uncertainty quantification for ensemble models

76
Ensemble Modeling DAVID SWIGON UNIVERSITY OF PITTSBURGH

Upload: others

Post on 29-Apr-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Uncertainty Quantification for ensemble models

Ensemble ModelingDAVID SWIGON

UNIVERSITY OF PITTSBURGH

Page 2: Uncertainty Quantification for ensemble models

Biomedical systemsGOAL: individualized medicine โ€“ designing patient-specific treatment

Model of the disease

ODEPDESDE

Calibration with patient data

MLBootstrapBayesian

Risk assessment

CoxTreatment design

SimulationsAdjustment

Optimal control

HEALTH

Page 3: Uncertainty Quantification for ensemble models

Problems with biomedical model calibrationModel complexity

โ—ฆ Large number of variables and parameters, no symmetries

โ—ฆ Complex or unknown interactions

Data scarcityโ—ฆ Unobserved variables

โ—ฆ Insufficient time resolution

โ—ฆ Small number of trajectories

Data inhomogeneityโ—ฆ Variability of parameters across subjects

โ—ฆ Multiple subjects combined in one data set

โ—ฆ Data aggregation

Quality

QuantityHomogeneity

DATA TRADEOFF

Page 4: Uncertainty Quantification for ensemble models

ExamplesINFLUENZA BACTERIAL PNEUMONIA

Time courses for 16 human volunteers infected by Influenza A/Texas/91 (H1N1) [Hayden , JAMA, 96]

Data from MF1 mice subjects infected by D39 strain of pneumococcus, data are available for various other mice and pneumonia strains [Kadioglu et al., Inf. and Immun., 2000]:

Page 5: Uncertainty Quantification for ensemble models

INFLUENZA

Intranasal infection of 136 Balb/c mice by Influenza virus A/PR/8/34 (H1N1) [Toapanta, Ross, Morel]

20 variables, 97 parameters, ODE model

Page 6: Uncertainty Quantification for ensemble models

Dynamical model Data

Error minimization

Parameter estimates

IHVI

HVH

cVpIV

โˆ’=

โˆ’=

โˆ’=

0.806)16.7,,101.33 0.0347,, 0.0373(),,,,( -50 =optcpV

0)0(

104)0(

)0(

8

0

=

=

=

I

H

VV kVk skVkV == )(,)(

=

โˆ’8

12

2

,,,,

))((min

0 k k

k

cpV s

VkV

Traditional modeling

Page 7: Uncertainty Quantification for ensemble models

Questions

โ€ข Is there a parameter set/model that reproduces the data exactly?

โ€ข Is the optimal parameter set unique?

โ€ข How sensitive is the optimal parameter set to data, their uncertainty, and assumptions about error distribution?

โ€ข How well does the model fit the data? Is it even appropriate? Can the model be ruled out at the given data uncertainties?

โ€ข How large is the region in data space for which the model is appropriate?

โ€ข Since the data consist of multiple subjects, is the model appropriate and how do we know?

Answer

โ€ข Analyze more closely the relation between the system (parameters) and its solutions.

โ€ข Use probabilistic methods to describe the cohort of subjects or the parameter estimation uncertainty

Page 8: Uncertainty Quantification for ensemble models

Ensemble model

Distribution describesโ—ฆ Variability of parameters across cohort of subjects

โ—ฆ Uncertainty in determination of parameters from noisy data

Ensemble modelingDeterministic model

ParametersMechanismsTime points

Trajectory data Solution map

Distribution of data Parameters

Distribution of MechanismsTime points

Page 9: Uncertainty Quantification for ensemble models

ODE ensemble modelInitial value problem:

แˆถ๐‘ฅ = ๐‘“ ๐‘ฅ, ๐‘Ž , ๐‘ฅ 0 = ๐‘

Solution: ๐‘ฅ = ๐‘ฅ ๐‘ก; ๐‘Ž, ๐‘

Deterministic solution map: ๐‘ฆ = ๐น ๐‘Ž = (๐‘ฅ ๐‘ก1, ๐‘Ž , โ€ฆ , ๐‘ฅ ๐‘ก๐‘›, ๐‘Ž )

Parameter distribution - random variable ๐ด, density ๐œŒ(๐‘Ž)

Data distribution - random variable ๐‘Œ = ๐น ๐ด , density ๐œ‚(๐‘ฆ)

Value of a variable at fixed time: ๐‘‹๐‘ก = ๐‘ฅ(๐‘ก; ๐ด)

Page 10: Uncertainty Quantification for ensemble models

0.806)16.7,,101.33 0.0347,, 0.0373(),,,,( -50 =optcpV

V H I

deterministic

ensemble

IHVI

HVH

cVpIV

โˆ’=

โˆ’=

โˆ’=

๐‘ฆ = (๐‘‰ 1 , โ€ฆ , ๐‘‰ 8 )

๐‘Ž = (๐‘‰0, ๐›ฝ, ๐‘, ๐‘, ๐›ฟ)

Influenza model

Page 11: Uncertainty Quantification for ensemble models

Constructing ensemble models

Distribution of data Distribution of Parameters

(1) Inverse map of data sampleโ—ฆ Requires computation of ๐นโˆ’1, solution of the ODE inverse problem

(2) Direct sampling of parameter distributionโ—ฆ Requires formula for parameter density

Sample of data{๐‘ฆ๐‘—}

Sample of Parameters {๐‘Ž๐‘—}

๐‘Ž๐‘— = ๐นโˆ’1(๐‘ฆ๐‘—)

Page 12: Uncertainty Quantification for ensemble models

ODE modelsInitial value problem with matrix parameter ๐ด :

แˆถ๐‘ฅ = ๐‘“ ๐‘ฅ, ๐ด , ๐‘ฅ 0 = ๐‘

INVERSE PROBLEM: Determine the function ๐‘“ . , . and/or parameters ๐ด, ๐‘ from data about trajectory(ies) ๐‘ฅ(. ; ๐ด, ๐‘).

FORWARD PROBLEM๐‘“ . , . , ๐ด, ๐‘ ๐‘ฅ(. ; ๐ด, ๐‘)

INVERSE PROBLEM

Page 13: Uncertainty Quantification for ensemble models

Inverse problem

Mathematical analysisโ—ฆ Existence, uniqueness/identifiability

โ—ฆ Robustness (existence/uniqueness on open sets)

โ—ฆ Construction of the inverse map (numerical algorithm)

โ—ฆ Maximal permissible uncertainty

โ—ฆ Prediction uncertainty

๐‘“ . , . , ๐ด, ๐‘ ๐‘ฅ(. ; ๐ด, ๐‘)INVERSE PROBLEM

Page 14: Uncertainty Quantification for ensemble models

Existing results on ODE inverse problemObservability theory

โ—ฆ Search for conditions that guarantee identifiability of the system state (initial conditions) from observed trajectory (can be extended to parameters)

โ—ฆ Kalman (1963) formulated observability conditions for linear dynamical systems

โ—ฆ Griffith & Kumar (1971), Kou, Elliot, & Tarn (1973) formulated sufficient conditions for observability of nonlinear dynamical systems

โ—ฆ Identification of analytic systems with ๐‘ parameters requires at most 2๐‘ +1 observations [Aeyels 1981; Sontag 2002]

Polynomial systemsโ—ฆ Reconstruction of polynomial fields from known algebraic attractors

[Sverdlove 1980,81]

โ—ฆ Analysis of all possible topologically invariant planar quadratic dynamical systems [Perko textbook]

Page 15: Uncertainty Quantification for ensemble models

Existing results on inverse problemAlgorithms for finding inverse

โ—ฆ Numerical simulation combined with nonlinear least squares fitting

โ—ฆ Multiple shooting combined with Gauss-Newton minimization [Bock 1983; Lee]

โ—ฆ Collocation methods using basis function expansion, combined with NLS fitting [Varah 1982; Ramsey et al 2007]

โ—ฆ Contraction map and โ€˜collage methodโ€™ [Kunze et al. 2004]

โ—ฆ Parameter-free approach (using Takens map) [Sauer, Hamilton, โ€ฆ]

โ—ฆ Compressed sensing

Probabilistic approachesโ—ฆ Transformation of measure

โ—ฆ Numerical simulation combined with Bayesian inference

โ—ฆ Bayesian integration of ODEs [Chkrebtii et al.]

Page 16: Uncertainty Quantification for ensemble models

Identifiability from single complete trajectorySystem: แˆถ๐‘ฅ = ๐‘“(๐‘ฅ, ๐ด)

Initial condition: ๐‘ฅ 0 = ๐‘

Solution: ๐‘ฅ ๐‘ก; ๐ด, ๐‘

๐‘ฅ ๐‘ก; ๐ด, ๐‘

๐‘ฅ ๐‘ก; ๐ต, ๐‘

๐ด

๐ต

Page 17: Uncertainty Quantification for ensemble models

๐‘ฅ ๐‘ก; ๐ด, ๐‘ = ๐‘ฅ ๐‘ก; ๐ต, ๐‘๐ด

๐ต

๐ถ

๐ท

๐‘ฅ ๐‘ก; ๐ท, ๐‘๐‘ฅ ๐‘ก; ๐ถ, ๐‘

๐‘ฅ ๐‘ก; ๐ถ, เดค๐‘ = ๐‘ฅ ๐‘ก; ๐ท, เดค๐‘

๐‘ฅ ๐‘ก; ๐ด, ๐‘ = ๐‘ฅ ๐‘ก; ๐ต, ๐‘๐ด

๐ต

๐ถ

๐ท

๐‘ฅ ๐‘ก; ๐ท, ๐‘๐‘ฅ ๐‘ก; ๐ถ, ๐‘

๐‘ฅ ๐‘ก; ๐ถ, เดค๐‘ = ๐‘ฅ ๐‘ก; ๐ท, เดค๐‘

Page 18: Uncertainty Quantification for ensemble models

DefinitionsSystem แˆถ๐‘ฅ = ๐‘“(๐‘ฅ, ๐ด) is

Identifiable in ฮฉ โŠ† โ„๐‘›ร—๐‘š iff for all ๐ด, ๐ต โˆˆ ฮฉ with ๐ด โ‰  ๐ต there exists ๐‘ โˆˆ โ„๐‘› such that ๐‘ฅ ๐‘ก; ๐ด, ๐‘ โ‰  ๐‘ฅ(๐‘ก; ๐ต, ๐‘) for some ๐‘ก > 0.

Identifiable in ฮฉ โŠ† โ„๐‘›ร—๐‘š from ๐‘ iff for all ๐ด, ๐ต โˆˆ ฮฉ with ๐ด โ‰  ๐ต it holds that ๐‘ฅ ๐‘ก; ๐ด, ๐‘ โ‰  ๐‘ฅ(๐‘ก; ๐ต, ๐‘) for some ๐‘ก > 0.

Identifiable in ฮฉ โŠ† โ„๐‘›ร—๐‘š from ๐‘ฅ ๐‘ก; ๐ด, ๐‘ iff there exists no ๐ต โˆˆ ฮฉ with๐ด โ‰  ๐ต such that ๐‘ฅ ๐‘ก; ๐ด, ๐‘ = ๐‘ฅ(๐‘ก; ๐ต, ๐‘) for all ๐‘ก.

Unconditionally identifiable in ฮฉ โŠ† โ„๐‘›ร—๐‘š iff for all ๐ด, ๐ต โˆˆ ฮฉ with ๐ด โ‰ ๐ต and all ๐‘ โˆˆ โ„๐‘› it holds that ๐‘ฅ ๐‘ก; ๐ด, ๐‘ โ‰  ๐‘ฅ(๐‘ก; ๐ต, ๐‘) for some ๐‘ก > 0.

Page 19: Uncertainty Quantification for ensemble models

Results for linear system

Theorem [SRS14]: System แˆถ๐‘ฅ = ๐ด๐‘ฅ is identifiable in โ„๐‘›ร—๐‘š from ๐‘ฅ ๐‘ก; ๐ด, ๐‘ if and only if the orbit ๐›พ(๐ด, ๐‘) = {๐‘ฅ ๐‘ก; ๐ด, ๐‘ , ๐‘ก โˆˆ โ„} is not confined to a proper subspace of โ„๐‘›.

Proof sketch: By theorem of Astrom, identifiability from b is equivalent to det[๐‘ ๐ด๐‘ โ€ฆ |๐ด๐‘›โˆ’1๐‘] โ‰  0 . It suffices to show that this condition is equivalent to the orbit ๐›พ(๐ด, ๐‘) not being confined to a proper subspace of โ„๐‘›.

Page 20: Uncertainty Quantification for ensemble models

[SRS14]

Red trajectories are confined to linear subspaces of the flux space => they do not identify the system

Examples: Inverse problem solution is unique only for certain trajectories/data.

แˆถ๐‘ฅแˆถ๐‘ฆแˆถ๐‘ง=

โˆ’0.2 โˆ’1 01 โˆ’0.2 00 0 โˆ’0.3

๐‘ฅ๐‘ฆ๐‘ง

แˆถ๐‘ฅแˆถ๐‘ฆแˆถ๐‘ง=

โˆ’1 โˆ’3 20 โˆ’4 20 0 โˆ’2

๐‘ฅ๐‘ฆ๐‘ง

แˆถ๐‘ฅแˆถ๐‘ฆแˆถ๐‘ง=

โˆ’1 1 00 โˆ’1 00 0 โˆ’1

๐‘ฅ๐‘ฆ๐‘ง

๐‘ฅ๐‘ฆ

๐‘ง

Page 21: Uncertainty Quantification for ensemble models

Result for linear-in-parameter system

Trajectory is confined => System is not identifiable! System with the same trajectory:

โˆ’

โˆ’=

y

xy

x

y

x

310

012

=

1

1b

โˆ’โˆ’

โˆ’+โˆ’=

y

xy

x

y

x

31

12

Theorem [SRS14]: System แˆถ๐‘ฅ = ๐ด๐‘”(๐‘ฅ) is identifiable in โ„๐‘›ร—๐‘š from ๐‘ฅ ๐‘ก; ๐ด, ๐‘ if and only if the image ๐‘”(๐›พ(๐ด, ๐‘)) of the orbit ๐›พ(๐ด, ๐‘) is not confined to a proper subspace of โ„๐‘š.

๐‘ฅ

๐‘ฅ๐‘ฆ

๐‘ฆ

Page 22: Uncertainty Quantification for ensemble models

Result for confined trajectory

Theorem [SRS14]:Suppose that ๐‘‰ is a proper linear subspace โ„๐‘› invariant under A. The following are equivalent(i) ๐‘‰ is the minimal A-invariant subspace such that ๐‘ โˆˆ ๐‘‰ .(ii) The orbit of ๐‘ฅ(๐‘ก; ๐ด, ๐‘) is not confined to a proper subspace of ๐‘‰(iii) There exists no ๐ต โˆˆ โ„๐‘›ร—๐‘› such that ๐ต|๐‘‰ โ‰  ๐ด|๐‘‰ and ๐‘ฅ ๐‘ก; ๐ด, ๐‘ = ๐‘ฅ(๐‘ก; ๐ต, ๐‘).

โˆ’

โˆ’

โˆ’โˆ’

=

200

240

231

A

=

1

0

0

,

0

1

1

spanV

โˆ’

โˆ’

=

1

1

1

b

โˆ’

โˆ’

โˆ’โˆ’

=

100

020

324

][ BA

=

0

1

0

,

1

0

0

,

0

1

1

B

โˆ’

โˆ’

=

13

12

11

00

20

24

][

BB

โˆ’โˆ’

+โˆ’โˆ’

โˆ’โˆ’

=

2

24

24

2323

33133313

1313

B

๐ด แ‰š๐‘‰

Page 23: Uncertainty Quantification for ensemble models

Numerical determination of confinementNumerical errors (roundoff) can obscure the confinement of trajectory represented as a collection of data points

Use Singular Value Decomposition

๐‘‹ = ๐‘ˆ๐‘†๐‘‰๐‘‡

โ—ฆ Dimension of confining subspace = ๐‘Ÿ๐‘Ž๐‘›๐‘˜ ๐‘‹ = #{๐‘†๐‘—๐‘— > 0}

โ—ฆ Numerical rank: ๐‘Ÿ๐‘Ž๐‘›๐‘˜๐‘›๐‘ข๐‘š ๐‘‹ = #{๐‘†๐‘—๐‘—/max๐‘—

๐‘†๐‘—๐‘— > ํœ€๐‘ก๐‘œ๐‘™}

Page 24: Uncertainty Quantification for ensemble models

Identification from discrete data on a single trajectoryDiscrete data: ๐‘‹ = ๐‘ฅ0, ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› , ๐‘ฅ๐‘– = ๐‘ฅ(๐‘ก๐‘–; ๐ด, ๐‘)

Identifiability from complete trajectory does not imply identifiability from discrete data.

โˆ’+

โˆ’

โˆ’โˆ’=

01

102

2/34

42/3rA

โˆ’=

1458.01689.0

1689.01458.0Ae

Page 25: Uncertainty Quantification for ensemble models

Identification from discrete data on a single trajectoryGOAL:

Partition the data space into domains in which โ—ฆ the system is identifiable from data

โ—ฆ the system is robustly identifiable (on an open neighborhood)

โ—ฆ the system is identifiable to within countable number of alternatives

โ—ฆ the system has a continuous family of compatible parameters

โ—ฆ there is no parameter set corresponding to the data

โ—ฆ the system has a specific dynamical behavior (stable, saddle, โ€ฆ)

Page 26: Uncertainty Quantification for ensemble models

Inverse map for linear systemsDiscrete data (uniformly spaced): ๐‘‘ = (๐‘ฅ0, ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›)

Solution map: ๐‘ฅ๐‘˜ = ๐‘’๐ด๐‘˜๐‘

ALGORITHM

Step 1: Let ๐‘‹๐‘˜ = ๐‘ฅ๐‘˜ ๐‘ฅ๐‘˜+1 โ€ฆ ๐‘ฅ๐‘›+๐‘˜โˆ’1 , ๐‘˜ = 0,1

Step 2: Compute ฮฆ = ๐‘‹1๐‘‹0โˆ’1

Step 3: Solve ๐‘’๐ด = ฮฆ

Existence and uniqueness of ๐ด derives from conditions for existence and uniqueness of real matrix logarithm [Culver 1966].

Page 27: Uncertainty Quantification for ensemble models

Robust existence & uniqueness

๐‘‘๐ด ฮฆ

๐‘ˆ

Page 28: Uncertainty Quantification for ensemble models

Robust existence & uniqueness

Theorem [SRS17]: There exists an open set ๐‘ˆ โŠ‚ โ„๐‘›ร—๐‘› containing ฮฆ such that for any ฮจ โˆˆ ๐‘ˆ the equation ๐‘’๐ด = ฮจ has a solution ๐ด โˆˆ โ„๐‘›ร—๐‘› iff(a) {๐‘ฅ0, ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›โˆ’1} are linearly independent and (b) ฮฆ has only positive real or complex eigenvalues.

Theorem [SRS17]: There exists an open set ๐‘ˆ โŠ‚ โ„๐‘›ร—๐‘› containing ฮฆ such that for any ฮจ โˆˆ ๐‘ˆ the equation ๐‘’๐ด = ฮจ has a unique solution ๐ด โˆˆ โ„๐‘›ร—๐‘› iff(a) {๐‘ฅ0, ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›โˆ’1} are linearly independent and (b) ฮฆ has ๐‘› distinct positive real eigenvalues.

Theorem [SRS17]: There exists an open set ๐‘ˆ โŠ‚ โ„๐‘›ร—๐‘› containing ฮฆ such that for any ฮจ โˆˆ ๐‘ˆ the equation ๐‘’๐ด = ฮจ does not have a solution ๐ด โˆˆ โ„๐‘›ร—๐‘› iff(a) {๐‘ฅ0, ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›โˆ’1} are linearly independent and (b) ฮฆ has at least one negative real eigenvalue of odd multiplicity.

Page 29: Uncertainty Quantification for ensemble models

Region of unique inverses

Let

Eigenvalues of ฮฆ are determined by ๐‘ฆ = ๐‘‹0โˆ’1๐‘ฅ๐‘›

Conditions on y that guarantee positive real eigenvalues have been worked out for arbitrary dimension [Gantmacher; Yang]

Example in 2D (regions of data which give unique inverse)

ฮฆ = ๐‘‹0โˆ’1ฮฆ๐‘‹0 = ๐‘‹0

โˆ’1๐‘‹1

ฮฆ =

0 0 0 โ‹ฏ ๐‘ฆ11 0 0 โ‹ฏ ๐‘ฆ20 1 0 โ‹ฏ ๐‘ฆ3โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ0 0 0 โ‹ฏ ๐‘ฆ๐‘›

Page 30: Uncertainty Quantification for ensemble models

๐‘ฅ1

๐‘ฅ0

== det,tr DT

๐‘ฅ2

Regions of stability for 2x2 systems

๐‘ฅ2๐‘ฅ2

Page 31: Uncertainty Quantification for ensemble models

Numerical error of identificationExact formula

ฮฆ = ๐‘‹1๐‘‹0โˆ’1

Numerical sensitivity of the inverse to errors in the data.

๐›ฟฮฆ

ฮฆโ‰ค ๐œ…(๐‘‹0)

๐›ฟ๐‘‹0๐‘‹0

+๐›ฟ๐‘‹1๐‘‹1

โ—ฆ Here โˆ™ is any matrix norm and ๐œ… ๐ถ = ๐ถ ๐ถโˆ’1 is the condition number of the matrix ๐ถ.

โ—ฆ Note that collinearity of vectors in ๐‘‹0 leads to a loss of accuracy.

Page 32: Uncertainty Quantification for ensemble models

kA

k xex =+1},...,,{10 njjj xxxd = bebAjxx k

k

Ajkj == ),;(

Identification from non-uniformly spaced data

Discrete data (non-uniformly spaced)

Lemma: Let ๐‘ฅ๐‘—๐‘˜ = ฮฆ๐‘—๐‘˜๐‘ where ๐‘—๐‘˜ are integers such that 0 = ๐‘—0 < ๐‘—1 < โ‹ฏ < ๐‘—๐‘›.

Let ๐‘‹0 = ๐‘ฅ๐‘—0 , ๐‘ฅ๐‘—1 , โ€ฆ , ๐‘ฅ๐‘—๐‘›โˆ’1 be invertible. Let ๐‘ฆ = ๐‘‹0โˆ’1๐‘ฅ๐‘—๐‘› be a vector with

entries ๐‘ฆ1, ๐‘ฆ2, โ€ฆ ๐‘ฆ๐‘›. If ฮฆ is diagonalizable, then ๐œ† is an eigenvalue of ฮฆ only if it is a root of the polynomial

๐‘๐‘ฆ ๐œ† = ๐œ†๐‘—๐‘› โˆ’ ๐‘ฆ๐‘›๐œ†๐‘—๐‘›โˆ’1 โˆ’โ‹ฏโˆ’ ๐‘ฆ2๐œ†

๐‘—1 โˆ’ ๐‘ฆ1

Page 33: Uncertainty Quantification for ensemble models

Identification from non-uniformly spaced dataALGORITHM

Step 1: Get ๐‘ฆ = ๐‘‹0โˆ’1๐‘ฅ๐‘—๐‘›

Step 2: Find all roots of ๐‘๐‘ฆ ๐œ†

Step 3: Choose a combination of n distinct roots and form ฮฆ.

Step 4: Compute vectors ๐‘ง๐‘—0 , ๐‘ง๐‘—1 , โ€ฆ , ๐‘ง๐‘—๐‘›โˆ’1 as ๐‘ง๐‘—0 = ๐‘’1 and ๐‘ง๐‘—๐‘˜+1 =ฮฆ๐‘—๐‘˜+1โˆ’๐‘—๐‘˜๐‘ง๐‘—๐‘˜.

Step 5: Compute ฮฆ = ๐‘ƒโˆ’1ฮฆ๐‘ƒ where P is such that ๐‘ƒ๐‘ฅ๐‘—๐‘˜ = ๐‘ง๐‘—๐‘˜ for ๐‘˜ =0,1, โ€ฆ , ๐‘› โˆ’ 1.

Step 6: Solve ๐‘’๐ด = ฮฆ .

Note: The variety of choices for ฮฆ may lead to non-uniqueness of parameter estimates.

Page 34: Uncertainty Quantification for ensemble models

Uncertainty analysisUncertain data: แˆš๐‘‘ = (๐‘ฅ0, ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘›)

Bounds on uncertainty: ๐ถ ๐‘‘, ํœ€ = { แˆš๐‘‘:max๐‘–,๐‘—

ฮ”๐‘ฅ๐‘–,๐‘— < ํœ€}

Neighborhood ๐ถ ๐‘‘, ํœ€ is called permissible for property P iff P is shared by all systems corresponding to the data แˆš๐‘‘ โˆˆ ๐ถ ๐‘‘, ํœ€ .

Value ํœ€๐‘ƒ > 0 is maximal permissible uncertainty for property P iff๐ถ ๐‘‘, ํœ€ is permissible for P for all 0 < ฮต < ํœ€๐‘ƒ, and ๐ถ ๐‘‘, วํœ€ is not permissible for P for any วํœ€ > ํœ€๐‘ƒ

P can beโ—ฆ Existence of inverse (unique or nonunique)

โ—ฆ Unique inverse

โ—ฆ Unique stable inverse

ํœ€

๐‘‘

๐ถ ๐‘‘, ํœ€

Page 35: Uncertainty Quantification for ensemble models

Results for linear systems

Theorem (lower bound): Let d be such that ฮฆ has n distinct positive eigenvalues

๐œ†1, ๐œ†2, โ€ฆ , ๐œ†๐‘›. Let ๐‘š1 =1

2min๐‘–<๐‘—

๐œ†๐‘– โˆ’ ๐œ†๐‘— , ๐‘š1 = min๐‘–๐œ†๐‘–, and

๐›ฟ๐‘ˆ = min{๐‘š1, ๐‘š2}. If 0 < ํœ€ โ‰ค ํœ€๐‘ˆ where

ํœ€๐‘ˆ =๐›ฟ๐‘ˆ

๐‘›(๐›ฟ๐‘ˆ + 1 + ฮ› ) ๐‘†โˆ’1 ๐‘‹0โˆ’1๐‘†

with ฮฆ = ๐‘†ฮ›๐‘†โˆ’1, then for any แˆš๐‘‘ โˆˆ ๐ถ(๐‘‘, ํœ€), เทฉฮฆ has n distinct positive eigenvalues.

Page 36: Uncertainty Quantification for ensemble models

Results for linear systems

Theorem (upper bound): Let d be such that ฮฆ has n distinct positive eigenvalues ๐œ†1, ๐œ†2, โ€ฆ , ๐œ†๐‘›, and let y be the last column vector of the companion

matrix form ฮฆ of ฮฆ. The smallest neighborhood ๐ถ(๐‘‘, ํœ€) that contains data แˆš๐‘‘ for

which companion matrix เทฉฮฆ has last column ๐‘ฆ has ํœ€ = ํœ€๐‘ˆ where

ํœ€๐‘ˆ =๐‘‹0(๐‘ฆ โˆ’ ๐‘ฆ) โˆž

๐‘ฆ 1 + 1

Page 37: Uncertainty Quantification for ensemble models

Permissible data uncertainty: Amount of measurement error that can be tolerated without altering inference qualitatively

Upper and lower bounds for linear systems.

แˆถ๐‘ฅ = ๐ด๐‘ฅ, ๐‘ฅ 0 = ๐‘

[SRS17]

Page 38: Uncertainty Quantification for ensemble models

Prediction Uncertainty: In high dimensions inverse problem solution is very sensitive to small changes in data.

โˆ†๐‘ฅ๐‘› =0.0049

โˆ†๐‘ฅ๐‘› =0.0295 โˆ†๐‘ฅ๐‘› =0.0005

[SRS17]

Page 39: Uncertainty Quantification for ensemble models

SUMMARYExistence and identifiability analysis provides regions on which the inverse problem for ODEs is well posed

Additional solution attributes (e.g., stability, spirality) can be included

OPEN PROBLEMS

Existence of inverse for linear-in-parameter systems

Maximal permissible uncertainty for linear-in-parameter systems

Page 40: Uncertainty Quantification for ensemble models

ODE Models with random effectsInitial value problem: แˆถ๐‘ฅ = ๐‘“(๐‘ฅ, ๐‘Ž), ๐‘ฅ 0 = ๐‘

Solution: ๐‘ฅ ๐‘ก; ๐‘Ž, ๐‘ โˆˆ ๐ถ1 โ„๐‘›

Data vector: ๐‘ฆ = ๐ป(๐‘ฅ ๐‘ก0 , ๐‘ฅ ๐‘ก1 , โ€ฆ , ๐‘ฅ ๐‘ก๐‘› )

Solution map: ๐’š = ๐‘ญ ๐’‚ invertible for ๐’š โˆˆ ๐‘ช(เดฅ๐’š, ๐œบ)

Random parameter model (RPM):

๐‘Œ = ๐น ๐ด ๐ด is a r. v. with density ๐œŒ ๐‘Ž

Random measurement error model (REM):

๐‘Œ = ๐น ๐‘Ž + ๐บ ๐บ is a r. v. with density ๐›พ(๐‘”)

Page 41: Uncertainty Quantification for ensemble models

Random-parameter model๐‘Œ = ๐น ๐ด

Inverse problem: Find parameter density ๐œŒ(๐‘Ž) from the knowledge of data density ๐œ‚ ๐‘ฆ and ๐น.

Change of variables formula: for any set ฮ“

เถฑฮ“

๐œŒ ๐‘Ž ๐‘‘๐‘Ž = เถฑ๐น(ฮ“)

๐œ‚ ๐‘ฆ ๐‘‘๐‘ฆ = เถฑฮ“

๐œ‚ ๐น ๐‘Ž ๐ฝ ๐‘Ž ๐‘‘๐‘Ž

๐ฝ ๐‘Ž = | det๐ท๐‘Ž๐น ๐‘Ž |

Parameter density: ๐œŒ ๐‘Ž = ๐œ‚ ๐น ๐‘Ž ๐ฝ(๐‘Ž)

Distribution of parameters: represents subject variability

๐น(ฮ“)ฮ“

Page 42: Uncertainty Quantification for ensemble models

Computational aspectsJacobian is expensive to compute.

Methods for computing ๐ฝ ๐‘Žโ—ฆ Exact formula for linear models

For 2 ร— 2 diagonalizable matrix ๐ด = ๐‘Š๐‘€๐‘Šโˆ’1:

๐ฝ ๐‘Ž =๐‘2๐‘ค11 โˆ’ ๐‘1๐‘ค21

2 ๐‘2๐‘ค12 โˆ’ ๐‘2๐‘ค222๐‘’๐œ‡1+๐œ‡2 ๐‘’๐œ‡1 โˆ’ ๐‘’๐œ‡2 4

det๐‘Š 2 ๐œ‡1 โˆ’ ๐œ‡22

โ—ฆ Numerical differentiation๐œ•๐น

๐œ•๐‘Ž๐‘—เทœ๐‘Ž โ‰ˆ

1

ํœ€(๐น เทœ๐‘Ž + ํœ€๐‘’๐‘— โˆ’ ๐น เทœ๐‘Ž )

Requires n additional integrations of the system in each step

[SSZR19]

Page 43: Uncertainty Quantification for ensemble models

Computational aspectsโ—ฆ Numerical integration of the first variational equations (sensitivity

coefficients) for ODE models

Let ๐‘ ๐‘Ž๐‘—(๐‘ก) =๐œ•๐‘ฅ(๐‘ก;๐‘Ž,๐‘)

๐œ•๐‘Ž๐‘—, ๐‘ ๐‘๐‘—(๐‘ก) =

๐œ•๐‘ฅ(๐‘ก;๐‘Ž,๐‘)

๐œ•๐‘๐‘—

แˆถ๐‘ฅ = ๐‘“ ๐‘ฅ, ๐‘Ž ๐‘ฅ 0 = ๐‘

แˆถ๐‘ ๐‘Ž๐‘— ๐‘ก = แ‰ค๐œ•๐‘“ ๐‘ง, ๐‘Ž

๐œ•๐‘ง๐‘ง=๐‘ฅ ๐‘ก

๐‘ ๐‘Ž๐‘— ๐‘ก + เธญ๐œ•๐‘“ ๐‘ง, ๐‘Ž

๐œ•๐‘Ž๐‘—๐‘ง=๐‘ฅ ๐‘ก

๐‘ ๐‘Ž๐‘—(0) = 0

แˆถ๐‘ ๐‘๐‘— ๐‘ก = แ‰ค๐œ•๐‘“ ๐‘ง, ๐‘Ž

๐œ•๐‘ง๐‘ง=๐‘ฅ ๐‘ก

๐‘ ๐‘๐‘— ๐‘ก ๐‘ ๐‘๐‘—(0) = ๐‘’๐‘—

Dimension of the ODE system increases from ๐‘› to ๐‘›(๐‘ + ๐‘› + 1)

[SSZR19]

Page 44: Uncertainty Quantification for ensemble models

Computational aspectsโ—ฆ Broydenโ€™s method (rank-1 update)

๐ท๐‘Ž๐น เทœ๐‘Ž โ‰ˆ ๐ท๐‘Ž๐น ๐‘Ž๐‘˜ +๐น เทœ๐‘Ž โˆ’ ๐น ๐‘Ž๐‘˜ โˆ’ ๐ท๐‘Ž๐น ๐‘Ž๐‘˜ ฮ”๐‘Ž๐‘˜

ฮ”๐‘Ž๐‘˜ ๐‘‡ฮ”๐‘Ž๐‘˜ฮ”๐‘Ž๐‘˜

๐‘‡

Only one computation of ๐น เทœ๐‘Ž (integration of the system) needed at every step

Update every 10 computations keeps relative error of ๐ท๐‘Ž๐น เทœ๐‘Ž below 4%

Accuracy of the posterior is lower than the accuracy of Jacobian

[SSZR19]

Page 45: Uncertainty Quantification for ensemble models

ExamplesCommon problem:

โ—ฆ Jacobian calculation is expensive, so can we replace ๐ฝ(๐‘Ž) by a simpler distribution ๐œ‹(๐‘Ž)?

๐œŒ(๐‘Ž) ๐œ‚(๐‘ฆ)

Page 46: Uncertainty Quantification for ensemble models

Linear dynamical system, uniform data distribution ๐‘ˆ( าง๐‘ฅ๐‘–๐‘— โˆ’ ํœ€, าง๐‘ฅ๐‘–๐‘— + ํœ€)

โˆ’

โˆ’

=

3.2

5,

5624.1

2530.6,

2

10d

436.0=

xx =

โˆ’โˆ’

โˆ’โˆ’=

9519.04839.0

7491.05024.0

๐‘€R

๐ด

๐‘€J

๐‘€U

),,,( 22211211 =a

๐ด is a sample of exact inverse density, ๐‘€๐œ‹ is a sample of ๐œŒ ๐‘Ž = ๐œ‚ ๐น ๐‘Ž ๐œ‹(๐‘Ž), where ๐‘ˆ ๐‘Ž = 1, ๐‘… ๐‘Ž = ฯ‚๐‘– ๐‘Ž๐‘–โˆ’1

Page 47: Uncertainty Quantification for ensemble models

Linear dynamical system, uniform data distribution ๐‘ˆ( าง๐‘ฅ๐‘–๐‘— โˆ’ ํœ€, าง๐‘ฅ๐‘–๐‘— + ํœ€)

๐‘€J

Broydenโ€™s method (rank-1 update)

๐ท๐‘Ž๐น เทœ๐‘Ž โ‰ˆ ๐ท๐‘Ž๐น ๐‘Ž๐‘˜ +๐น เทœ๐‘Ž โˆ’ ๐น ๐‘Ž๐‘˜ โˆ’ ๐ท๐‘Ž๐น ๐‘Ž๐‘˜ ฮ”๐‘Ž๐‘˜

ฮ”๐‘Ž๐‘˜ ๐‘‡ฮ”๐‘Ž๐‘˜ฮ”๐‘Ž๐‘˜

๐‘‡

โ€ข ๐ท๐‘Ž๐น เทœ๐‘Ž recomputed exactly every N steps (101, 11, 2)

Page 48: Uncertainty Quantification for ensemble models

โˆ’

=

15

30,

10

10,

15

5d 272.1=U

โˆ’

โˆ’

=

2.2

4,

3.2

5,

2

10d 134.0=U

โˆ’

โˆ’=

3694.04213.1

2187.01347.1

๐‘€J

๐‘€U

๐‘€R

Reciprocal works well

Uniform works well

โˆ’โˆ’

โˆ’โˆ’=

21

5.11

Jacobian alternatives sometimes work well

[SSZR19]

xx =

xx =

๐‘€R

๐‘€J

๐‘€U

๐‘€R

Page 49: Uncertainty Quantification for ensemble models

IHVI

HVH

cVrIV

โˆ’=

โˆ’=

โˆ’=

)0.4,0.3,012.0,107.2,104,093.0(),,,,,( 58

00

โˆ’== crHVa

1.0=

}3,2{=t

Nonlinear influenza dynamics, uniform data distribution ))1(,)1(( ijij xxU +โˆ’

๐‘€R

๐ด

๐‘€J

๐‘€U

๐ด is a sample of exact inverse density, ๐‘€๐œ‹ is a sample of ๐œŒ ๐‘Ž = ๐œ‚ ๐น ๐‘Ž ๐œ‹(๐‘Ž), where ๐‘ˆ ๐‘Ž = 1, ๐‘… ๐‘Ž = ฯ‚๐‘– ๐‘Ž๐‘–โˆ’1

[SSZR19]

Narrow data distribution, all ๐œ‹(๐‘Ž) work well

Page 50: Uncertainty Quantification for ensemble models

ExamplesCommon problem:

โ—ฆ Can ๐œ‚ ๐‘ฆ be approximated by aggregate Gaussian density ๐œ‚ ๐‘ฆ ?

๐œŒ(๐‘Ž) ๐œ‚(๐‘ฆ)

๐œŒ(๐‘Ž) ๐œ‚(๐‘ฆ)

Page 51: Uncertainty Quantification for ensemble models

Linear dynamical system, Gaussian parameter distribution, aggregate Gaussian data distribution.

โˆ’โˆ’

โˆ’โˆ’=

21

5.11

๐œŽ2 = 0.25

๐œŽ2 = 0.17

๐œŽ2 = 0.07

๐‘€R

๐ด

๐‘€J

๐‘€U

๐ด is the exact source density, ๐‘€๐œ‹ is a sample of ๐œŒ ๐‘Ž =

๐œ‚ ๐น ๐‘Ž ๐œ‹(๐‘Ž)

xx =

[SSZR19]

Only Jacobian produces localized distribution

Page 52: Uncertainty Quantification for ensemble models

Nonlinear influenza dynamics, Gaussian parameter distribution, aggregate Gaussian data distribution

IHVI

HVH

cVrIV

โˆ’=

โˆ’=

โˆ’=

)0.4,0.3,012.0,107.2,104,093.0(),,,,,( 58

00

โˆ’== crHVa

}2,1{=t

๐‘€R

๐ด

๐‘€J

๐‘€U

[SSZR19]

Page 53: Uncertainty Quantification for ensemble models

Domain deformation

๐‘Ž1

๐‘Ž2

๐‘ฅ1

๐‘ฅ2

Page 54: Uncertainty Quantification for ensemble models

Summaryโ€ข Accurate parameter inference of ensemble models requires

determination of the domain of invertibility of the solution map and the computation of Jacobian

โ€ข Further work is required to design efficient computational procedures for Jacobian calculations

Page 55: Uncertainty Quantification for ensemble models

Random measurement error model๐‘Œ = ๐น ๐‘Ž + ๐บ

Inverse problem: Find ๐‘Ž from the knowledge of data ๐ท = (๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘), ๐น(๐‘Ž), and the error density ๐›พ(๐‘”).

Likelihood

๐ฟ ๐‘Ž ๐‘ฆ = ๐œŒ ๐‘ฆ ๐‘Ž = ๐›พ ๐‘” = ๐›พ ๐‘ฆ โˆ’ ๐น ๐‘Ž

Bayesian posterior ๐œŒ ๐‘Ž ๐‘ฆ โˆ ๐ฟ ๐‘Ž ๐‘ฆ ๐œ‹ ๐‘Ž

โ—ฆ Prior ๐œ‹(๐‘Ž) contains all information about parameters known before data are taken into account

Distribution of parameters: represents uncertainty in parameter inference

๐น ๐‘Ž

๐‘ฆ๐‘”

Page 56: Uncertainty Quantification for ensemble models

PriorsUniform prior: ๐œ‹ ๐‘Ž = 1

Reciprocal prior: ๐œ‹ ๐‘Ž = ฯ‚๐‘– ๐‘Ž๐‘–โˆ’1

Jeffreys invariant prior, based on the Fisher information matrix:

๐œ‹ ๐‘Ž = det ๐ผ(๐‘Ž)

๐ผ ๐‘Ž ๐‘–๐‘— = เถฑ๐œ•

๐œ•๐‘Ž๐‘–ln ๐ฟ ๐‘Ž ๐‘ฆ

๐œ•

๐œ•๐‘Ž๐‘—ln ๐ฟ ๐‘Ž ๐‘ฆ ๐ฟ(๐‘Ž|๐‘ฆ)

Jacobian prior: For model with likelihood ๐ฟ ๐‘Ž ๐‘ฆ = ๐›พ ๐‘ฆ โˆ’ ๐น ๐‘Ž ,

๐œ‹ ๐‘Ž = ๐ฝ(๐‘Ž) det๐‘Š ๐ฝ ๐‘Ž = | det๐ท๐‘Ž๐น ๐‘Ž |

Page 57: Uncertainty Quantification for ensemble models

Relation between Bayesian posterior for REM and parameter density for RPM

Let ๐œ‚ ๐‘ฆ = ๐›พ(๐‘ฆ โˆ’ เดค๐‘ฆ) be the aggregate density obtained from data sample ๐‘Œ =๐‘ฆ1, ๐‘ฆ2, โ€ฆ ๐‘ฆ๐‘ and let ๐œŒ ๐‘Ž = ๐œ‚ ๐น ๐‘Ž ๐ฝ(๐‘Ž)

Let ๐œŽ ๐‘Ž เดค๐‘ฆ be the Bayesian posterior with likelihood เทจ๐ฟ ๐‘Ž|เดค๐‘ฆ = ๐›พ(เดค๐‘ฆ โˆ’ ๐น(๐‘Ž)) and prior ๐œ‹(๐‘Ž)

Theorem: ๐œŒ ๐‘Ž = ๐œŽ(๐‘Ž|เดค๐‘ฆ) whenever ๐›พ(๐‘ฆ) is symmetric and ๐œ‹ ๐‘Ž = ๐ฝ(๐‘Ž)

[SSZR19]

๐‘€R

๐‘€J

๐‘€U

๐‘€๐œ‹ is a sample of Bayesian posterior ๐œŽ ๐‘Ž|เดค๐‘ฆ = ๐›พ เดค๐‘ฆ โˆ’ ๐น ๐‘Ž ๐œ‹(๐‘Ž), where ๐‘ˆ ๐‘Ž = 1, ๐‘… ๐‘Ž = ฯ‚๐‘– ๐‘Ž๐‘–โˆ’1

Page 58: Uncertainty Quantification for ensemble models

Jacobian prior revisited๐‘Œ = ๐น ๐‘Ž + ๐บ

Likelihood: ๐ฟ ๐‘Ž|๐‘ฆ = ๐›พ ๐‘ฆ โˆ’ ๐น ๐‘Ž

Posterior: ๐œŽ ๐‘Ž|๐‘ฆ = ๐ฟ ๐‘Ž|๐‘ฆ ๐œ‹(๐‘Ž)/๐‘ž(๐‘ฆ)

With Jacobian prior on parameters, the prior on data ๐‘ฆ is uniform

๐‘ž ๐‘ฆ = ๐ฟ ๐‘Ž|๐‘ฆ ๐œ‹ ๐‘Ž ๐‘‘๐‘Ž

= เถฑ๐›พ ๐‘ฆ โˆ’ ๐น ๐‘Ž ๐ฝ ๐‘Ž ๐‘‘๐‘Ž = เถฑ๐›พ ๐‘ฆ โˆ’ ๐‘ง ๐‘‘๐‘ง = 1

The Jacobian prior is noninformative in the original sense proposed by Bayes โ€“ it does not give preference to any observed data [Stigler, 1982].

[SSZR19]

Page 59: Uncertainty Quantification for ensemble models

๐น(๐‘Ž)

Nonlinear model

Commonly used interpretation of noninformative prior

๐‘Ž

๐‘ž(๐‘ฆ)

Prior on data

๐‘Ž

๐œ‹(๐‘Ž)

Prior on parameters

โ€ข All parameters are equally likelyโ€ข Observations can be anticipated

Page 60: Uncertainty Quantification for ensemble models

๐‘Ž

Nonlinear model

Bayesโ€™ understanding of noninformative prior

๐น(๐‘Ž)

๐ฝ(๐‘Ž)

๐‘ŽPrior on parameters

๐‘ž(๐‘ฆ)

Prior on data

โ€ข Any data vector is equally likelyโ€ข Observations cannot be

anticipated

Page 61: Uncertainty Quantification for ensemble models

Relation to least squaresObjective function minimization

๐‘Žโˆ— = arg min๐‘Ž

๐‘—๐‘ฅ๐‘— โˆ’ ๐‘ฅ ๐‘ก๐‘—; ๐‘Ž

2

Maximum likelihood estimate

๐‘Ž๐‘€๐ฟ๐ธ = arg max๐‘Ž

๐ฟ(๐‘Ž|๐‘ฆ) = arg max๐‘Ž

๐›พ ๐‘ฆ โˆ’ ๐น ๐‘Ž = ๐‘Žโˆ—

The data ๐‘ฆ is the most likely for model with the parameter ๐‘Ž๐‘€๐ฟ๐ธ

Maximum a posteriori estimate

๐‘Ž๐‘€๐ด๐‘ƒ = arg max๐‘Ž

๐œŒ(๐‘Ž|๐‘ฆ) = arg max๐‘Ž

๐›พ ๐‘ฆ โˆ’ ๐น ๐‘Ž ๐ฝ(๐‘Ž)

The model with parameter ๐‘Ž๐‘€๐ด๐‘ƒ is the most likely given observed data ๐‘ฆ

Page 62: Uncertainty Quantification for ensemble models

Applications to immunologyData on time courses of 16 volunteers infected by Influenza A/Texas/91 (H1N1) [Hayden , JAMA, 96]

6),16.7,0.80101.33 ,0.0347, 0.0373(),,,,( -50 =optcpV

Classical parameter estimates

แˆถ๐‘‰ = ๐‘๐ผ โˆ’ ๐‘๐‘‰แˆถ๐ป = โˆ’๐›ฝ๐ป๐‘‰แˆถ๐ผ = ๐›ฝ๐ป๐‘‰ โˆ’ ๐›ฟ๐ผ

Page 63: Uncertainty Quantification for ensemble models

Ensemble trajectory prediction

Ensemble parameter distribution

,3.2,3.2)102.7 ,0.014, 0.25(),,,,( -50 =basecpV

Page 64: Uncertainty Quantification for ensemble models

Parameter correlations โ€“ parameter distribution is organized in clusters

Page 65: Uncertainty Quantification for ensemble models

Optimal trajectories reflect bimodality of the posterior

IHVI

HVH

cVpIV

โˆ’=

โˆ’=

โˆ’=

Slow virus decayFast infected cell removal

Fast virus decaySlow infected cell removal

Page 66: Uncertainty Quantification for ensemble models

Treatment starting at 26 hrs

Treatment starting at 50 hrs

Data from [Hayden , JAMA, 96]

The effect of neuraminidase inhibitor GG167 is simulated by decreasing p to 1/20th of its value

Uncertainty quantification of antiviral treatment

Lower attrition of target cells

Page 67: Uncertainty Quantification for ensemble models

Viral phenotype characterization

PB1-F2 protein occurring in 1918 pandemic H1N1 strain increases apoptosis in monocytes, alters viral polymerase activity in vitro, enhances inflammation and increases secondary pneumonia in vivo.

Mice infected intranasally with 100 TCID50 of influenza A virus PR8 (squares) or PR8-PB1-F2(1918) (triangles).

[Smith et al., PloS ONE, 2011]

Page 68: Uncertainty Quantification for ensemble models

Comparison of model predictions and parameter distributions obtained using ensemble modeling.

PR8-PB1-F2PR8

Page 69: Uncertainty Quantification for ensemble models

Bacterial pneumonia

21

( )nl LL Ll L B L

L L

NPdP Pk P

dt P Pf bD a P bDP

= โˆ’ โˆ’ + + โˆ’

+ +

2

(1 )1

nb BB B Bb B B L

B B

NPdP P Pk P a P bDP

dt P Pb

KD

โˆ’ = โˆ’ โˆ’ โˆ’ + +

+ +

(1 )L

dD

dtqP D cD= โˆ’ โˆ’

1L

h L N

hPdN

t Pn

N

d

= โˆ’ +

+

Data from MF1 mice subjects infected by D39 pneumococcus strain [Kadioglu et al., Inf. and Immun., 2000]:

bacteria in lungs bacteria in blood

Lung bacteria

PL

Blood bacteria

PB

Phagocytic cellsN

DamageD

[MSELC14]

Page 70: Uncertainty Quantification for ensemble models

Bacterial pneumonia - strain dependenceResponse to D39 pneumococcus infection in four mice strains[Data from Kadioglu at al, I&I, 2000; Gingles et al., I&I, 2001; Kadioglu et al., JID, 2011]

[MSELC14]

severity

Page 71: Uncertainty Quantification for ensemble models

Bacterial pneumonia - strain dependenceResponse to D39 pneumococcus infection in four mice strains[Data from Kadioglu at al, I&I, 2000; Gingles et al., I&I, 2001; Kadioglu et al., JID, 2011]

[MSELC14]

Strain dependent parametersโ„Ž, ๐œˆ, ๐œ‰๐‘›๐‘™ , ๐œ‰๐‘›๐‘

severity

Page 72: Uncertainty Quantification for ensemble models

Referencesโ€ข [MSELC14] Mochan, E., Swigon, D., Ermentrout, G.B., Lukens, S., & Clermont, G., A mathematical

model of intrahost pneumococcal pneumonia infection dynamics in murine strains, J. Theor. Biol, 353, 44-54 (2014).

โ€ข [SRS14] Stanhope, S., Rubin, J.E., & Swigon, D., Identifiability of linear dynamical systems from a single trajectory, SIADS, 13, 1792-1815 (2014).

โ€ข [SRS17] Stanhope, S., Rubin, J. E., & Swigon, D., Robustness of solutions of the inverse problem for linear dynamical systems with uncertain data, SIAM/ASA JUQ, 5, 572โ€“597 (2017).

โ€ข [S17] Swigon, D. Parameter estimation for nonsymmetric matrix Riccati differential equations, Proceedings of ENOC 2017, (2017).

โ€ข [SSZR19] Swigon, D., Stanhope, S., Zenker, S., & Rubin, J. E., On the importance of the Jacobian determinant in parameter inference for random parameter and random measurement error models, to appear in SIAM JUQ.

โ€ข [DRS19] Duan, X., Rubin, J.E., Swigon, D., Identification of Affine Dynamical Systems from Single Experiment, in preparation.

โ€ข [S19] Swigon, D., Solution of inverse problem for linear-in-parameters dynamical systems with equally spaced data, in preparation.

Page 73: Uncertainty Quantification for ensemble models

CreditsInverse problems

โ—ฆ Jon Rubin

โ—ฆ Shelby Stanhope

โ—ฆ Xiaoyu Duan

Influenza/pneumonia modelingโ—ฆ Gilles Clermont

โ—ฆ Bard Ermentrout

โ—ฆ Ericka Mochan

โ—ฆ Sarah Lukens

Fundingโ—ฆ NIGMS

โ—ฆ NSF-RTG

Page 74: Uncertainty Quantification for ensemble models

Appendix

Page 75: Uncertainty Quantification for ensemble models

Uniform prior

Reciprocal prior

Jacobian prior

,3.2,3.2)102.7 ,0.014, 0.25(),,,,( -50 =basecpV

Posterior distributions

Page 76: Uncertainty Quantification for ensemble models

Uniform prior

Reciprocal prior

Jacobian prior

Probabilistic trajectory predictions

VV

V

HH

H

II

I