unattended svm parameters fitting for monitoring nonlinear profiles

19
Unattended SVM parameters fitting for monitoring nonlinear profiles Emilio L. Cano (University of Castilla-La Mancha) Javier M. Moguerza (Rey Juan Carlos University) Mariano Prieto (ENUSA Industrias Avanzadas)

Upload: emilio-l-cano

Post on 23-Jan-2018

61 views

Category:

Science


3 download

TRANSCRIPT

Page 1: Unattended SVM parameters fitting for monitoring nonlinear profiles

Unattended SVMparameters fitting formonitoring nonlinear

profilesEmilio L. Cano (University of Castilla-La Mancha)Javier M. Moguerza (Rey Juan Carlos University)

Mariano Prieto (ENUSA Industrias Avanzadas)

Page 2: Unattended SVM parameters fitting for monitoring nonlinear profiles

Statistical Process Control

Assignable causes of variation may befound and eliminated

Walter A. Shewhart

2

Page 3: Unattended SVM parameters fitting for monitoring nonlinear profiles

Statistical Process Control (cont.)

Observation

678

121314

10.08

1 2 3 4 5 6 7 8 9 1011121314151617181920

● ●

●●

● ●

● ●

●●

3

Page 4: Unattended SVM parameters fitting for monitoring nonlinear profiles

Statistical Process Control (cont.)

Observation

6

7

8

12

13

14

10.28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

● ●

● ●

● ●

● Special cause

4

Page 5: Unattended SVM parameters fitting for monitoring nonlinear profiles

Nonlinear profiles

0.0 0.1 0.2 0.3 0.4 0.5

45

50

55

60

X−Location

Mea

sure

men

t

One function per sample (instead of a data point)

5

Page 6: Unattended SVM parameters fitting for monitoring nonlinear profiles

Nonlinear profiles

0.0 0.1 0.2 0.3 0.4 0.5

45

50

55

60

X−Location

Mea

sure

men

t

One function per sample (instead of a data point)

5

Page 7: Unattended SVM parameters fitting for monitoring nonlinear profiles

Illustrative example

I Engineered woodboards

I Data set of 50 boards

I Sample of 5 boards per shift

I Quality characteristic: density

I Total measurements: 500

I Every 0.001 in along the board

6

Page 8: Unattended SVM parameters fitting for monitoring nonlinear profiles

Illustrative example (cont.)

Data

library(SixSigma)

str(ss.data.wbx)

## num [1:500] 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 ...

str(ss.data.wby)

## num [1:500, 1:50] 58.4 58 58.2 58.4 57.9 ...

## - attr(*, "dimnames")=List of 2

## ..$ : NULL

## ..$ : chr [1:50] "P1" "P2" "P3" "P4" ...

7

Page 9: Unattended SVM parameters fitting for monitoring nonlinear profiles

Illustrative example (cont.)

plotProfiles(profiles = ss.data.wby,

x = ss.data.wbx)

0.0 0.1 0.2 0.3 0.4 0.5

35

40

45

50

55

60

65

Profiles

8

Page 10: Unattended SVM parameters fitting for monitoring nonlinear profiles

Support Vector Machines (SVM)

SVM regression modelGiven response y, input space x:

y = r(x) + δ

r(x) feature space (higher dimension than x)

r(x): non-linear, high dimensional transformation of x input vectorThen, a linear combination over the feature space is the predictionmodel:

f(x, ω) =∑j

ωj ,gj(x)

9

Page 11: Unattended SVM parameters fitting for monitoring nonlinear profiles

Support Vector Machines (SVM) (cont.)

SVM regression parametersRegression estimates are obtained minimizing the ε-intensive lossfunction. This function contains two input parameters: ε and C(regularization parameter)

Details: Vapnik, V. (1998). Statistical learning theory. New York: Wiley;Vapnik, V. (1999). The nature of statistical learning theory (2nd ed).Berlin: Springer.

10

Page 12: Unattended SVM parameters fitting for monitoring nonlinear profiles

Support Vector Machines (SVM) (cont.)

Parameters selection

I C trade off between model complexity and deviations larger thanε in optimization

I ε controls the width of the ε-insensitive zone

I Several practical approaches (cross validation, experts opinion,. . . )

11

Page 13: Unattended SVM parameters fitting for monitoring nonlinear profiles

(unattended) Parameters selection

Regularization parameter C

C = max{|y + 3σy|, |y − 3σy|}

max(c(abs(mean(y) + 3*sd(y)), abs(mean(y) - 3*sd(y))))

ε parameter

ε = 3σ

√log n

n

3*par.sigma*sqrt(log(nrowprofiles)/nrowprofiles)

12

Page 14: Unattended SVM parameters fitting for monitoring nonlinear profiles

(unattended) Parameters selection (cont.)

Input noise level σAn approximation using polynomials

mloess <- loess(y ~ x)

yhat <- predict(mloess, newdata = x)

deltas <- y - yhat

par.sigma <- sd(deltas)

Details: Cherkassky, V and Ma, Y (2004). Practical selection of SVMparameters and noise estimation for SVM regression. NeuralNetworks, 17(1), 113-126

13

Page 15: Unattended SVM parameters fitting for monitoring nonlinear profiles

Regularization of nonlinear profiles via SVM

P1.smooth <- smoothProfiles(

profiles = ss.data.wby[, "P1"],

x = ss.data.wbx)

plotProfiles(profiles = cbind(P1.smooth,

ss.data.wby[, "P1"]),

x = ss.data.wbx)

14

Page 16: Unattended SVM parameters fitting for monitoring nonlinear profiles

Regularization of nonlinear profiles via SVM(cont.)

0.0 0.1 0.2 0.3 0.4 0.5

45

50

55

60

Profiles

15

Page 17: Unattended SVM parameters fitting for monitoring nonlinear profiles

Smoothed prototype and confidence bands

0.0 0.1 0.2 0.3 0.4 0.5

40

45

50

55

60

65

Profiles

Apply control charts philosophy to complex processes

16

Page 18: Unattended SVM parameters fitting for monitoring nonlinear profiles

Smoothed prototype and confidence bands(cont.)

wby.phase1 <- ss.data.wby[, 1:35]

wb.limits <- climProfiles(profiles = wby.phase1[, -28],

x = ss.data.wbx,

smoothprof = TRUE,

smoothlim = TRUE)

wby.phase2 <- ss.data.wby[, 36:50]

wb.out.phase2 <- outProfiles(profiles = wby.phase2,

x = ss.data.wbx,

cLimits = wb.limits,

tol = 0.8)

plotProfiles(wby.phase2,

x = ss.data.wbx,

cLimits = wb.limits,

outControl = wb.out.phase2$idOut,

onlyout = FALSE)

17