ultrasound contrast agents: from imaging to therapysfp.in2p3.fr/expo/conf2008/vivant/bouakaz.pdf ·...

35
Ultrasound contrast agents: Ultrasound contrast agents: From imaging to therapy From imaging to therapy Ayache BOUAKAZ Ayache BOUAKAZ Ayache BOUAKAZ Ayache BOUAKAZ UMR Imagerie et cerveau Inserm U930 – FRE CNRS 2448 Université François Rabelais Université François Rabelais Tours, France

Upload: buidat

Post on 04-May-2018

227 views

Category:

Documents


3 download

TRANSCRIPT

Ultrasound contrast agents:Ultrasound contrast agents:From imaging to therapyFrom imaging to therapy

Ayache BOUAKAZAyache BOUAKAZAyache BOUAKAZAyache BOUAKAZ

‐ UMR Imagerie et cerveau

‐ Inserm U930 – FRE CNRS 2448

‐Université François RabelaisUniversité François Rabelais

Tours, France

Contrast agent for ultrasound

UCA : Suspensions of tiny gas microbubbles for intravenous injection

Cross the capillary bedCross the capillary bed

• Diameter 1‐10 μm (Φ=3 μm)shell

Diameter 1 10 μm (Φ 3 μm)• Persistence: minutes to hours

• Gas: air or high molecular weight gas Gas• Shell: albumin/lipid/polymer

• Shell thickness 5 ‐ 500 nm

C i 1 5 108 b bbl / l• Concentration 1‐5 x 108 bubbles/ml• Sonovue Europe 2001

• Definity USA & Europe (Luminity 2007)Definity USA & Europe (Luminity 2007)

• Sonazoid Japan 2007

RBC6–8 µm

Contrast agent for ultrasound

What do we need contrast agent for?

• “Boost” image quality

• Enhance diagnostic confidence

Principle :‐ Amplify the amplitude of backscattered signal (echo)G i b bbl

• Clinical applications

‐ Gas microbubbles

Clinical applications– Estimation of myocardial perfusion– Detection and characterization of tumors– Amplification of  Doppler signal

Microbubble – Ultrasound interaction

Linear resonator (harmonic oscillator)Linear resonator (harmonic oscillator)

Incident acoustic pressurePositive pressure

Negative pressure

Bubble size changes with acoustic pressurepressure

0 1 100.1 – 10 μs

Microbubble – Ultrasound interaction

3 P

Resonance frequencyResonance frequency

fr =1

2πR

3 γ Po

ρFree bubble : fr[MHz]= 3/R [μm ]

9

10

f

μm]

6

7

8Φ = 3 μm, fr=2.5MHz

Dia

mèt

re [μ

4

5

6

D

2

3

0 1 2 3 4 5 6 7 8 9 10Fréquence [MHz]

1

Microbubble – Ultrasound interaction

Scattering cross sectionScattering cross section

22

22

2

1

4

δ

π

+⎟⎟⎞

⎜⎜⎛

==Σf

RIP

ri

ss

10-2

m2 ]

2 1 δ+⎟⎟⎠

⎜⎜⎝ f

10-3

diffu

sion

[c

10-4effic

ace

de

R=1μm

10

Sec

tion

e

0 1 2 3 4 5 6 7 8 9 1010-5

Fréquence [MHz]

Microbubble – Ultrasound interaction

US: f=1.8MHz, 50kPa (MI=<0.1)Optic: Frame rate 16MHz

Linear and nonlinear scatteringLinear and nonlinear scattering

Soft-shelled agent (Bracco)

p

-10

0

7.5

7.7

dB

-30

-20

77.1

7.3

Dia

met

er [μ

m]

Frequency [MHz]0 1 2 3 4 5 6 7 8-50

-40

0

6.9

1 2 3 4 5 6 7 8Time [μs]

Microbubble – Ultrasound interaction

US: f=1.8MHz, 50kPa (MI=<0.1)Optic: Frame rate 16MHz

US: f=1MHz, 200kPaOptic: Frame rate 16MHz

Linear and nonlinear scatteringLinear and nonlinear scattering

Soft-shelled agent (Bracco)

p Optic: Frame rate 16MHz

4 5

5

10

0fondamentale

d

Harmonic Imaging

3.5

4

4.5

Dia

met

er [μ

m]

-30

-20

-10

dB

2nd H3rd HH

0 1 2 3 4 5 6 7 82.5

3

D

Time [μs]0 1 2 3 4 5 6-50

-40

Frequency [MHz]

Microbubble – Ultrasound interaction

MicrobubbleMicrobubble destruction (Triggered intermittent imaging)destruction (Triggered intermittent imaging)

PB127 (POINT Biomedical CA USA) Hard shelled agent

MI=1.3, f=1.7MHzOptic frame rate≈15Mfps

1st US pulse

PB127 (POINT Biomedical, CA, USA) Hard shelled agent

Microbubble – Ultrasound interaction

MicrobubbleMicrobubble destruction (Triggered intermittent imaging)destruction (Triggered intermittent imaging)

PB127 (POINT Biomedical CA USA) Hard shelled agent

MI=1.3, f=1.7MHzOptic frame rate≈15Mfps

1st US pulse

PB127 (POINT Biomedical, CA, USA) Hard shelled agent

2nd US pulse (100ms later)

Ultrasound and Ultrasound and microbubblesmicrobubbles

ImagingImagingi f i d i i l i• Tissue perfusion and microcirculation

• « Boost » sensitivity and specificity of US imaging (Harmonic – PI – PM ‐ Coded, …)

ExampleExample

• Detection and characterization (benign/malign) of lesions (e.g. liver)

• Exploration of cardiac function (estimation of myocardial perfusion)Exploration of cardiac function (estimation of myocardial perfusion)

Ultrasound and Ultrasound and microbubblesmicrobubbles

ImagingImagingi f i d i i l i• Tissue perfusion and microcirculation

• « Boost » sensitivity and specificity of US imaging (Harmonic – PI – PM ‐ Coded, …)

ExampleExample

• Detection and characterization (benign/malign) of lesions (e.g. liver)

• Exploration of cardiac function (estimation of myocardial perfusion)Exploration of cardiac function (estimation of myocardial perfusion)

The video shows CEUS ultrasound in a kidney.

Ultrasound and Ultrasound and microbubblesmicrobubbles

ImagingImagingi f i d i i l i• Tissue perfusion and microcirculation

• « Boost » sensitivity and specificity of US imaging (Harmonic – PI – PM ‐ Coded, …)

ExampleExample

• Detection and characterization (benign/malign) of lesions (e.g. liver)

• Exploration of cardiac function (estimation of myocardial perfusion)Exploration of cardiac function (estimation of myocardial perfusion)

Ultrasound and Ultrasound and microbubblesmicrobubbles

ImagingImagingi f i d i i l i• Tissue perfusion and microcirculation

• « Boost » sensitivity and specificity of US imaging (Harmonic – PI – PM ‐ Coded, …)

ExampleExample

• Detection and characterization (benign/malign) of lesions (e.g. liver)

• Exploration of cardiac function (estimation of myocardial perfusion)Exploration of cardiac function (estimation of myocardial perfusion)

TherapyTherapy• Modulation of cell membrane permeability (sonoporation)

• Transport and release into targeted tissue of active principles (sonorelease)

• Targeted microbubbles for specific attachment (targeting)

Sonoporation

• Ultrasound creates transient permeabilization of cell membrane

in the presence of gas microbubbles

Sonoporation: In vitro

•• Experimental setExperimental set upup•• Experimental setExperimental set‐‐upup

Transducer Water (37°C)

5.105 cells

+ microbubbles+ microbubbles

DNADNA+  pDNA+  pDNAFocal distance

Magnetic stirrer

AmplifierWaveform generator

Confocal Fluorescent microscopy: In‐vitro

Transfection: Cy3Cy3-labelled DNA encoding for eGFPeGFPObservation T6H

Transmission eGFPExc laser: 488 nm en mode META, Obj x63, coupe optique de 0.8 µm d’épaisseur

%)

Transfection: DNA incorporation•Cellular model

20253035

cted

cel

ls (%•Cellular model

Human glioblastoma cells (U87‐MG)

5101520

r of

tran

sfec US + DNA

US+BR14+DNAUS parameters

•Frequency: 1 MHz05

18 24 48

Time (h)

num

be

eque cy:

•Pressure: 300 kPa 

•Duty cycle: 40 % Time (h)

•Exposure time : 2 min

•20 bubbles per cell

•DNA: 30 μg/ml

25

•DNA: 30 μg/ml

15

20

xici

ty (%

)US + DNA

5

10cy

toto

xUS+BR14+DNA

018 24 48

Time (h)

FITC dextran incorporationCell line Hela

% cell  uptake, FI120 1400

Cell line Hela

Dextran 70 kDa

60

80

100

percen

t [%

]

600

800

1000

1200

fluorescence 

ensity [a

u]

1MHz, DC: 40 %

20 bubbles per cell0

20

40

200 400 600cell p

0

200

400

Mean  inte

200 400 600

Pressure [kPa]

120

60

80

100

rcen

t [%]

0

20

40

cell pe

r

FITC‐dextran introduction

0Before insonation Immediately after insonation 1 min after insonation

Transfection: DNA incorporation

60

30

40

50

rcen

t (%

)

10

20

30

cell

per

0 GFP expression DNA-FITC

Transfection: DNA incorporation•Cellular model

50

60

70

%)

•Cellular modelHuman glioblastoma cells (U87‐MG) Transfection

Mortality

20

30

40

cell

perc

ent (

%

US parameters

•Frequency: 1 MHz

0

10

electroporation sonoporation lipofection

frequency (MHz)

eque cy:

•Pressure: 300 kPa 

•Duty cycle: 40 % frequency (MHz)

1,82

atio

•20 bubbles per cell

11,21,41,61,8

mor

talit

y ra

te r

a

00,20,40,60,8

tran

sfec

tion-

m

0electroporation sonoporation lipofection

t

Transmembrane release of GFP with sonoporation

1MHz, 400 kPa, DC 40 %

Exposure time: 1 min

20 bubbles per cell

Not treatedHela GFP cell

US+ bubbles

%GFP

FI100

120

1200

1400

1600

ity [a

u]

FI

%PI

60

80

erce

nt [%

]

800

1000

1200

ence

inte

nsi

20

40cell

pe

200

400

600

ean

fluor

esce

0not treated cells US alone US+ BR14

0

200

Me

GFP recoveryGFP recovery

GFP %, FI120

1200

1400

Frequency: 1MHz 

k60

80

100

P cell %

600800

1000

1200

luorescence

nsity [aU]

Pressure: 400 kPa

Duty cycle: 75 %

Exposure time: 2 min 0

20

40GFP

0

200

400

600

Mean f

inten

Nbr of bubbles per cell: 200

control T0 T4 T48TIme [hr]

0

152025

I %

PI %

120

140160

x vs

cont

rol

120

140160

x vs

cont

rol

05

10PI

2040

6080

100

olife

ratio

nin

dex

2040

6080

100

olife

ratio

nin

dex

control T0 T4H T48HTIme [hr]

020

Control US US+BR14

Pro

020

Control US US+BR14

Pro

In‐vivoIntramuscular transfectionf

Mouse (8w)Plasmid lucifirase

25000

Polymer/DNA complexesInjection: interior tibial muscle

20000

otei

n)

US1=400kPa, DC=40%

15000

(cps

/mg

pro

US2=500kPa, DC=40%US3=400kPa, DC=20%

US 00 a, C 0%

10000

ase

activ

ity (

5000

Luci

fera

0CTRL BR14+US1 BR14+US2 BR14+US3

ULTRASOUND ULTRASOUND ‐‐MICROBUBBLE MICROBUBBLE ‐‐ CELL  INTERACTION CELL  INTERACTION Optical observationsOptical observations

“Cellular Massage”“Cellular Massage”

Jet speeds V> 100’s m/s

http://www.scs.uiuc.edu

ll f dUS=0.5MHz, MI=0.9, Frame rate≈3Mfps

BR14

10 million frames per second

SonoVueTM, endothelial cell 1 burst 1 MHz Ultrasound MI 0.9

V<100m/s

Brandaris EMC Rotterdama b

Patch clamp technique“Whole cell” configuration

Seal Patch

Whole cell configuration

Em recordings- Seal - Patch - Em recordings

- A glass pipette gently pressed on the cell membrane (few microns)Electrical access « Seal » between the glass pipette and the membrane- Electrical access « Seal » between the glass pipette and the membrane

- Suction is applied to the pipette - Membrane breaks

C l d i l i i

- Measurement of cell membrane potential

- Cytoplasm and pipette solution mix up- Control of the intracellular medium

Measurement of cell membrane potential- Estimation of ion exchange through the cell membrane

ULTRASOUND ULTRASOUND ‐‐MICROBUBBLE MICROBUBBLE ‐‐ CELL  INTERACTION CELL  INTERACTION 

Cell membrane potential

US alone US and Sonovue

iel [mV]

ne potent

Mem

bran

US=1MHz, 200kPa US 150kPa US 200kPa

Hyperpolarization of the cell membraneyp p

ULTRASOUND ULTRASOUND ‐‐MICROBUBBLE MICROBUBBLE ‐‐ CELL  INTERACTION CELL  INTERACTION 

Cell membrane potential

US 0.2MPa, 1MHz

ULTRASOUND ULTRASOUND ‐‐MICROBUBBLE MICROBUBBLE ‐‐ CELL  INTERACTION CELL  INTERACTION 

Cell membrane potential

US 0.2MPa, 1MHz

ULTRASOUND ULTRASOUND ‐‐MICROBUBBLE MICROBUBBLE ‐‐ CELL  INTERACTION CELL  INTERACTION 

Cell membrane potential

US 0.2MPa, 1MHz

‐ Hyperpolarization: ‐ amplitude: 25 ± 1,4 mV (n=16)‐ function of the bubble‐cell adherence‐ function of ultrasound parameters

ULTRASOUND ULTRASOUND ‐‐MICROBUBBLE MICROBUBBLE ‐‐ CELL  INTERACTION CELL  INTERACTION 

Mechanical stress10 μm

Cell membrane potential

Glass rod

cell

Pipette de patch

rod

p

Involvement of stretch activated channels“SAC”IbTx PSS 2PSS 1 “SAC”

US

US+BR14 US+BR14

ULTRASOUND ULTRASOUND ‐‐MICROBUBBLE MICROBUBBLE ‐‐ CELL  INTERACTION CELL  INTERACTION 

Intracellular calcium concentration measurement (fluorescent dye fura‐2 )

Mechanical Pressure

[Ca]i measurefitting curve

Cascade of events initiated by microbubble oscillationsCascade of events initiated by microbubble oscillations

ULTRASOUND ULTRASOUND ‐‐MICROBUBBLE MICROBUBBLE ‐‐ CELL  INTERACTION CELL  INTERACTION 

Microbubble oscillations

Cell membrane deformation

Opening of SAC channels

Hyperpolarization

[Ca2+] concentration increase

Important role in the increased permeability

Trigger for different pathways e.g.  endocytosis

Conclusions

• Imaging: 

• CA has an established utility in improving accuracy of diagnostic 

ultrasound

• CA provides information that makes better diagnoses

• Therapy:

• Ultrasound and microbubbles enhance drug internalization.

• Microbubbles are able to achieve drugs /genes to regions of interest,

and eventually recognize their target (e.g., thrombus).

• Ultrasound can be used to control the drug release from outside and onUltrasound can be used to control the drug release from outside and on

demand.

Acknowledgments

[email protected]

• K Kaddur MSc (PhD program) (Biologist) • Prof C Pichon CBM Orléans

Research team:

• K. Kaddur, MSc (PhD program), (Biologist)

• T. Tran, MSc (PhD program), (Biologist)

• Dr. P. Palanchon, PhD (PostDoc)

• Prof. C. Pichon CBM Orléans

• A. Delalande, MSc (PhD program) 

• Dr. P. Midoux, CBM OrléansDr. P. Palanchon, PhD (PostDoc)

• A. Novell, MSc (PhD program)

• Prof. F. Tranquart, MD – PhD

Dr. P. Midoux, CBM Orléans

• Dr. B. Pitard, Inserm Nantes

Financial support