4,223–251.https://doi.org/10.1017/S0094837300005972

Shine,R.,Brown,G.P.,&Phillips,B.L.(2011).Anevolutionaryprocessthatassemblesphenotypesthroughspaceratherthanthroughtime.Proceedings of the National Academy of Sciences USA,108,5708–5711.https://doi.org/10.1073/pnas.1018989108

Slik, J. W. F., Arroyo‐Rodríguez, V., Aiba, S.‐I., Alvarez‐Loayza, P.,Alves, L. F., Ashton, P., … Venticinque, E. M. (2015). An estimate

of the number of tropical tree species.Proceedings of the National Academy of Sciences USA,112,7472–7477.https://doi.org/10.1073/pnas.1423147112

Stanley, S. M. (1975). A theory of evolution above the species level.Proceedings of the National Academy of Sciences USA,72, 646–650.https://doi.org/10.1073/pnas.72.2.646

Stearns, S. C. (1976). Life‐history tactics: A review of the ideas. The Quarterly Review of Biology,51,3–47.https://doi.org/10.1086/409052

Stommel,H.(1963).Varietiesofoceanographicexperience.Science,139,572–576.

Stroud,J.T.,&Losos,J.B.(2016).Ecologicalopportunityandadaptiveradiation. Annual Review of Ecology, Evolution, and Systematics, 47,507–532.

Ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomao,R. P., Guevara, J. E., … Silman, M. R. (2013). Hyperdominance inthe Amazonian tree flora. Science, 342, 1243092. https://doi.org/10.1126/scien ce.1243092

Turbelin, A. J., Malamud, B. D., & Francis, R. A. (2017). Mapping theglobalstateofinvasivealienspecies:Patternsofinvasionandpolicyresponses.Global Ecology and Biogeography,26, 78–92. https://doi.org/10.1111/geb.12517

Vermeij,G.J.(1996).Anagendaforinvasionbiology.Biological Conservation,78,3–9.https://doi.org/10.1016/0006‐3207(96)00013‐4

vonHumboldt,A.,&Ross,T. (1852).Personal narrative of travels to the equinoctial regions of America, during the years 1799–1804. London:H.G.Bohn.

Wagner,C.E.,Harmon,L.J.,&Seehausen,O.(2014).Cichlidspecies‐arearelationshipsareshapedbyadaptiveradiationsthatscalewitharea.Ecology Letters,17,583–592.https://doi.org/10.1111/ele.12260

Webb,C.O.,Ackerly,D.D.,McPeek,M.A.,&Donoghue,M.J.(2002).Phylogenies andcommunityecology.Annual Review of Ecology and Systematics,33,475–505.

Wiens,J.A.(1989).Spatialscalinginecology.Functional Ecology,3,385–397.https://doi.org/10.2307/2389612

Wiens,J.J.,&Graham,C.H.(2005).Nicheconservatism:Integratingevo‐lution,ecology,andconservationbiology.Annual Review of Ecology, Evolution, and Systematics,36,519–539.

Willis, A., Memmott, J., & Forrester, R. (2000). Is there evidence forthepost‐invasionevolutionof increased size among invasiveplantspecies? Ecology Letters, 3, 275–283. https://doi.org/10.1046/ j.1461‐0248.2000.00149.x

Wilson, E.O. (1961). The nature of the taxon cycle in theMelanesianant fauna. The American Naturalist, 95, 169–193. https://doi.org/10.1086/282174

Wilson,E.,&Bossert,W.(1971).A primer of population biology.Sunderland,MA:SinauerAssociates.

Yoshida,T.,Jones,L.E.,Ellner,S.P.,Fussmann,G.F.,&Hairston,N.G.Jr. (2003). Rapid evolution drives ecological dynamics in a predator–prey system.Nature,424, 303–306. https://doi.org/10.1038/nature01767

How to cite this article:McGillBJ,ChaseJM,HortalJ,etal.Unifyingmacroecologyandmacroevolutiontoanswerfundamentalquestionsaboutbiodiversity.Global Ecol Biogeogr. 2019;28:1925–1936. https://doi.org/10.1111/geb.13020