uncertainty: sensitivity analysis & robust optimization · 2018-07-19 · uncertainty:...

60
Uncertainty: Sensitivity Analysis & Robust Optimization Stefano Moret, PhD October 24 th , 2017 1 Uncertainty: Sensitivity Analysis & Robust Optimization Stefano Moret, PhD MOSES workshop – October 24 th , 2017

Upload: others

Post on 23-Jun-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 1!

Uncertainty: Sensitivity Analysis & Robust Optimization!

Stefano Moret, PhD!MOSES workshop – October 24th, 2017!

Page 2: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 2!

"Introduction!

“It is difficult to make predictions, especially about the future”"Danish proverb!

Page 3: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 3!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "The energy transition!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Average US citizen vs. stone-age hunter: 60x more energy consumption[a]!

Sources:![a] Y. N. Harari, Homo Deus, 2015.!

IEA projections to 2050[5]:!+60% energy demand (vs. 2011)!+70% GHG emissions (vs. 2011)!

81.1% world primary energy supply in the year 2014[3]!

Main source of anthropogenic!GHG emissions[4] !

To target the 2°C ∆T limit CO2 emissions need to be halved by 2050[6]!

Strategic Energy Planning!Scale: urban/national/industrial !

Time horizon: 20-50 years!

Common approach:!Long-term deterministic

optimization models based on forecasts!

=  

Page 4: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 4!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "Energy forecasting: learning from the past!

85!

86!

87!

89!

90!

0.10!

0.15!

0.20!

0.25!

0.30!

0.35!

0.40!

U.S

. Nat

ural

Gas

Ele

ctric

Pow

er p

rice

[USD

2013/m

3 ]!

AEO forecast (Year 'XX)!XX!

Actual NG price!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 5: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 5!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "Energy forecasting: learning from the past!

85!

86!

87!

89!

90!

0.10!

0.15!

0.20!

0.25!

0.30!

0.35!

0.40!

U.S

. Nat

ural

Gas

Ele

ctric

Pow

er p

rice

[USD

2013/m

3 ]!

AEO forecast (Year 'XX)!XX!

Actual NG price!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 6: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 6!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "Energy forecasting: learning from the past !

85!

86!

87!

89!

90!

91!92!

93!

94!

95!

96! 97!98!

99!00!

0.10!

0.15!

0.20!

0.25!

0.30!

0.35!

0.40!

U.S

. Nat

ural

Gas

Ele

ctric

Pow

er p

rice

[USD

2013/m

3 ]!

AEO forecast (Year 'XX)!XX!

Actual NG price!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 7: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 7!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "Energy forecasting: learning from the past!

85!

86!

87!

89!

90!

91!92!

93!

94!

95!

96! 97!98!

99!00!

0.10!

0.15!

0.20!

0.25!

0.30!

0.35!

0.40!

U.S

. Nat

ural

Gas

Ele

ctric

Pow

er p

rice

[USD

2013/m

3 ]!

AEO forecast (Year 'XX)!XX!

Actual NG price!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 8: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 8!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "Energy forecasting: learning from the past!

85!

86!

87!

89!

90!

91!92!

93!

94!

95!

96! 97!98!

99!00!01!02!

03!

04!

05!

06!07!

08!

09! 10!

11!

12!

13!

14!

15!

0.10!

0.15!

0.20!

0.25!

0.30!

0.35!

0.40!

U.S

. Nat

ural

Gas

Ele

ctric

Pow

er p

rice

[USD

2013/m

3 ]!

AEO forecast (Year 'XX)!XX!

Actual NG price!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 9: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 9!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "Energy forecasting: learning from the past!

85!

86!

87!

89!

90!

91!92!

93!

94!

95!

96! 97!98!

99!00!01!02!

03!

04!

05!

06!07!

08!

09! 10!

11!

12!

13!

14!

15!

0.10!

0.15!

0.20!

0.25!

0.30!

0.35!

0.40!

U.S

. Nat

ural

Gas

Ele

ctric

Pow

er p

rice

[USD

2013/m

3 ]!

AEO forecast (Year 'XX)!XX!

Actual NG price!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 10: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 10!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "Energy forecasting: learning from the past!

Long-term, strategic planning for urban and national energy systems!

Long time horizons!(20-50 years)!

!Based on forecasting!

Low penetration of renewables and/or

new (efficient) technologies!

!Overcapacity[29] if

forecasts are wrong!

Furthermore:!- energy models are “nonvalidatable”, i.e. doomed to inaccuracy[16,17]!

- backcasting: models have missed pivotal events[13,14]!

Need for accounting of uncertainty in long-term

energy modeling[30-33]!

Craig et al.[28]: “Long-run forecasting methods for energy [...] will likely fall prey to the inherent unpredictability of pivotal events”"

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 11: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 11!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Introduction!" "Gaps!Still low penetration of uncertainty in the energy field[34,35]. Why? Grossmann et al.[36]:!!I.  Energy models!

•  Computationally expensive[27][39]!

•  Complex formulation (as originally deterministic)!•  Sector-specific (often electricity)[40-42]!

II.  Quantification of input uncertainties!•  Scarce quantity and quality of available data[47]!

•  Difficulty of defining probability distributions[27,48]!

•  Focus on few a priori selected parameters and scarce documentation!III.  Methods to incorporate uncertainties in energy models!

•  Sensitivity analysis à seldom used, few parameters!•  Optimization under uncertainty à computational burden!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 12: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 12!

"Global sensitivity analysis!

Published as:!S. Moret, V. Codina Gironès, M. Bierlaire and F. Maréchal. Characterization of input uncertainties in strategic energy planning models. Applied energy, 2017.!

Page 13: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 13!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Global sensitivity analysis!" "Literature review & contributions! C

hap

ter3.

Globalsen

sitivityan

alysis

Table 3.1 – Review of application of sensitivity and uncertainty analysis methods to energy models.

Method(s)a Uncertain Parameters Application & Model typeb Output(s) of interest

Schulz et al. [107] LSA (scenarios)fuel prices, inv. cost,

subsidieswood-to-SNG (LP) FEC, strategy

Kattan and Ruble [108] LSA fuel pricescomparison of boilersfor residential heating

energy price

Siler-Evans et al. [109] LSAcost (fuels and inv), interest rate,

efficiencies, lifetimedistributed CHP NPV

Kim et al. [50] LSAfeedstock and

by-product pricesbiomass-to-fuel (LP) Obj. (cost)

Koltsaklis et al. [41] LSA (scenarios)cost (NG, emissions),

inv. cost, elec. demandnational power system

planning (MILP)Obj. (cost), other

Pantaleo et al. [110] LSA (scenarios)demand, fuel prices,

climate, infrastructurebiomass integration

in urban systems (MILP)various

Beckers et al. [111] LSAcosts, interest rate,

lifetime, geothermal resourcegeothermal energy levelized cost

Fazlollahi [112] EFASTcost (fuels and inv.),

interest rate, emissionsurban energy system

(MILP+GA)Objs. (cost, GWP, efficiency)

Pernet [113] LSA, EE, VBheat and exergy demand,

efficienciesurban energy system (MILP) Obj. (exergy), Tech size

Pye et al. [47] SP, SRCinv. cost, build rates,

resource avail. and pricesnational energy model (LP) Obj. (cost), emissions

Han et al. [114] LSAfeedstock price, yields,solvent:biomass ratio

ethanol production energy price

Lythcke-Jørgensen et al. [86] EE, UA fuel price, inv. cost, emissionsmulti-generation system

design (MILP+GA)Objs. (NPV, GWP)

Mian [115] EE, MCcost (fuels and inv.), efficiencies,

interest rate, temperatureshydrothermal gasification

plant design (MINLP)Obj. (cost)

aAbbreviations: local sensitivity analysis (LSA), uncertainty analysis (UA), elementary effect (EE), variance-based (VB), scatterplots (SP), standardized regressioncoefficients (SRC), Monte Carlo (MC)

b Optimization model types: linear programming (LP), mixed-integer linear programming (MILP), mixed-integer non linear programming (MINLP), genetic algorithm(GA). If the model type is not indicated, the model is not based on optimization.

50

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 14: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 14!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Global sensitivity analysis!

In the literature:!•  Variety of methods, but mostly local sensitivity analysis (LSA)!•  In general, few applications[34]!

•  Focus on a few uncertain parameters selected a priori [55] "

•  Large number of input parameters à two-stage global sensitivity analysis method !•  Systematic consideration of all parameters in the analysis!

Sensitivity analysis studies “how  uncertainty  in  the  output  of  a  model  can  be  appor4oned  to  different  sources  of  uncertainty  in  the  model  input”  [54]  

" "Literature review & contributions!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 15: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 15!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Global sensitivity analysis!" "Two-stage GSA!

Legend:

Method/Action

Data/Information

Global Sensitivity Analysis(GSA)

Factor Fixing

Factor Prioritization

Important modelassumptions

Non-influentialparameters

Parameterranking

Fix non-influentialparameters

Verifiy modelassumptions

The method was first proposed by Campolongo et al. in the late 1990s; here, it is updated to state-of-the-art GSA methods.!To date, never applied to energy planning problems.  

Sensitivity is linked to the calculation of sensitivity indices  

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 16: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 16!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Global sensitivity analysis!" "Case study: I. Factor fixing!

c maint,% i rat

ec inv

(GRI

D)

c inv(H

YDRO

DAM

)c op

(NG)

c op(D

IESE

L)

c inv(E

FFIC

IENC

Y)c op

(GAS

OLIN

E)

c inv(H

YDRO

RIV

ER)

c op(L

FO)

n (HY

DRO

DAM

)% pu

blic,m

ax

c op(E

LECT

RICI

TY)

% freigh

t,max

c op(C

OAL)

f(GAS

OLIN

E CA

R,GA

SOLI

NE)

n(GR

ID)

c inv(N

UCLE

AR)

n(HY

DRO

RIVE

R)

f(DIE

SEL

CAR,

DIES

EL)

c p,t(H

YDRO

DAM

)av

ail(W

ASTE

)

0

10

20

30

40

50

60

70

80

90

100

�* /�

* max

[%]

Y1 Total annual cost (Obj)

Y2 Investment decision370 parameters!22 > 5% of max!53 > 1% of max!

•  Importance of assumptions à all parameters!

•  Screening is effective!!

•  Importance of choosing the output of interest!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 17: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 17!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Global sensitivity analysis!" "Case study: II. Factor prioritization!

Factor prioritization is performed on the first 10 parameters in the factor fixing step !

Chapter 3. Global sensitivity analysis

performed on the first 10 parameters of the obtained list. Factor prioritization results are shown in

Table 3.2. The first-order sensitivity index Si , defining the parameter ranking, is calculated along

with the total effect index STi for nsample = 10000. STi °Si is a measure of how strongly the i -th

parameter is involved in interactions with the other inputs.

Table 3.2 – Factor prioritization results: Si and STi for the first 10 parameters with respect to theobjective value (Y1). Parameters are selected based on the output of the first stage. Si is used to rankthe impact of parameters in the model

Rank Parameter Si STi

1 irate 4.830E-01 4.906E-012 cop(NG) 4.412E-01 4.586E-013 cop(LFO) 1.900E-02 1.914E-024 cop(ELECTRICITY) 1.400E-02 3.398E-025 cinv(NUCLEAR) 5.732E-03 1.871E-026 cop(COAL) 5.487E-03 1.272E-027 cp,t(HYDRO DAM) 2.320E-03 2.137E-038 avail(WASTE) 1.501E-03 2.026E-039 cinv(DHN) 1.158E-03 1.310E-03

10 cp,t(HYDRO RIVER) 6.922E-04 1.744E-03

3.2.3 Does uncertainty characterization matter in energy planning?

The presented methodology allows to answer an additional research question: does uncertainty

characterization matter in energy planning? Characterizing input uncertainties (as in Table 2.1) is a

time-consuming process. In the energy planning practice, this investment of time is justified only if

the obtained characterization has a relevant impact on the output results. To answer this question,

the GSA results are compared with the results which are obtained by assuming an identical level of

uncertainty for all the input parameters. Figure 3.3 shows the results of the comparison. The EEs

method is carried out assuming ±20% uncertainty for all parameters. Parameters are ranked with

respect to the outputs of interest (Y1 and Y2) following the same method as in Section 3.2.2. For

the first 10 parameters in the ranking, the new values of µ§Y1

and µ§Y2

are compared with the results

presented in the previous section.

The comparison shows that the values of the sensitivity indices are substantially different in the two

cases. Although 5 out of the 10 parameters emerge as impacting in both cases, the ±20% screening

fails in identifying the non-influential parameters. Two observations suggest this conclusion. First,

parameters which were non-influential - such as the energy demand and the efficiency of technolo-

gies - are now in the first positions of the ranking. Second, parameters previously classified among

the most impacting are now classified as non-influential. The latter is a potentially dangerous error

as noted in [63], as it would lead to exclusion of impacting parameters from the analysis. Overall, the

56

From the theory[54], STi >= Si. STi – Si is a measure of how strongly the i-th parameter is involved in interactions with other inputs.  

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 18: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 18!

"Robust optimization!

Partly published as:!S. Moret, M. Bierlaire and F. Maréchal. Robust optimization for strategic energy planning. Informatica, 2016.!

Page 19: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 19!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Literature review & contributions!

Sensitivity analysis: !Change parameter values in deterministic model!

Optimization under uncertainty:!Uncertainty integrated in optimization model formulation!

Stochastic programming!Optimizes the expected value of the objective!•  Scenario tree to model uncertainty!•  Assumption is that PDFs are known!

Sources:!- Refs. [123], [36], [57-59], [124]!

Limitations:!•  Difficult to define PDFs[27][124]!

•  Quickly leads to intractable models sizes[59]!

Robust optimization!Worst-case realizations of uncertainty!•  First proposed by Soyster[60] in 1970s: all

parameters at worst case à ! over-conservative solutions!!Main developments:!•  Ben-Tal and Nemirovski[61] à non-linear!•  Bertsimas and Sim[62] à linear!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 20: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 20!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Literature review & contributions!•  Increasing interest in the last 20 years[143]!

•  Fields: inventory and logistics, finance, revenue management, queuing networks, machine learning, energy systems and the public good[146] !

•  The linear approach by Bertsimas and Sim[62] is the most diffused!•  Uncertain parameters: demand and prices!•  Typical application: electricity sector[127][132][134][136][138]!

In general:!•  Still rather limited applications!•  Specific parameters and applications à limited by complex model formulations"

Bridge gap between OR methods and energy systems applications!•  First application of Bertsimas and Sim[62] to a strategic energy planning problem!•  Novel developments to consider multiplied uncertain parameters"•  Integration of Babonneau et al.[153] to consider uncertainty in the constraints!•  General RO framework: all parameters in objective function and other constraints!•  Real application: Swiss energy strategy!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 21: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 21!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Switzerland in 2035: deterministic cost optimal solution!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

6.28

5.65

8.19

3.52

4.223.58

35.34

0.257.32

54.69

17.48

16.12

0.081.88

11.14

6.46

2.345.491.64

3.92

41.81

0.79

2.62

0.130.10

10.98

3.17

43.93

1.29

19.02

6.120.32

Gasoline

Diesel

Freight

NG

Hydro Dams

Hydro River

CoalGeothermal

Waste

Oil

Exp & Loss

Heat LT Dec

Heat HT

Heat LT DHNLoss DHN

DHN

Boilers

Mob priv

Mob public

H2 prod

Elec demandCHP Elec

HPs

Page 22: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 22!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Switzerland in 2011!

Introduction ¦ Modeling for Uncertainty ¦ Uncertainty Characterization ¦ GSA ¦ Robust Optimization ¦ Conclusions!

35.94

9.24

6.00

12.92

0.43

4.18

25.44

0.13

2.59

25.56

0.07

16.60

14.73

1.66

0.150.31

0.03

13.67

1.75

0.18

44.16

2.25

8.11

2.160.90

4.40

42.31

1.31

5.76

7.03

3.56

0.39

4.02

1.093.730.28

56.09

0.72

14.77

0.424.64

Gasoline

Diesel

Biofuels

Electricity

Nuclear

Wind

Hydro Dams

Hydro River

Coal

Solar

Geothermal Loss DHN

Mob priv

Freight

Mob public

Heat LT Dec

Elec

Waste

Oil

NG

Wood

Boilers

Heat HT

Elec demand

Exp & Loss

Heat LT DHNDHNCHP

HPs

Page 23: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 23!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "The robust approach!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Soyster: Protection against all uncertain parameters at worst case. Very conservative!Bertsimas & Sim: “nature will be restricted in its behavior, in that only a subset of the coefficients will change in order to adversely affect the solution” !

Without loss of generality, uncertainty is considered for the coefficients aij "

The “protection parameter” controls the number of uncertain parameters at worst case:!

Deterministic MILP, no parameter at worst case!

All parameter at worst case (Soyster)!�i = [0, |Ji|]

�i = 0

�i = |Ji|

minX

jc j x j

s.t.X

jaij x j ∑ bi 8i

l j ∑ x j ∑ u j 8 j

aij 2 [aij °±a,ij, aij +±a,ij], j 2 Ji

Objective function (e.g. minimizing total cost)!

Constraints (e.g. energy balance)!

Page 24: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 24!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "The robust approach!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

0

200

400

600

800

1000

1200

Pric

e of

rob

ustn

ess (

PoR

)

a)

0 1 2 3 4 5 6 7 8 20� lb

0

10

20

30

40

50

60

70

80

90

Con

stra

int v

iola

tions

[%]

b)

Increasing uncertainty!

Cost increases!!

The system is more reliable

(less risk of not meeting demand)!

Γobj = 0!Deterministic!

solution!

Γ = |J |!Soyster’s

solution à All params at worst case!

Page 25: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 25!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Why can’t we directly apply this method?!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Why is it difficult to apply this approach to energy models?!

C

tot

=X

j2TECHC

inv

( j )+X

j2TECHC

maint

( j )+X

i2RES

X

t2TC

op

( j , t ) =

=X

j2TECH

i rate(i rate +1)n( j )

(i rate +1)n( j ) °1cinv( j )F( j )+

X

j2TECHcmaint( j )F( j )+

X

i2RES

X

t2Tcop(i , t )F

t

(i , t )top(t )

Two main difficulties:!1.  Objective function: cannot account for the uncertainty of multiplied parameters!2.  Constraints: Difficult to account for uncertainty in the constraints!

Both issues are addressed to provide a robust optimization framework!

Page 26: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 26!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!Robust optimization framework!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Objective function

Focus on optimality

�obj

Robust energy strategy

Technology sizing (F) &

operation (Ft)

Centralized vs. decentralized

heat supply (%Dhn)

Public vs. private mobility

(%Public)

Freight rail vs. road (%Rail)

Decision-making

Uncertainty in

objective function &

in constraintsConstraints

Focus on feasibility

�con,i

First, robust formulations are separately derived for the objective function and for the other constraints!

Page 27: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 27!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the objective function!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

A novel robust formulation is demonstrated in two steps:!

1.!

X

j2TECH

i rate(i rate +1)n( j )

(i rate +1)n( j ) °1cinv( j )F( j )

Obj1 =X

j2TECH

i rate(i rate +1)n( j )

(i rate +1)n( j ) °1cinv( j )F( j ) º

X

j2TECH

°Æ

irate

2+ 1

n( j )

¢cinv( j )F( j )

0.02

0.04

0.06

0.08

0.10

0.12

10 20 30 40 50 60 70 80

Lifetime (n) [y]

Eq. 1.2 Eq. 4.16 Eq. 4.17

Calculation of τ"!

Page 28: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 28!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the objective function!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

A novel robust formulation is demonstrated in two steps:!

1.!

2.!

X

j2TECH

i rate(i rate +1)n( j )

(i rate +1)n( j ) °1cinv( j )F( j )

Obj1 =X

j2TECH

i rate(i rate +1)n( j )

(i rate +1)n( j ) °1cinv( j )F( j ) º

X

j2TECH

°Æ

irate

2+ 1

n( j )

¢cinv( j )F( j )

minX

j(a j +a0

j )c j x j

minX

j

°a j +a0

j

¢c j x j +z

u

°u +z

u

0°u0 +z

v

°v +X

j

°p j +p

0j +q j

¢

s.t. z

u

°¥ j +p j ∏ ±a, j c j x j 8 j

z

u

0 °¥0j +p

0j ∏ ±a0, j c j x j 8 j

z

v

°º j °º0j +q j ∏ ±c, j (a j +a0

j )x j 8 j

¥ j +º j ∏ ±a, j±c, j x j 8 j

¥0j +º0j ∏ ±a0, j±c, j x j 8 j

x j ,p j ,p

0j ,q j ,º j ,º0

j ,¥ j ,¥0j ,z

u

,z

u

0 ,z

v

2R+

Page 29: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 29!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the objective function!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

minX

j2TECH

°ør +øn( j )

¢cinv( j )F( j )+

X

j2TECHcmaint( j )F( j )+

X

i2RES

X

t2Tcop(i , t )F

t

(i , t )top(t )

+z

r

°r +z

n

°n +z

inv

°inv +z0°0 +X

j2TECH

°p

r

( j )+p

n

( j )+p

inv

( j )+p

maint

( j )¢+

X

i2RES

X

t2Tp

op

( j )( j , t )

s.t. z

r

+X

j2TECH

°°¥

r

( j )+p

r

( j )¢∏ ±ør

X

j2TECH

°cinv( j )F( j )

¢

z

n

°¥n

( j )+p

n

( j ) ∏ ±øn ( j )cinv( j )F( j ) 8 j 2 TECH

z

inv

°ºinv

( j )°º0inv

( j )+p

inv

( j ) ∏ ±inv( j )°ør +øn( j )

¢F( j ) 8 j 2 TECH

¥r

( j )+ºinv

( j ) ∏ ±ør ±inv( j )F( j ) 8 j 2 TECH

¥n

( j )+º0inv

( j ) ∏ ±øn ( j )±inv( j )F( j ) 8 j 2 TECH

z0 +p

maint

( j ) ∏ ±maint ( j )y

maint

( j ) 8 j 2 TECH

F( j ) ∑ y

maint

( j ) 8 j 2 TECH

z0 +X

t2Tp

op

(i , t ) ∏ ±op(i )X

t2Ty

op

(i , t ) 8i 2 RES

F

t

(i , t )top(t ) ∑ y

op

(i , t ) 8i 2 RES,8t 2 T

z

r

,z

n

,z

inv

,z0,p

r

,p

n

,p

inv

,p

maint

,p

op

,¥r

,¥n

,ºinv

,º0inv

,y

maint

,y

op

2R+

Four control parameters. But, in the case of the studied problem, it can be imposed that:!z

obj

°obj

= z

r

°r

+z

n

°n

+z

inv

°inv

+z0°0

Γobj controls the uncertainty of 160 parameters!!

Page 30: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 30!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the objective function!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120

An

nu

al r

esou

rce

con

sum

ptio

n [T

Wh

/y]

Γobj

Waste Diesel Natural Gas

Gasoline LFO Coal

Wood Uranium New hydro dam

Electricity imports Other renewables (no hydro) New hydro river

•  Dramatic impact of uncertainty!•  “Risk-pooling” effect:

diversification for medium protection levels!

•  More renewables and efficient technologies!

•  Simulation: robust solutions have less variability!

Γobj = 0!Deterministic!

solution!Increasing uncertainty!

Γobj = |Jobj|!Soyster’s

solution à All params at worst case!

Page 31: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 31!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Robust optimization framework!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Objective function

Focus on optimality

�obj

Robust energy strategy

Technology sizing (F) &

operation (Ft)

Centralized vs. decentralized

heat supply (%Dhn)

Public vs. private mobility

(%Public)

Freight rail vs. road (%Rail)

Decision-making

Uncertainty in

objective function &

in constraintsConstraints

Focus on feasibility

�con,i

Page 32: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 32!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints!

Uncertainty in the constraints is seldom addressed. Why?!1.  Same parameters appearing in multiple constraints[131]!

2.  Most constraints contain very few (even only one) uncertain parameter[157], e.g. a model has N constraints, each of them with one uncertain parameter à N control parameters Γi ∈ [0;1] à combinatorial problem    

How to address these issues?!1.  Model formulation (modeling for uncertainty)!2.  Formulation + idea by Babonneau et al. [153]:!

ACT(i )°AF(i )£CAP(i ) ∑ 0 8i = 1, . . . , N

Energy carried through!

“channel” i" Availability of the channel

(uncertain)"

Channel capacity"

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 33: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 33!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints: the robust formulation by Babonneau et al.[153]!

ACT(i )°AF(i )£CAP(i ) ∑ 0 8i = 1, . . . , N

Energy carried through!

“channel” i" Availability of the channel

(uncertain)"

Channel capacity"

Babonneau et al.[153]: “we are interested in protecting the total energy supply [...], not that of each channel separately”!

NX

i=1

°ACT(i )°AF(i )£CAP(i )

¢∑ 0

The idea is adding a redundant constraint summing over the constraint indices and to “robustify” this new constraint à instead of N Γi ∈ [0;1], this gives one Γ ∈ [0;N]. The problem becomes tractable!"

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Page 34: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 34!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Robust optimization framework!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Objective function

Focus on optimality

�obj

Robust energy strategy

Technology sizing (F) &

operation (Ft)

Centralized vs. decentralized

heat supply (%Dhn)

Public vs. private mobility

(%Public)

Freight rail vs. road (%Rail)

Decision-making

Uncertainty in

objective function &

in constraintsConstraints

Focus on feasibility

�con,i

Page 35: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 35!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Decision-making method!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

Legend:

Action

Data/Information

Protection parameters�obj = 0; �con,i = 0

Feasibilityok?

y

Increase �con,i &simulate for feasibility

n

�obj : Generate & cluster solutions

Feasibilityok?

Simulate for feasibility and optimality

n

Increase � con,i

y

Results analysisRobust

energy strategy

First feasibility, then optimality"!

Solutions which are both feasible and cost-effective + limited

computational burden!

Page 36: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 36!

Thank you! Questions?!

HEY BoSS, HEßEI5 THE

ÉNgRO\ 1,,ìARKÉT FORÉ(,ÂST

,t to Zo50.I Frl'ltstlED

ÞoES louR ptoÞEL BY

^NY CTIANCÉ A¿couNT Foß

Tr.lÉ SHUTÞowN of AvV{l1C NucLÉÂK Po\^rgßPLANTS, hs REPoßIeÞ lNTHE Ntws THts M oKN tN 6 ?

\

tr u¡9T Nt0HT'GREATToBl

)

Page 37: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 37!

"Appendix!

Page 38: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 38!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Modeling for uncertainty!" "Contributions!

Novel MILP modeling framework for large-scale energy systems!

Energy demand

Technologies

Fossils and renewablesInvestment and O&M cost

Efficiencies, emissionsStorage

Resources

Cost & emissionsYearly availability

Energy Strategy

Technology sizing (F) &operation (Ft)

Centralized vs. decentralizedheat supply (%Dhn)

Public vs. private mobility (%Public)

Freight rail vs. road (%Rail)

Optimization

Minimize

subject to:- mass & energy balance- storage

•  Energy-based model!•  “Snapshot” model: optimization of the energy system in a future target year!•  Simplified yet complete energy system: inclusion of heating and mobility!•  Multiperiod formulation: seasonality of demand and energy storage!•  Concise structure and low computational time à uncertainty applications!

Page 39: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 39!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Modeling for uncertainty!" "Case study: the Swiss energy system!

Resources

Legend

Inputs

OptionalInputs

Outputs

Natural Gas [GW]NG (CCS) [GW]

Diesel [GW]Gasoline [GW]

Electricity [GW]

Coal [GW]

LNG [GW]

Oil [GW]Uranium [GW]

Hydrogen [GW]Coal (CCS) [GW]

Public Mobility [Mpkm/h]Private Mobility [Mpkm/h]

Freight Road [Mtkm/h]

Freight Rail [Mtkm/h]

Wood [GW]Waste [GW]

Heat Low T DHN [GW]Heat Low T Decen [GW]Heat High T [GW]

Wood

Waste

Uranium

Natural Gas

Coal

Oil

Gasoline

Diesel

Elec import

Hydrogen

Demand

End-use energy

demand

%Dhn

1 - %Dhn

%Public

1 - %Public

%Rail

1 - %Rail

Electricity production

UltraSupercritical

IGCC

CCGT

Nuclear

PV

Wind

Hydro Dams

Hydro River

Geothermal

Private Mobility

Gasoline Car

Diesel Car

NG Car

Hybrid

Electric Car

Fuel Cell Car

PHEV

Public Mobility

Diesel Bus

Hybrid Bus

NG Bus

Fuel Cell Bus

Trolley Bus

Train/Metro

Deep Geo

Industrial Heat

Elec. heat

BoilerCHP

Heat PumpCHP

Boiler

Heat Pump

CHP

Fuel Cell

Solar Th.

Elec. Heat

Export

TrainTruck

Freight

Gasificationto SNG

Pyrolysis

Electrolysis

Reforming

Gasification

PowerToGas

GasToPower

Other technologies

Hydro Dams LNG

Storage

Decentralized Heat

Centralized Heat (DHN)

Boiler

•  20-year time horizon!•  Monthly resolution!•  Additional constraints for CH!•  Model complexity:!

•  1633 decision variables!•  118 binaries!•  56 integers!•  Solved in 0.25”!

Page 40: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 40!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Modeling for uncertainty!" "Model validation: Switzerland in 2011!

35.94

9.24

6.00

12.92

0.43

4.18

25.44

0.13

2.59

25.56

0.07

16.60

14.73

1.66

0.150.31

0.03

13.67

1.75

0.18

44.16

2.25

8.11

2.160.90

4.40

42.31

1.31

5.76

7.03

3.56

0.39

4.02

1.093.730.28

56.09

0.72

14.77

0.424.64

Gasoline

Diesel

Biofuels

Electricity

Nuclear

Wind

Hydro Dams

Hydro River

Coal

Solar

Geothermal Loss DHN

Mob priv

Freight

Mob public

Heat LT Dec

Elec

Waste

Oil

NG

Wood

Boilers

Heat HT

Elec demand

Exp & Loss

Heat LT DHNDHNCHP

HPs

Sources:!- Refs. [78-83]!

Page 41: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 41!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Modeling for uncertainty!" "Model validation: Switzerland in 2011!

Sources:!- Refs. [78-83]!

1.2. Case study: the Swiss energy system in 2035

Table 1.4 – Model validation: MILP model output vs. actual 2011 values for the Swiss energy system.Values for the Swiss energy system in 2011 are taken from [78, 79, 80, 81, 82, 83] unless otherwiseindicated. More details are provided in Appendix A.7.

Actual 2011 MILP ¢ Units

PrimaryEnergyConsumption

Gasoline 35.94 37.36 1.42 TWhDiesel 28.16 26.16 -2.00 TWhNG 30.05 28.40 -1.65 TWhElec. imports 2.59 2.76 0.17 TWhCoal 1.66 1.43 -0.23 TWhSolar 0.46 0.48 0.02 TWhGeothermal 0.03 0.02 -0.01 TWhWaste 15.41 10.65 -4.76 TWhOil 44.34 46.20 1.86 TWhWood 10.36 9.32 -1.04 TWhTotal 169.0 162.8 -6.21 TWh

TechnologiesOutput

Boilers 71.59 72.53 0.94 TWhCHP 9.06 8.58 -0.48 TWhHPs 4.02 4.23 0.21 TWh

GHG emissions (fuels) 47.51a 46.92 -0.59 MtCO2-eq.

InstalledTechnologies

HPsInstalled units 191.8 160.6 -31.2 kUnitsTotal 2.87 1.66 -1.21 GWth

CHPb Installed units 41 51 10 UnitsTotal 0.96 1.02 0.06 GWth

a Total GHG emissions following the Kyoto protocol [84], removing the direct non-energy related emissions fromindustrial processes.

b Large CHP installation (> 1 MW). 2011 Data for HPs and CHP in [78]

The results are reported in Table 1.4. In terms of energy consumption, the MILP offers a good

approximation of the actual 2011 values. The lower values of estimated primary energy consumption

are due to the fact that for electricity, heat and CHP technologies, the conversion efficiencies used for

the year 2035 are also used for the validation. This difference is mostly relevant in the case of waste.

Other differences are due to the fact that the MILP does not account for some minor contributions,

e.g. the use of nuclear waste heat for district heating (DH) or the amount of heat classified as “other

renewables” in the Swiss reports.

The total GHG emissions from fuel combustion in 2011 were 50 MtCO2-eq., which includes 2.49

MtCO2-eq. due to direct non-energy related emissions from industrial processes [84]. This number

is accurately estimated by the model.

The proposed MILP formulation aims at offering a representation of the energy balance of the

country. This means that, especially with a monthly resolution as in the case study, it does not aim

at obtaining an accurate estimate of the installed capacity of the different technologies. However,

29

Reasonable trade-off between time and accuracy, compatible with the level of detail of available data. !

Page 42: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 42!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Uncertainty characterization!" "The method!

Uncertainty

ranges

Uncertainty characterization

Parameters

1. Preliminary screening

and grouping

2. Uncertainty

characterization

criteria

3. Calculation of

the uncertainty range

Page 43: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 43!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Global sensitivity analysis!" "First stage: factor fixing!

Goal: identifying non-influential parameters, i.e. parameters that can be fixed anywhere in their range of variation without significantly affecting the output of interest. !

Y = h(✓1, ✓2, . . . , ✓k)

The total effect sensitivity index of the i-th parameter is defined as:!

STi =E✓⇠i(V✓i(Y |✓⇠i))

V (Y )

Average of V(Y) if only θi is varying"

If STi = 0, then θi is non-influential. But, STi is expensive to calculate! !

Elementary effect (Morris) method[119][120][51]: !•  One-at-a-time GSA method!•  Discrete sampling: r “trajectories”, at every step only one of the k input varies of ±∆!•  Elementary Effect of the i-th input:!

Good proxy for STi!r (k+1) model runs (r = 15÷100)!

EEmij =

�Yj

�✓i

�✓i

�✓j

µ⇤ij =

1

r

rX

m=1

|EEmij |

Page 44: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 44!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Global sensitivity analysis!" "Second stage: factor prioritization!

•  Goal: ranking influential parameters (<20) emerging from the first phase!•  Variance-based methods[121]!•  The first-order effect sensitivity index of the i-th parameter is defined as:!

Si =V✓i(E✓⇠i(Y |✓i))

V (Y )

Reduction of V(Y) !if fixing only θi"

•  Si in [0;1]. If Si à 1, then θi is very influential!•  n(k+2) model runs, with n = x100-x1000!

The calculation of both the first-order (S) and total effect (ST) sensitivity indices by variance-based methods offers a good, synthetic characterization of the sensitivity pattern of a model. !

Page 45: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 45!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Uncertainty characterization!" "Case study: III. Calculation of the range!

-60%! -40%! -20%! 0%! 20%! 40%! 60%! 80%! 100%! 120%! 140%!

c_inv (nuclear)!c_op (import)!c_inv (geothermal)!c_inv (hydro)!i_rate!c_maint !c_inv (new)!c_inv (DHN)!avail!eff (new & customized)!lifetime (all)!f_max!c_inv (thermal)!c_inv (wind)!c_inv (mature)!eff (new & standard)!eff (mature & customized)!c_p_t!end_uses_year (ind.)!end_uses_year (comm.)!eff (mature & standard)!end_uses_year (res.)!end_uses_year (trans)!c_op (local)!c_p!% elec losses!

Uncertainty ranges are significantly different!!But, does this impact the results?!

Page 46: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 46!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Global sensitivity analysis!" "Does uncertainty characterization matter in energy planning?!

Obtained ranges vs.!±20% uncertainty for all parameters!

c maint,%

c op(N

G)

i rate

endU

ses

year

(HEA

T LT

SH,

HH)

c inv(N

UCLE

AR)

endU

ses

year

(MOB

PAS

S, T

R)c p,t

(HYD

RO D

AM)

c p,t(H

YDRO

RIV

ER)

�(DE

C NG

BOI

LER,

NG)

endU

ses

year

(ELE

CTRI

CITY

,S)0

10

20

30

40

50

60

70

80

90

100

�* /�

* max

[%]

Y1 Total annual costY1 Total annual cost (± 20%)Y2 Investment decisionY2 Investment decision (± 20%)

Results:!•  Non-influential ! à influential!•  Influential ! à non-influential!

Page 47: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 47!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the objective: results!

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120

% C

CS

An

nu

al e

lect

rici

ty p

rodu

ctio

n [T

Wh

e/y]

Γobj

CCGT Coal U-S Coal IGCC PV Wind

Hydro dam Hydro river Geothermal Elec. imports Nuclear

Pyro (Elec.) SNG (Elec.) CHP (Elec.) % CCS

Page 48: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 48!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the objective: evaluation of the robust solutions!

Considering cost uncertainty in the objective corresponds to generating solutions in different scenarios à cannot compare robust objective values à simulation studies[124]!

First, select 15 representative solutions (k-medoids[156]

clustering)!

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100 110 120

An

nu

al r

esou

rce

con

sum

ptio

n [T

Wh

/y]

Γobj

Waste Diesel Natural Gas

Gasoline LFO Coal

Wood Uranium New hydro dam

Electricity imports Other renewables (no hydro) New hydro river

Then, simulation study:!Fix all decision variables (investment & operation), simulate 10000 times on all cost parameters (entire range)!

Page 49: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 49!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the objective: evaluation of the robust solutions!

•  Test 1: robust à lower maximum cost, higher average, lower standard deviation!•  Medium protection levels à more stability and protection against worst-case!

0 6 7 8 9 14 19 27 30 37 44 56 68 91 200� obj

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1R

atio

vs.

dete

rmin

istic

� ������

� ��� ���

��

� � ��

Deterministic = 1!

Page 50: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 50!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints!

Chapter 3. Global sensitivity analysis

non-influential parameters can be excluded in the first stage, reducing the problem size for the

more computationally expensive second stage. Second, considering all parameters in the analysis

is crucial. Figure 3.2 shows the risk of an arbitrary exclusion of parameters from the analysis:

parameters which are commonly considered as fixed assumptions in energy models, and whose

uncertainty is therefore seldom investigated, emerge as very impacting. Third, when dealing with

optimization models, the outputs of interest for the GSA should be carefully defined. Selecting the

value of the objective as an output of interest is a natural but often incomplete choice, as some

parameters can have a strong influence on the objective but a negligible influence on other key

decision variables.

Furthermore, the GSA results offer a qualitative ranking of the importance of the different parameter

categories. This is shown in Table 3.3, in which the average of µ§ is calculated for the different types

of parameters with respect to the two outputs of interest. The economic parameters emerge as the

most impacting. In particular, the cost of resources (cop) is the second most impacting parameter

type with respect to the investment decisions (Y2) and the third most impacting on the objective

value (Y1), after the assumption of the O&M cost of technologies and the interest rate.

Table 3.3 – Results of the EE method: average of µ§ (µ§) for the different parameter categories withrespect to the objective value (Y1) and the investment decision (Y2). Parameter categories are rankedbased on µ§

Y1.

Rank Category µ§Y1

µ§Y2

1 cmaint,% 4.749E-01 3.535E+002 irate 4.466E-01 3.124E+003 cop 1.063E-01 3.421E+004 cinv 2.162E-02 4.622E-015 avail 1.200E-02 1.185E+006 cp,t 9.887E-03 7.040E-017 endUsesyear 7.834E-03 4.820E-018 n 3.581E-03 2.802E-019 ¥ 2.428E-03 3.540E-01

10 Other 1.894E-03 2.984E-0111 %loss 6.157E-04 3.681E-0112 fmax 4.953E-04 5.440E-0113 cp 5.601E-05 1.584E-01

58

GSA results:!

Robust optimization works “constraint-wise”. The objective function is a “special” constraint. The difference with the other constraints is that cost uncertainty does not affect feasibility, e.g. the risk of not meeting demand.!

Page 51: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 51!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints!

Uncertainty in the constraints is seldom addressed. Why?!1.  Same parameters appearing in multiple constraints[131]!

2.  Most constraints contain very few (even only one) uncertain parameter[157], e.g. a model has N constraints, each of them with one uncertain parameter à N control parameters Γi ∈ [0;1] à combinatorial problem    

How to address these issues?!1.  Model formulation (modeling for uncertainty)!2.  Formulation + idea by Babonneau et al. [153]:!

ACT(i )°AF(i )£CAP(i ) ∑ 0 8i = 1, . . . , N

Energy carried through!

“channel” i" Availability of the channel

(uncertain)"

Channel capacity"

Page 52: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 52!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints: the robust formulation by Babonneau et al.[153]!

ACT(i )°AF(i )£CAP(i ) ∑ 0 8i = 1, . . . , N

Energy carried through!

“channel” i" Availability of the channel

(uncertain)"

Channel capacity"

Babonneau et al.[153]: “we are interested in protecting the total energy supply [...], not that of each channel separately”!

NX

i=1

°ACT(i )°AF(i )£CAP(i )

¢∑ 0

The idea is adding a redundant constraint summing over the constraint indices and to “robustify” this new constraint à instead of N Γi ∈ [0;1], this gives one Γ ∈ [0;N]. The problem becomes tractable!"

Page 53: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 53!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints: application to the case study!

How can the method be applied to the case study?!X

t2T

Ft(i , t )t

op

(t ) ∑ avail(i ) 8i 2 RES 2 parameters  

Ft( j , t ) ∑ F( j )cp,t( j , t ) 8 j 2 TECH ,8t 2 T 60 uncertain parameters  X

i2RES[TECH\STOf (i , l )F

t

(i , t )+X

j2STO(Sto

out

( j , l , t )°Sto

in

( j , l , t ))°EndUses(l , t ) = 0 8l 2 L,8t 2 T

52 + 15 = 67 uncertain parameters  

Summing over the indices means that the summed parameters can share the same uncertainty budget. Need of case by case evaluation!"

Page 54: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 54!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints: application to the case study!

How can the method be applied to the case study?!X

t2T

Ft(i , t )t

op

(t ) ∑ avail(i ) 8i 2 RES

Ft( j , t ) ∑ F( j )cp,t( j , t ) 8 j 2 TECH ,8t 2 T

X

i2RES[TECH\STOf (i , l )F

t

(i , t )+X

j2STO(Sto

out

( j , l , t )°Sto

in

( j , l , t ))°EndUses(l , t ) = 0 8l 2 L,8t 2 T

•  Application of the method not always possible/meaningful!•  Need to carefully evaluate over which sets summation can be performed "

Not possible/meaningful!

Sum over T à Γcp,t !

Transform into inequality and sum over L à Γlb!

When it is possible..!•  Aggregation of constraints allow tractability à few control parameters!•  Importance of having a concise deterministic model formulation (compact definition

of sets and constraints)"

Page 55: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 55!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints: evaluation of the robust solutions!

Constraints à feasibility!Price of Robustness (PoR)[62]: by increasing protection against worst case, constraint violations (e.g. risk of not meeting demand) are reduced at the price of a higher objective value à simulations with no uncertainty in the objective (Γobj = 0)!

Focus of Γlb à Two sets of simulations:!1.  First test (to verify theory): fix all decision variables (investment & operation),

simulate on both efficiency and demand (entire range)!2.  Second test: Fix only investment decision (free resources), simulate on both

efficiency and demand (entire range)!

Page 56: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 56!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints: evaluation of the robust solutions!

•  Test 1: in line with theory à no need of full protection!

0

200

400

600

800

1000

1200

Pric

e of

rob

ustn

ess (

PoR

)

a)

0 1 2 3 4 5 6 7 8 20� lb

0

10

20

30

40

50

60

70

80

90

Con

stra

int v

iola

tions

[%]

b)

Page 57: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 57!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Uncertainty in the constraints: evaluation of the robust solutions!

0

200

400

600

800

1000

1200

Pric

e of

rob

ustn

ess (

PoR

)

a)

0 1 2 3 4 5 6 7 8 20� lb

0

10

20

30

40

50

60

70

80

90

Con

stra

int v

iola

tions

[%]

b)

•  Test 1: in line with theory à no need of full protection!•  Test 2: in real situations, infeasibility disappears at very low protection levels!•  Overall, uncertainty in the constraints, which is often overlooked, can be very

impacting.!

Page 58: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 58!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Decision-making: comparison with stochastic programming!

“Traditional” approach, it multi-stage nature makes it “appropriate for long-term [...] planning [...], since it does not fix all the decisions at the initial point of the planning horizon as it allows recourse decisions in future times to adapt in response to how the uncertainties are revealed” [36]"

Sources:!- Ref. [57]!

min cTx+E√[min q(!)T

y(!)]

s.t. Ax = b

T(!)x+Wy(!) =Ø(!)

x,y(!) 2R+

First stagehere-and-now

x

Second stagewait-and-see

y (�)

� (�)

Planning time horizon

Stochastic version of the model using DET2STO[162]:!•  First-stage (investment) vs. second-stage decision variables (operation)!•  3 values for the parameters (low-medium-high) à 3θ scenarios!•  Solving time: θ = 5 à >1h; θ = 6 à >3d; LP: θ >= 8 à >8GB RAM!•  Chosen θ = 7 parameters (cop and irate) à 2.4 million variables LP (3h)!

Page 59: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 59!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Decision-making: comparison with stochastic programming!

Simulation study to compare stochastic vs robust:!•  All uncertain parameters à check feasibility and optimality!•  Only investment decisions are fixed, operation is left free!

Optimal investment strategy"

Chapter 4. Robust optimization

Table 4.5 – Optimal investment strategy of the stochastic programming problem.

Technology Installed size Units

ElectricityProduction

CCGT 0.52 [GWe]Coal 0 [GWe]PV 0 [GWe]Wind 5.30 [GWe]New Dam 0.44 [GWe]New River 0 [GWe]

HeatProduction

Boilers 22.0 [GWth]CHP 1.31 [GWth]Elec. HPs 2.18 [GWth]Solar Th. 0 [GWth]Deep Geo 0.77 [GWth]%Dhn 0.3 [-]

0.4

0.6

0.8

1

1.2

Rat

io v

s. de

term

inist

ic

a)

� ������

� ��� ���

� � �

�obj

= 0, �lb

= 0 �obj

= 0, �lb

= 2 �obj

= 30, �lb

= 2 �obj

= 200, �lb

= 2 Stochastic10-2

100

Con

stra

int v

iola

tions

[%] b)

Figure 4.14 – Simulation results comparing stochastic vs. representative robust solutions: a) mean (x),standard deviation (æ), x +3æ and for the objective value and b) frequency of constraint violations.Reference (on the left y-axis) is the deterministic solution (Table 4.2). Representative robust solutionsare detailed in Table 4.4. Stochastic solution (on the right y-axis) is detailed in Table 4.5. Solutions aresimulated on all uncertain parameters (sampled from entire uncertainty range) and only investmentdecisions are fixed (free resources).

102

Page 60: Uncertainty: Sensitivity Analysis & Robust Optimization · 2018-07-19 · Uncertainty: Sensitivity Analysis & Robust Optimization! October 24th, 2017! 10! Introduction ¦ GSA ¦ Robust

Uncertainty: Sensitivity Analysis & Robust Optimization!Stefano Moret, PhD! October 24th, 2017! 60!

Introduction ¦ GSA ¦ Robust Optimization ¦ Conclusions!

"Robust optimization!" "Decision-making: comparison with stochastic programming!

0.4

0.6

0.8

1

1.2

Rat

io v

s. de

term

inist

ic

a)

� ������

� ��� ���

� � �

�obj = 0, �lb = 0 �obj = 0, �lb = 2 �obj = 30, �lb = 2 �obj = 200, �lb = 2 Stochastic10-2

100

Con

stra

int v

iola

tions

[%] b)

•  Stochastic vs deterministic: +1.3% mean, -15% stdev, high constraint violations !•  Robust: higher average, much lower stdev, much lower against constraint violations!•  Robust can be a good alternative to stochastic for big problems!