ultrasonic detection of simulated corrosion in 1 inch diameter steel tieback rods

Upload: salmachaki

Post on 05-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    1/123

    ULTRASONICDETECTIONOFSIMULATEDCORROSIONIN1INCH

    DIAMETERSTEELTIEBACKRODS

    By

    KARLR.OLSEN

    Adissertationsubmittedinpartialfulfillmentof

    therequirementsforthedegreeof

    DOCTOROFPHILOSOPHY

    WASHINGTONSTATEUNIVERSITY

    DepartmentofCivilandEnvironmentalEngineering

    August2009

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    2/123

    ii

    TotheFacultyofWashingtonStateUniversity:

    ThemembersoftheCommitteeappointedtoexaminethedissertationofKARLR.OLSENfindit

    satisfactoryandrecommendthatitbeaccepted.

    DavidPollock, Ph.D.(Chair)

    DavidMcLean, Ph.D.

    DonaldBender, Ph.D.

    William Cofer, Ph.D.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    3/123

    iii

    Acknowledgements

    "Forbyhimallthingswerecreated:thingsinheavenandonearth,visibleandinvisible,

    whetherthronesorpowersorrulersorauthorities;allthingswerecreatedbyhimandforhim."

    Colossians1:16

    FirstandforemostIwouldliketothankmyparents. Dad,withoutyourencouragementtosee

    beyondmytrialsIwouldhavegivenuplongago. Iconsideritanhonortohaveyouasafather,

    amentorandafriend. Mom,thankyouyourunwaveringlove,regardlessofmy

    accomplishmentsorfailures. Iamproudtobeyoursonandthankfulforeverysmileandhug

    thatawaitsmeeverytimeIseeyou.

    Dr.Pollock,IhavelearnedasmuchfromwatchingyouasIhavefromlisteningtoyour

    feedback. Yourcareforyourstudentsaboveyourselfisevident,andaninspiration. Toall

    thosethathelpedkeepmesanethroughoutthisprocessandremindmethatthereismoreto

    lifethanadissertation: Alan,Neil,Mike,Chuck,Jacob,Rebekah,Jessie,Laura,andKristinayour

    friendshipmeansmorethanyouknow.

    Also,thisdissertationwouldnothavebeenpossiblewithoutfundingforthisproject,whichwas

    providedbytheU.S.DepartmentofTransportation(USDOT),TransportationNorthwest

    (TransNow)RegionalResearchCenterthroughcontractnumber430820. Thecommercialall

    threadtiebackrodswereprovidedbyWilliamsFormEngineeringCorporation.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    4/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    5/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    6/123

    vi

    Contents

    1 IntroductionandObjectives.................................................................................................... 1

    1.1 TiebackRods..................................................................................................................... 1

    1.2 ProblemStatement.......................................................................................................... 2

    1.3 ResearchObjectives......................................................................................................... 3

    1.3.1 DetectPhysicalGeometryofSimulatedCorrosioninSteelRods.............................3

    1.3.2 EvaluateThreadedWilliamsTiebackRods............................................................... 4

    1.4 OutlineofDissertationContents..................................................................................... 4

    2 BackgroundandLiteratureReview......................................................................................... 6

    2.1 PressureWaveProperties................................................................................................ 6

    2.2 TwomethodsforSolvingtheWaveEquation.................................................................. 8

    2.3 BackgroundinUltrasonicWavesinRods....................................................................... 13

    2.3.1 UltrasonicWave...................................................................................................... 14

    2.4 UltrasonicApplications.................................................................................................. 17

    2.4.1 PreviousUltrasonicResearch................................................................................. 17

    3 ExperimentalSetupandTesting............................................................................................ 22

    3.1 ExperimentalSetup........................................................................................................ 22

    3.2 LabviewProgram............................................................................................................ 23

    3.3 TransducerCharacterizationandSelection................................................................... 23

    3.4 WavelengthinSteelRod................................................................................................ 26

    3.5 EndPreparationandTransducerCoupling.................................................................... 27

    3.6 SteelRodsUsedinTesting............................................................................................. 28

    3.7 VelocityCalculationforSteelRods................................................................................ 29

    4 DetectingPhysicalGeometryofSimulatedCorrosion..........................................................33

    4.1 LocationofLeadingEdgeofSimulatedCorrosion.........................................................33

    4.2 DiameterCharacterization............................................................................................. 36

    4.3 LengthofSimulatedCorrosionCharacterization...........................................................45

    4.3.1 ChangeinFrequencyContentofBackEchoforLengthofSimulatedCorrosion...46

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    7/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    8/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    9/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    10/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    11/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    12/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    13/123

    1

    1 IntroductionandObjectivesIn2002,justeastofdowntownCleveland,Ohio,severaltiebackrodsinasheetpileearth

    retainingwallfailed(Esser&Dingeldein,2007). Thefailurewasduetocorrosionandcauseda

    nearcollapseofthewall. Corrosioninstructuralsteeltiebackrodscausesadecreaseincross

    sectionalarea,limitingtensileloadcapacity. Tiebackrodsaretypicallyburiedinsoil,

    eliminatingtheoptionofvisualinspectionwithoutexcavation. Theresearchinthisstudy

    evaluatedultrasonictestingasamethodofdetectingsimulatedcorrosioninsteelrods.

    1.1 TiebackRodsTiebackrodsareavitalcomponentofsheetpile retainingwalls. Therodsconnecttheouter

    supportstructuretoanchors(ordeadman)buriedinthesoil(Figure1.) Thefirsttiebackrods

    Figure1. Sheetpileearthretentionwalls(USArmyCorpsofEngineers,1994)

    Wale

    SheetPiling

    Wale TieRod

    TieRodConcrete

    Deadman

    SheetPiling

    Anchor

    SheetPiling

    a.Tierodsanddeadman

    b.Tierodsandanchorwall

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    14/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    15/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    16/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    17/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    18/123

    6

    2 BackgroundandLiteratureReviewThischapterpresentsabackgroundofultrasonicwaves. Anoverviewoffundamentalwave

    propagationprovidesthebasisforunderstandingultrasonicwaves. Theuseofultrasonic

    wavesinnondestructivetesting(NDT)ispresented,includingpreviousresearchpertaining

    specificallytosteelrods.

    2.1 PressureWavePropertiesAwaveisadisturbancethatpropagatesthroughtimeandspace. Energyistransferredfrom

    onepointtoanotherviawaves. Asinglefrequencybulkwaveischaracterizedmathematically

    bythewavelength()andamplitude(A)ofthesignal(Figure2). Thewavelengthisthedistance

    betweentwoadjacentpeaksinthewavecycleandtheamplitudeisthemaximumdisplacement

    ofthedisturbancefromtheundisturbedposition. Thefrequency(f)ofthewaveisdefinedas

    Figure2. Mathematical wavecharacterization

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    19/123

    7

    thenumberofoscillationsthatoccurinonesecondandtheperiod(T)isthetimetocomplete

    oneoscillation.

    Phase

    Velocity

    Thespeedatwhichthebulkwavetravelsthoughamediumiscalledthephasevelocity(p)and

    iscalculatedwiththefollowingequation(Main,1988).

    Equation1Thephasevelocityisdependentuponthetypeofwavetravelinginthemedium. Longitudinal

    andshearwaveswillbeconsideredinthisresearch. Longitudinalwavesexhibitparticlemotion

    inthedirectionofwavepropagation. Shearwavesexhibitparticlemotionorthogonaltothe

    directionofwavepropagation.

    Snell'sLaw

    Whenalongitudinalwaveencountersaboundarysurface,longitudinalandshearwavesare

    reflectedbackintothemediumatanglesdeterminedbySnell'sLaw(Figure3). Theresulting

    longitudinalwavereflectsatanangleequaltotheincidentangle. Thereflectedshearwavehas

    1

    2

    1

    Figure3. DiagramofSnell'sLaw

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    20/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    21/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    22/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    23/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    24/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    25/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    26/123

    14

    willestablishthetheoreticalfoundationthatwillbebuiltupontocompileamorecomplete

    understandingofultrasonicwavesinrods.

    2.3.1 UltrasonicWaveUltrasonicwavescanbeinitiatedinsteelrodsusingapiezoelectrictransducer. Anelectric

    signalwassenttothetransducerconvertingelectricalenergytomechanicalenergyintheform

    ofapressurewave. Whencoupledtotheendofasteelrodthewaveisgeneratedinthesteel

    rodandproceedstotravelthelengthoftherod. Atthispointareceivingtransducercandetect

    thesignalattheotherendoftherod,oriftheendoftherodisnotaccessible,thewave

    reflectsfromtheendsurfaceoftherodandtravelsbacktothetransducer. Asthewave

    returnstothefrontend,thetransducerconvertsthemechanicalenergyintoelectricalenergy,

    andtheelectricalsignalisrecordedbythecomputer. Theultrasonicsignalforastraightrod

    withoutanyflawsisshownbelow(Figure6).Themainbangrepresentsthegenerationofthe

    ultrasonicwave. Thesmallsignalfollowingthemainbangisaringingoutofthepiezoelectric

    transducer. Thenextsignalthatappearsisthefirstbackecho,whichrepresentsthefrontof

    Figure6. Standardultrasonicsignalfrom1.0ft.long1.0in.diametercircularrod

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    27/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    28/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    29/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    30/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    31/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    32/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    33/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    34/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    35/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    36/123

    24

    inspections. Themainvariablesincommercialtransducersarethediameterofthetransducer

    andthefrequencyoftheultrasonicsignalgenerated. Thefollowingisalistoftransducers

    availablefortestingofthesteelrodsinthisresearch(Table1.) Usinga1.0in.diameterrod

    threefeetlongwithnoflaws,themaximumamplitudeofthebackechoforeachtransducer

    wasrecorded(Figure15.) Thedatashowsthatthe5MHztransducerswith0.5in.diameter

    providedthelargestamplitude. Transducerswhichproducelargeechoamplitudeswill

    Figure15. Transduceramplitudecomparisononarodwithnosimulatedcorrosion

    increasethemaximumdetectablelengthofrod. Thetransducerswerealsotestedtomake

    suretheycandetectareductionindiameterfrom1.0in.to0.75inlocated2in.alonga6in.

    longrodwitha1in.diameter. Thesignalresponsewasmeasuredtofindthemaximum

    amplitudeoftheflawechoandbackecho(Figure16). The0.5in.diameter5MHz

    transducersprovidedthemaximumflawechoandbackechoamplitudesata40dBgainsetting

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    37/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    38/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    39/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    40/123

    28

    wasappliedbeforethetransducerwascoupledtotheendoftherod. Withoutthegel,the

    transducercouldnoteffectivelycoupletheultrasonicsignalintotherod,resultinginan

    extremelypoorultrasonicwave,ifanyatall. Amagnetictransducerwasusedinmostteststo

    provideaconsistentadheringforcebetweenthetransducerandtheendoftherod.

    3.6 SteelRodsUsedinTestingTwotypesofsteelrodswereusedinthisresearch(Figure18). 12L14steelrodswereusedfor

    fabricatingandtestingvariousgeometriesofsimulatedcorrosion. Williams75ksiallthread

    tiebackrodswereusedtoconfirmdetectionofultrasonicwavesinactualtiebackrods. The

    propertiesofthe12L14steelandWilliamsgrade75steelareshowninTable2.

    Williams tieback rod 12L14 cold drawn rod stock

    Figure18. Williamscommercialtiebackrodand12L14rodstockusedintesting

    12L14Steel

    Thesimulatedcorrosiongeometriesweremachinedfrom1in.diametercoldrolled12L14steel.

    12L14isaleadbasedsteelwithasmoothsurfacethatisidealformachining. Thesteeliscold

    drawnandfabricatedaccordingtoASTMA108(ASTMStandardA108,2007)orASTMA29

    (ASTMStandardA29,2005).

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    41/123

    29

    WilliamsGrade75AllThreadTiebackRods

    Williams1in.diametertiebackrodswereusedtoevaluatethedetectionofultrasonicwavesin

    commercialrods. Thegrade75allthreadrodswereacontinuouslythreadedrodspecially

    designedtobeusedasconcreteformingtierodsandanchors. Allthreadtiebackrodsare

    availableinlengthsupto50feet.Therodsaremanufacturedwithaspecialthreaddesignedto

    meettherequirementsofASTMA615(ASTMStandardA615,2008).

    Table2.Propertiesfor12L14steelandWilliamsgrade75tiebackrod

    Property 12L14 Williams tieback rod

    Density (lbs/ft3) 481 - 501 481 - 501

    Poisson's Ratio 0.27 - 0.30 0.27 - 0.30

    Elastic Modulus (ksi) 27,560 - 30,460 27,560 - 30,460

    Tensile Strength (ksi) 78 100

    Yield Strength (ksi) 60 75

    3.7 VelocityCalculationforSteelRods

    Determiningthewavespeedinthesteelspecimenswasnecessaryforcalculatingspecific

    geometriesofthesteel. Ultrasonicsignalswererecordedfor1.0ft.longsectionsof12L14steel

    andgrade75Williamstiebackrods. Itwasnecessarytodeterminethewavespeedusingthe

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    42/123

    30

    firstandsecondbackecho. Apotentialdelayinthesignalcanoccuratthemainbang,because

    thesignalismeasuredastheelectricalimpulseentersthetransducer,butthebackechoesare

    measuredwhentheultrasonicwaveimpactsthetransducer. Afullsignal,containingtwoback

    Figure19.Fullultrasonicsignalfor1.0ft.long1.0in.diameter12L14steelrodforcalculatingwavespeed

    echoeswasrecorded(Figure19).Todeterminethearrivaltimeofthebackecho,itwas

    necessarytodeterminewhenthebackechosignalfirstrisesabovethenoise. Thegraphsofthe

    firstandsecondbackechoesareshownbelowtodeterminethestarttimeofeachbackecho

    (Figure20.) Tofindthestarttime,itwasfirstnecessarytoinspectthemainbangsignal. The

    directionthatthesignalamplitudefirsttravelsaboveorbelowthehorizontaltimeaxis

    determinesthedirectionofthearrivalofthebackechoes. Inthecaseshown,themainbang

    travelsinthenegativedirectionfirst;thusthearrivalofthefirstandsecondbackechoeswill

    occurinthenegativedirection. Individualpointswereplottedinthegraphstovisualizethe

    departureoftheechoesfromthesignalnoise.Thearrivaltimesofthemainbangandfirstand

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    43/123

    31

    Figure20. Mainbangandfirstandsecondbackechoesfor1.0ft.long1.0in.diametersteelrod

    secondbackechoeswererecorded(Table3). Then,thetimebetweenthefirstandsecondback

    echoeswasdividedbytwotofindthewavespeedperfootofrod. Twolengthsarenecessary

    toaccountforthewavetravelingdowntherodandthenreturningtothetransducer. Thebulk

    longitudinalwavespeedsforthesteelusedinthefollowingresearchareshownbelow(Table

    4.) The12L14SteelusedforthesimulatedcorrosionrodsandtheWilliamstiebackrods

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    44/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    45/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    46/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    47/123

    35

    Figure24.Ultrasonicsignalsforsimulatedcorrosionlocatedat8.94in.,16.06in.,and23.03in.fromtheendof

    therod.

    Thelength,L,fromthetransducertotheleadingedgeofsimulatedcorrosioncanbecalculated

    usingthefollowingformula:

    Equation27

    whereC1isthebulklongitudinalwavespeedofthematerial,andtisthetimebetweenthe

    mainbangandtheleadingedgeoftheflawecho. Thetimewasdividedbytwobecausethe

    ultrasonicpulsepassesdownthelengthoftherodtotheflawandthenreturnsbacktothe

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    48/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    49/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    50/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    51/123

    39

    Thesecondsetofrodsincludeda3ft.long1.0in.diameterrodwitha2.0in.lengthof0.5in.

    diametersimulatedcorrosion,a3ft.long0.5in.diameterrodwithoutsimulatedcorrosionand

    a3ft.long1.0in.diameterrodwithoutsimulatedcorrosion(Figure28). A45transitionwas

    includedateachendofthesimulatedcorrosiontoaddresstheconcernthatcorrodedregions

    donottypicallyexhibitanabrupttransition. The45transitionalsoreducedtheamplitudeof

    thesecondflawechothatoccuredcoincidentwiththebackechointheultrasonicsignal. These

    rodswereusedtoinvestigatetheeffectof0.5in.diametersimulatedcorrosiononthe

    ultrasonicsignal. Thebackechoandsuccessivetrailingechoeswererecordedforeachrod

    (Figure29). Thetimebetweenthetrailingechoes(t)foreachofthethreerodswasrecorded

    3ft.

    0.50 in.

    36in.

    1.00in.

    Figure28. 1.0in.diameterrodwith 0.5in.simulatedcorrosiondiametercomparedwith0.5in.diameter and

    1.0in.diameterrods

    *Transducerwasmounted

    onleftendoftherod.

    *Thetransitionindiameterwas45asshown

    atright

    45

    16.0625in.

    3ft.

    0.500 in. 1.00 in.

    2.0 in.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    52/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    53/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    54/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    55/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    56/123

    44

    outerdiameterisamultipleofthesimulatedcorrosiondiameterthesuperimposedtrailing

    echoesarriveatthesametimeappearingasasingletrailingechoes. Thetimebetweentrailing

    Table8. Calculateddiameterfor1.0in.diameterrodwith0.5in.and0.75in.diametersimulatedcorrosion

    Specimen

    Smallest

    Diameter (in.)

    Measured

    t(s)

    Calculated

    Diameter(in)

    %

    Difference

    0.5in.Simulated

    CorrosionDiameter0.5 3.50 0.53 6.6%

    0.75in.Simulated

    CorrosionDiameter0.75 4.76 0.73 3.2%

    echoeswasmeasuredandthecorrespondingsimulatedcorrosiondiameterwascalculatedas

    0.53in. Theseresultsshowedthat0.5in.diameterand0.75in.diametersimulatedcorrosion

    canbecalculatedin1.0in.diameterrodsusingEquation25. Thetimebetweentrailingechoes

    mustbemeasuredfromthebackechotothefirsttrailingechotodetectthesmallestreduced

    Figure32. Percentreductionoforiginalloadcapacityforsimulatedcorrosionina1in.diameterrod

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    57/123

    45

    diameter. Thereductionindiameterofasteelrodcorrelatesdirectlywithareductionofload

    capacity. Thetensileloadcapacityofasteelrodisdependentuponthesmallestcrosssectional

    areaoftherodperpendiculartothelongitudinalaxis. Thereductioncanbecalculatedin

    percentoforiginalloadcapacitybasedupontheoriginaldiameter(do)andthecorroded

    diameter(dc). Thepercentreductioninloadcapacityfora1in.diameterrodwithreduced

    crosssectionisplottedinFigure32. The0.75in.diametersimulatedcorrosionrepresentsa

    43.75%reductioninloadcapacityandthe0.5in.diameterrepresentsa75%reductioninload

    capacity.

    % Equation28

    4.3 LengthofSimulatedCorrosionCharacterizationInordertoinvestigatetheeffectoflengthofsimulatedcorrosionontheultrasonicsignalthe

    backechoandfirsttrailingechowereexamined. Thefrequencycontentofthebackechowas

    inspectedforashiftofthepeakfrequencywithachangeinthelengthofsimulatedcorrosion.

    Also,theratioofmaximumamplitudesofthetrailingandbackechoeswereexaminedfora

    changewiththelengthofsimulatedcorrosion. Allultrasonicsignalspresentedinthissection

    weregeneratedwiththeM1042OlympusNDT5MHztransducer.Thesignalwaveformand

    frequencycontentareshowninFigure33.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    58/123

    46

    Figure33. Signalwaveformandfrequencycontentfor5MHzM1041OlympusNDTtransducer

    4.3.1 ChangeinFrequencyContentofBackEchoforLengthofSimulatedCorrosionThefrequencycontentofthebackechowasinvestigatedtoidentifyanytrendsassociatedwith

    thelengthofsimulatedcorrosion.Thebackechoesofseveralrodswithvariouslengthof

    simulatedcorrosionwereevaluatedusingaFastFourierTransform(FFT). TheFFTanalysisof

    thebackechoshowsthefrequencycontentofthetimedomainsignal. AnFFTrequiresthe

    numberofdatapointsbe2NwhereNisaninteger. Todecreasetheeffectofnoiseonthe

    signalonlytheoscillationswhichcrossthexaxiswereconsideredintheanalysis,andthe

    remainderofthesignalwasreplacedwithzeros(Figure34.) Beforethefrequencyofthesignal

    wasanalyzedforsimulatedcorrosion,twotestswereperformedtoinvestigatetheeffectof

    lengthanddiameteroftherodonthefrequencyoftheultrasonicsignal. Thefirsttestincluded

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    59/123

    47

    Figure34. Backechoof1.0ft.longrodwitha0.5in.simulatedcorrosiondiameterwithandwithoutzeros

    threerods3.0ft.inlengthwithdiametersof0.5in.,1.0in.,and1.5in. AnFFTwascalculated

    forthebackechoineachrod. Thepeakfrequenciesforthe0.5in.,1.0in.,and1.5in.diameter

    rodswere6.10MHz,3.91MHz,and4.39MHzrespectively(Figure35). Thesecondtest

    includedthreerods1.0in.indiameterwithlengthsof1.0ft.,3.0ft.,and10.0ft. AnFFTwas

    calculatedforthebackechoineachrod. Theresultsshowedthatthepeakfrequenciesforthe

    1.0ft.,3.0ft.,and10.0ft.longrodswere4.39MHz,3.66MHz,and4.64MHz(Figure36.)

    Figure35andFigure36showthatthepeakfrequencyofthebackechocanvarywithbothrod

    diameterandrodlength. However,adefiniterelationshipbetweenpeakfrequency,rod

    diameterandrodlengthwasnotestablishedinthisstudy.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    60/123

    48

    Figure35. FFTfor3.0ft.longrodswith0.5in.,1.0in.,and1.5in.diameters

    Figure36. FFTforbackechoof1.0in.diameterrodswith1.0ft.,3.0ft.,and10.0ft.lengths

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    61/123

    49

    Twosetsofrods1.0in.indiameterand1.0ft.and3.0ft.inlengthweretestedtoidentifyany

    correlationforeachspecificlengthanddiameterofrods. Thefirstsetofrodsincludedfive1.0

    ft.longsteelrodswith0.5in.simulatedcorrosiondiameterforlengthsof0.5in.,1in.,2in.,4

    in.,and8in.(Figure37). A90transition,fromtheoriginalroddiametertothesimulated

    corrosiondiameter,wasusedoneachrod. Thelocationofthesimulatedcorrosionwas2.0in.

    fromtheendofeachrod. TheFFTforthebackechowascomparedforeachofthefiverods

    Figure37. 1.0in.diameter1.0ft.longrodswithdifferentlengthsofsimulatedcorrosion

    8in.

    12in.0.500

    1.00

    2.0in.

    9in.

    12in.0.500

    1.0

    1.00

    9.5in.

    12in.0.500

    0.5in.

    1.00

    6.0in.

    12in.0.500

    4.0

    1.00

    2in.

    12in.0.500

    8.0in.

    1.00

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    62/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    63/123

    51

    9.0in.

    36in.

    0.500in. 1.00 in.

    2.0in.

    9.0in.

    36in.

    0.500 in. 1.00 in.

    6.0in.

    9.0in.

    36in.

    0.500 in. 1.00in.

    10.0 in.

    *Transducerwasmounted

    onleftendoftherod.

    *Alltransitionswere90

    asshownatright

    90

    Figure39. 3.0ft.long1.0in.diameterrodswith2.0in.,6.0in.,and8.0in.lengthsofsimulatedcorrosion

    startingat9in.alongtherod

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    64/123

    52

    Figure40. Peakfrequencyofthebackechofor3.0ft.longrodswith2.0in.,6.0in.,and10.0in.lengthsof

    simulatedcorrosion.

    percentageoftotalrodlength(Figure40). Theresultsshowanincreaseinpeakfrequencywith

    anincreaseinpercentsimulatedcorrosion. The0.5in.and1.0in.diameterrodswithout

    simulatedcorrosioncreatetheupperandlowerboundofthefrequencyshift. The1.0in.

    diameterrodrepresentsarodwithoutanysimulatedcorrosionandformsthelowerboundof

    thepeakfrequency. The0.5in.diameterrodrepresentsarodwithfull0.5in.diameter

    simulatedcorrosionandformstheupperboundofthepeakfrequency. Theshiftinpeak

    frequencyshowsthattheincreaseinsimulatedcorrosionlengthactsasafilterforcertain

    frequenciesintheultrasonicsignal.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    65/123

    53

    Overall,theresultsindicatethatanincreaseinpeakfrequencyofthebackechooccurswithan

    increaseinthelengthofsimulatedcorrosionfor1.0ft.and3.0ft.longrodswitha1.0in.

    diameter. The3.0ft.longrodsexhibitedastrongercorrelationthanthe1.0ft.longrods,but

    thenumberofdatapointsforeachrodlengthwaslimited.

    4.3.2 ChangeinBackEchoAmplitudewithLengthofSimulatedCorrosionThemaximumamplitudesofthebackechoandthefirsttrailingechowereinvestigatedto

    identifyarelationshipwiththelengthofsimulatedcorrosion.Thebackechorepresentsan

    ultrasonicpulseundergoingdirectreflectionfromtheendoftherod,whilethefirsttrailing

    echoincludesonemodeconversionwithshearwavepropagationacrosstheminimum

    diameteroftherod.

    Thesetof1.0ft.(Figure37)longrodswereusedfortesting. Thebackechoandfirsttrailing

    echowererecordedforeachrod(Figure41).Themaximumamplitudesofthebackechoand

    thefirsttrailingechowererecordedinTable9. Theratiooftheamplitudeofthefirsttrailing

    echotothebackechoincreaseswiththelengthofsimulatedcorrosion. Theamplituderatiofor

    eachlengthofsimulatedcorrosionwasplottedinFigure42. Theresultsshownastrong

    correlationbetweenthepercentlengthofsimulatedcorrosionandtheratioofpeaktrailing

    echotothebackecho. Theincreaseinamplitudeofthetrailingechorelativetotheamplitude

    ofthebackechowasduetotheincreasedlengthofsimulatedcorrosion. Assumingapoint

    sourceforatransducer,Figure43showsacrosssectionoftheultrasonicwavethatreflects

    fromthesimulatedcorrosionregionfora0.5in.and8in.lengthofsimulatedcorrosion.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    66/123

    54

    Figure41. Backechoandfirsttrailingechofor1.0 ft.longrodswithmultiplelengthsofsimulatedcorrosion

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    67/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    68/123

    56

    0.5in.lengthofsimulatedcorrosion

    8.0in.lengthofsimulatedcorrosion

    Portionofwavethat

    reflectsfromthesimulated

    corrosionsurface

    Figure43. Comparisonofreflectionfromthesimulatedcorrosionsurface

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    69/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    70/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    71/123

    59

    Figure46. Ultrasonicsignalfor90,45,30,15,10and5 transitionangles

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    72/123

    60

    Figure47. Delayindetectableflawechoversustransitionangle

    theflawechodoesnotdecreaseconsistentlywiththetransitionangle. Thisphenomenonwas

    investigatedmorethoroughlybymachiningrodswithamorecompleterangeoftransition

    angles. Tocompareamplitudesbetweenvariousrods,thedatawasnormalizedusingnotches

    tocomparetwoamplitudeswithinasingleultrasonicsignal. Multiplevariablesaffect

    consistenttransducercoupling.Theseinclude:forceappliedtothetransducer(couplingforce),

    surfaceconditionoftherodend,amountofcouplinggel,andthepresenceofparticles

    betweenthetransducerandthesurfaceofthespecimen. Thesevariablesaredifficultto

    controlconsistently. Tomaintainaconsistentcomparison,anotchwasaddedtoeachrodto

    createarepeatablebaselineechoineveryultrasonicsignal. Thesignalechoassociatedwith

    thereflectionfromthisnotchwascomparedtotheamplitudesofanyechoesofinterestin

    ordertonormalizethedata. Threenotchlocationswereevaluatedtoselectanappropriate

    baselinenotchlocation. Eachnotchwascutintoa1in.diameter,6in.longrod. Thenotchwas

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    73/123

    61

    made0.125in.deeparoundthecircumferenceoftherodandwas0.25in.wide(Figure48).

    Thenotcheswerecutatthreedifferentdistancesfromtheleadingedgeoftherod:0.5in.,1.0

    in.,and1.5in. Therodsweretestedwiththe5MHzmagnetictransducer,andtheultrasonic

    signalwasrecorded(Figure49). Thenotchlocated1in.awayfromtheultrasonictransducer

    wasselectedbecauseitprovidedanechothatcouldbemeasuredinthesameorderof

    magnitudeastheflawechoesfoundinFigure46,anddidnotaddextranoisetotheultrasonic

    signal. Incontrast,thenotchlocated2in.fromthetransducerprovidedincreasednoise

    followingthebackecho,whilethenotchlocated0.5in.fromthetransducerprovidedapulse

    withanegligibleamplitude.

    0.5in.

    6in.

    0.75in.

    0.25in.

    1.00in.

    1.0in.

    6in.

    0.75in.

    0.25in.

    1.00in.

    0.5in.

    6in.

    0.75in.

    0.25in.

    1.00in.

    Figure48. 6.0in.long1.0in.diameterrodswith0.125in.deep0.25in.widenotches

    located0.5in.,1.0in.,and2.0in.fromtheendoftherod

    Ultrasonic

    Transducer

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    74/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    75/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    76/123

    64

    Figure51. Normalizedmaximumamplitudeofflawechoversustransitionangle

    echo. Thenormalizedamplitudedecreasedsharplyfromatransitionangleof90to75.

    However,insteadofcontinuingtodecline,thenormalizedamplitudeleveledoffandthen

    showedseveralsmallpeaksalongwithasignificantpeakatatransitionangleof30anda

    smallerpeakatatransitionangleofapproximately43. Thepeakswereinvestigatedusingthe

    raymethod,assumingapointsourceattheendoftherod. Twopossiblescenarioswere

    considered.

    Thefirstscenarioconsideredwasthedirectlongitudinalwavereflectionfromthetransition

    surface. AccordingtoSnell'slaw(Figure3),alongitudinalwavereflectsattheangleof

    incidenceofthelongitudinalwavearrivalatthesurface,becausethewavespeedsarethesame

    (Figure52). Table10documentstheangleoftravelofthereflectedlongitudinalwavewith

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    77/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    78/123

    66

    Table10. Angleoflongitudinalwavereflectionfromtransitionsurface

    TransitionAngle InitialWaveAngle IncidentAngle ReflectedWaveRelativetoRodAxis

    transition initial 1 axis

    5

    4.76

    80.24 165.2410 4.76 75.24 155.24

    15 4.75 70.25 145.25

    20 4.73 65.27 135.27

    25 4.71 60.29 125.29

    30 4.69 55.31 115.31

    35 4.67 50.33 105.33

    40 4.64 45.36 95.36

    42.5 4.62 42.87 90.00

    45 4.61 40.39 85.39

    50 4.58 35.42 75.42

    55 4.55 30.45 65.45

    60 4.51 25.49 55.49

    65 4.48 20.52 45.52

    70 4.44 15.56 35.56

    75 4.40 10.60 25.60

    80 4.36 5.64 15.64

    85 4.33 0.67 5.67

    90 4.29 4.29 4.29

    Thesecondscenarioconsideredwasthedirectshearwavemodeconversionfromthetransition

    surface. Theinitiallongitudinalwavemodeconvertsatthetransitionsurfaceproducingashear

    wavereflection. AccordingtoSnell'slaw,theshearwavereflectsatanincidentanglethatis

    dependentuponthearrivalincidentangleandthespeedsofthelongitudinalwave(C1)and

    shearwave(C2)(Figure53). Table11documentstheangleoftravelofthereflectedshearwave

    withrespecttotheaxisoftherod. Whentheshearwavereflectsfromthetransitionsurface

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    79/123

    67

    ata90angletothelongitudinalaxisoftherod,thewavereflectsfromtheoppositetransition

    surfaceonemoretimeandreturntothepointsource,duetosymmetry. This90reflection

    occursata27.8transitionangle. Thisrepresentsthelargepeakatapproximately28in

    Figure51. Thevaluewasapproximatebecausethetransducerwasapproximatedasapoint

    source.

    Figure53. Shearwavereflectionfromtransitionsurface

    initial

    tansition

    1

    2

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    80/123

    68

    Table11. Angleofshearwavereflectionfromtransitionsurface

    Transition

    Angle

    Initial Wave

    Angle

    Incident

    Long.Angle

    Incident

    ShearAngle

    ReflectedWave

    RelativetoRodAxis

    transition initial 1 2 axis

    5 4.76 80.24 32.95 117.95

    10 4.76 75.24 32.26 112.26

    15 4.75 70.25 31.30 106.30

    20 4.73 65.27 30.09 100.09

    25 4.71 60.29 28.64 93.64

    27.8 4.70 57.50 27.71 90.00

    30 4.69 55.31 26.99 86.99

    35 4.67 50.33 25.14 80.14

    40 4.64 45.36 23.12 73.12

    45 4.61 40.39 20.95 65.95

    50 4.58 35.42 18.66 58.6655 4.55 30.45 16.24 51.24

    60 4.51 25.49 13.74 43.74

    65 4.48 20.52 11.16 36.16

    70 4.44 15.56 8.51 28.51

    75 4.40 10.60 5.83 20.83

    80 4.36 5.64 3.11 13.11

    85 4.33 0.67 0.37 5.37

    90 4.29 4.29 2.37 2.37

    Overall,theresultsprovideevidencetosupporttwoconclusions. First,exceptforthe27.5

    transitionangle,theflawechoexperiencedasignificantdecreaseinamplitudebelow80but

    wasstilldetectable. Theflawechowasdetectableforgradualtransitionsaslowas5.

    Second, transitionscauseadelayintheultrasonicsignalbetweenthemainbangandtheflaw

    echo. Themoregradualthetransition,thelongerthedelay. Thelargestdelaywas23.8sfor

    the5transitionwhichcorrespondstoa5.5in.insteelrods. Thus,thelocationofsimulated

    corrosionmustbeadjustedbaseduponthetransitionangleofthesimulatedcorrosion.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    81/123

    69

    5 WilliamsCommercialTiebackRodTestingTherodstestedtoevaluatethephysicalgeometryofsimulatedcorrosionweremachinedfrom

    12L14smoothrodstock. Commerciallyavailabletiebackrodsaretypicallyfabricatedwithan

    allthreadsurface.Williamscommercialtiebackrodswereselectedfortestingtoevaluate

    differencesintheultrasonicsignalduetothethreadedsurface.

    5.1 TypesofTiebackRodsUsedinGeotechnicalApplicationsVariousstylesoftiebackrodshavebeenusedinconstructionofsheetpilesystems. Thetwo

    mostcommonstylesareshownbelow(Figure54). Theupsetthreadstylewascommonin

    previousconstruction. Upsetthreadsarerolledintothesteelrod,ratherthancut,toensure

    theminordiameterofthethreadsisgreaterthantheouterdiameteroftherod. These

    tiebackrodsweretypicallyfabricatedfromsmoothA36steelrod. Themajorityofcurrent

    geotechnicalpracticesuseallthreadtiebackrods. Thesetiebackrodsarefabricatedfroma

    highgradesteelwiththreadsformedalongtheentirelengthoftherod.

    Rods used in old construction

    (Upset Threads)

    Rods used in new construction

    (All-Thread)

    Figure54. Upsetthreadandallthreadrods

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    82/123

    70

    Theultrasonicsignalsfor12L14smoothrodstockandWilliamsallthreadrodswerecompared.

    Therodstestedwere10feetlongwitha1.0in.majordiameter. Thefullultrasonicsignalfor

    eachtypeofrod,includingmultiplebackechoes,isprovidedinFigure55. Adistinctdifference

    Figure55. Comparisonof10ft.longWilliamsthreadedrodand12L14smoothsteelrod

    isevidentin theportionofthesignalfollowingeachbackechoforthetworods. Figure56

    providesacloserlookatthebackechoandsubsequenttrailingechoesofeachrod.The

    ultrasonicsignalforthe12L14steelrodshowsseveraldistincttrailingechoesaftertheback

    echo.TheWilliamstiebackrodshowsadistinctbackechowithonlyonedistinguishabletrailing

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    83/123

    71

    echo. Thetimebetweenthebackechoandthetrailingechowasdifficulttomeasureinthe

    Williamsthreadedrodduetoincreasednoiseintheultrasonicsignal. ThreadsintheWilliams

    rodcausedispersionoftheultrasonicwaveduetospuriousreflectionsfromthethreaded

    surfaces. Sincetrailingechoesinvolveatleastonereflectionfromthesurfaceoftherod,

    detectingtrailingechoesfromathreadedsurfaceprovestobedifficult. Thisimpliesthat

    calculatingtheexactouterdiameterofathreadedrodmaynotbepossibleusingthetime

    betweentrailingechoes(t). Anapproximationofthediametermaybecalculatedusingthe t

    betweenthepeaks,insteadoftheleadingedge,ofbackechoandthefirsttrailingecho.

    Figure56. Trailingechocomparisonfor12L14smoothrodandWilliamsthreadedrod

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    84/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    85/123

    73

    evaluatingthepeakvaluesofsuccessivebackechoesineachrod. ArectifiedAscan,which

    acquirestheabsolutevalueoftheultrasonicsignalamplitude,includingalldetectableback

    echoes,wasrecorded(Figure57). Theattenuationofthewaveamplitudealongtherodwas

    definedbyEquation29(Kolsky,1963)

    Equation29

    whereaoistheinitialamplitude, isthecoefficientofattenuation,andxisthedistancealong

    therod. TheunitsofthecoefficientofattenuationareNepers(Np)perlength,whereaNeper

    isadimensionlessquantity. Thepeakamplitudeofeachbackechowasplottedwithrespectto

    thedistancetraveled(Figure58.) Thebestfittrendlinewascalculatedanddisplayedwiththe

    Figure58. Signalattenuationfor1.0ft.,3.0ft.,and6.0ft.longWilliamsrods.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    86/123

    74

    equationandR2value. Theattenuationcoefficients()forthe1ft.,3ft.,and6ft.rodswere

    0.177Np/ft.,0.120Np/ft.,and0.096Np/ft.respectively. Thedifferencesinmagnitudeof

    wereduetoscatteringwhichoccurredeachtimetheultrasonicwavereflectedfromanendof

    therod. Whentheultrasonicwavetraveledanequivalent12feetalongthe1ft.longrod,the

    wavereflectedfromanendsurface11times. Forthe3ft.and6ft.longrods,thesame12ft.

    equivalentlengthincluded3and1endreflectionsrespectively. Theresultsshowadecreasein

    attenuationcoefficientwithadecreaseinthenumberofendsurfacereflections. Longerrods

    havefewerreflectionsresultinginasmallerattenuationcoefficient.

    Figure55showsthata10ft.long1.0in.diameterWilliamstiebackrodexhibits4distinctback

    echoesintheultrasonicsignal. Thisshowsthatthepulseechomethodusinga5MHzprobe

    couldbeusedtodetectabackechoina1.0in.diameter40ft.longWilliamstiebackrod. This

    wasaconservativeestimatesinceanactual40ft.rodwouldnotincludetheattenuationfrom

    themultipleendreflectionsinthe10ft.rod.

    5.3 SignalAttenuationforWilliamsRodsinSoilTheeffectofultrasonicsignalattenuationinsoilwasimportantfortestingWilliamscommercial

    tiebackrods. Theamountofenergytransmittedintothesurroundingmediumduringultrasonic

    inspectionofatiebackrodisdependentuponthepropertiesofthatmedium. Williamstieback

    rodswithvarioussurroundingmediaweretestedtoinvestigatetheeffectonsignal

    attenuation. Threesectionsof3ft.longWilliamstiebackrodswereplacedinplywoodboxes

    withapproximately5.5in.ofcoverineachdirection. Anultrasonictransducerwascoupledto

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    87/123

    75

    oneendofthetiebackrodwhichprotrudedthroughtheendofthebox(Figure59). Eachbox

    wasfilledwithoneofthreesoils: sand,loosesoil,andcompactedsoil.

    Figure59. Boxesconstructedforsignalattenuationtestsinsoils

    5.3.1 SoilCharacterizationTwosoils,sandandPalousesoil,wereusedinthetests. Thesandwascollectedfromaquarry

    runbyAtlasConcretecompanyinLewiston,Idaho. ThePalousesoilwascollectedfromtopsoil

    inthePalouseregionofWashingtonState. Thesoilswerecharacterizedaccordingtothe

    protocoldevelopedbytheArmyCorpsofEngineersforearthretentionssystems,including

    grainsizedistributionandAtterberglimittests(USArmyCorpsofEngineers,1994).

    AgrainsizedistributiontestwasperformedaccordingtoASTMD422(ASTMStandardD422,

    2007). TheresultswereplottedforeachsoilinFigure60andthecoefficientofuniformity(Cu)

    andcoefficientofcurvature(Cc)werecalculatedforeachsoil. Theresultswererecordedin

    Table12.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    88/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    89/123

    77

    Figure61. AtterberglimittestofPalousesoil

    experimentaldatausedtodeterminetheliquidlimit(LL). Theplasticlimit(PL)wasmeasured

    experimentallyandtheplasticityindex(PI)andtheflowindexwerecalculatedusingLLandPL.

    TheresultswereprovidedinTable13.

    Table13. ResultsofAtterberglimittestforPalousesoil

    PL 23.4

    LL 35.3

    PI 11.9

    Flow Index -1.33

    Usingthesoilpropertiesmeasured,theUSCSsoilclassificationwasdeterminedforsandand

    Palousesoil. Thesandusedwasapoorlygradedsand(SP)and thePalousesoilwasasiltysand

    (SM).

    5.3.2 SoilPreparationThesandandloosesoilwereplacedintheboxescompletelysurroundingtheWilliamstieback

    rods. Forthesandandloosesoilnocompactionwasused. Forthecompactedsoila25lb.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    90/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    91/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    92/123

    80

    Table15. AttenuationcoefficientsoftheultrasonicsignalforWilliamstiebackrodsinsoils

    Sand LooseSoil CompactedSoil

    Control Baseline Wet Control Baseline Wet Control Baseline Wet

    0.081 0.075 0.078 0.072 0.069 0.065 0.095 0.076 0.0830.074 0.084 0.08 0.068 0.069 0.074 0.094 0.076 0.082

    0.084 0.083 0.087 0.066 0.073 0.073 0.083 0.079 0.071

    0.079 0.082 0.085 0.065 0.072 0.07 0.083 0.076 0.07

    0.079 0.08 0.079 0.064 0.076 0.075 0.093 0.095 0.089

    0.083 0.08 0.078 0.077 0.075 0.067 0.081 0.09 0.089

    0.08 0.083 0.081 0.073 0.075 0.061 0.088 0.08 0.083

    0.079 0.073 0.081 0.073 0.073 0.073 0.089 0.081 0.083

    0.083 0.079 0.086 0.075 0.086 0.076 0.093 0.075 0.09

    0.081 0.067 0.082 0.072 0.086 0.067 0.084 0.075 0.091

    Average Average Average Average Average Average Average Average Average

    0.0803 0.0793 0.0817 0.0705 0.0754 0.0701 0.0883 0.0803 0.0831

    Std.Dev. Std.Dev. Std.Dev. Std.Dev. Std.Dev. Std.Dev. Std.Dev. Std.Dev. Std.Dev.

    0.0029 0.004 0.0033 0.0045 0.0061 0.0049 0.0053 0.0069 0.0074

    CoV CoV CoV CoV CoV CoV CoV CoV CoV

    0.0361 0.0504 0.0404 0.0638 0.0809 0.0699 0.0600 0.0859 0.0890

    zTest zTest zTest zTest zTest zTest

    0.640 1.008 2.044 0.190 2.908 1.807

    theloosesoilthecoefficientsofattenuationswere0.0705Np/ft.,0.0754Np/ft.,and0.0701

    Np/ft.forthecontrol,"baseline",and"wet"samples. Again,therewasnosignificantincrease

    inattenuationfromthecontroltothe"baseline"or"wet"condition. Forthecompactsoilthe

    coefficientsofattenuationwere0.0883Np/ft.,0.0803Np/ft.,and0.0831Np/ft.forthecontrol,

    "baseline",and"wet"samples.Inthiscasetheattenuationcoefficientsforthe"baseline"and

    the"wet"conditionwereslightlylessthanthecoefficientofattenuationforthecontrol. Thez

    Testforeach"baseline"and"wet"testcomparedwiththecontrolshowedthatalltests,except

    the"baseline"forthecompactedsoil,werewithina99%confidenceinterval (2.58z2.58).

    NormalizeddataisalsoshowninTable16whichiscalculatedbydividingeachofthe"baseline"

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    93/123

    81

    and"wet"conditiontestsbytheaveragecontrolvalueforeachrod. Forexample,theaverage

    "baseline"valueforsandof0.979showsthattheattenuationcoefficientwas97.9%ofthe

    averagecontrolvalue. Theseresultsshowthattheattenuationcoefficientforthe"baseline"

    and"wet"conditionoftheultrasonicsignalforsand,loosePalousesoil,andcompactPalouse

    soilwaswithinplusorminus9.1%forpercentwatercontentsupto7.74%,28.21%,and29.50%

    respectivelyforWilliamstiebackrods.

    Table16. NormalizedattenuationcoefficientsoftheultrasonicsignalforWilliamstiebackrodsinsoils

    Sand

    LooseSoil Compacted

    Soil

    Baseline Wet Baseline Wet Baseline Wet

    0.934 0.971 0.979 0.922 0.861 0.940

    1.046 0.996 0.979 1.050 0.861 0.929

    1.034 1.083 1.035 1.035 0.895 0.804

    1.021 1.059 1.021 0.993 0.861 0.793

    0.996 0.984 1.078 1.064 1.076 1.008

    0.996 0.971 1.064 0.950 1.019 1.008

    1.034 1.009 1.064 0.865 0.906 0.940

    0.909 1.009 1.035 1.035 0.917 0.940

    0.984 1.071 1.220 1.078 0.849 1.0190.834 1.021 1.220 0.950 0.849 1.031

    Average Average Average Average Average Average

    0.979 1.017 1.070 0.994 0.909 0.941

    Std.Dev. Std.Dev. Std.Dev. Std.Dev. Std.Dev. Std.Dev.

    0.067 0.041 0.086 0.070 0.078 0.084

    CoV CoV CoV CoV CoV CoV

    0.069 0.040 0.080 0.070 0.085 0.090

    Thepercentoftheincidentwavethatistransmittedtothesurroundingmediaduringa

    reflectionisdependentupontheimpedanceofthetwomaterialsincontact(Krautkramer&

    Krautkramer,1990). Ifthetwomaterialshavethesameimpedanceandareinperfectcontact,

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    94/123

    82

    thenalltheenergywilltransferthroughtheboundary. Thetransmittancepercentfortwo

    dissimilarimpedancesisgivenby

    Equation30

    whereZ1istheimpedanceofthesteel(Z=46.0MRayls)andZ2istheimpedanceofthe

    surroundingmedia,forthematerialsinthisstudy. Figure63showsthetransmittanceofasteel

    rodembeddedinseveral surroundingmediaincludingwater(Z=1.48MRayls)andconcrete(Z

    =8.0MRayls). Foratiebackrodinsoil,partofthesurroundingmediais air(Z=0.000429

    MRayls),whichdrasticallydecreasesthetransmittanceoftheincidentwavetothesurrounding

    media. Consideringthataportionofthesurroundingmediaisairandthefirstbackechoonly

    hasonereflection,thetransmittanceisnegligible. Thus,theinspectablelengthsoftiebackrods

    willnotvarywhentherodsareembeddedinsoils.

    Figure63. Transmittanceforsteelwithwaterandconcretesurroundingmedia

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    95/123

    83

    5.4 ActualTiebackRodswithFlawsSimulatedcorrosionwasmachinedin3ft.Williamstiebackrodsectionstodetermineifspecific

    geometriescouldbedetectedincommercialtiebackrods. Theseincludedlocationof

    simulatedcorrosion,diameterofsimulatedcorrosion,lengthofsimulatedcorrosion,andthe

    transitionofsimulatedcorrosion.

    5.4.1 LocationofSimulatedCorrosionThreeWilliamssteelrods,3ft.longand1in.indiameter,weremachinedwithsimulated

    corrosionatvariouslocationstovalidatethepulseechomethodforlocationtheleadingedge

    ofsimulatedcorrosioninaWilliamstiebackrod. Simulatedcorrosionwitha0.5in.diameter

    9.28in.

    36in.

    0.500in. 1.00 in.

    2.0in.

    15.97in.

    36in.

    0.500 in. 1.00 in.

    2.0 in.

    22.84in.

    36in.

    0.500 in. 1.00in.

    2.0 in.

    *Transducerwasmounted

    onleftendoftherod.

    *Alltransitionswere90

    asshownatright

    90

    Figure64. 3.0ft.long1.0in.diameterWilliamstiebackrodswith2.0in.lengthof0.5in.simulatedcorrosion

    diameterat9.28in.,15.97in.,and22.84in.alongtherod

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    96/123

    84

    and 2.0in.lengthwasmachinedat9.28in.,15.97in.,and22.84in.alongthelengthofthe

    steelrods(Figure64).Thelocationofsimulatedcorrosionwaseasilydetectablebasedonthe

    timebetweenthemainbangandtheleadingedgeoftheflawecho. Thefollowingsignals

    (Figure65)showaflawechoappearingintheultrasonicsignalthatcorrelatesdirectlywiththe

    locationoftheflaw. Theformulaforlength(Equation27)wasusedtodeterminethelocation

    oftheflaw(Table17)foreachofthethreerodsinFigure65. Thethreerodsshoweda

    maximumpercentdifferenceof1.59%betweenmeasuredandcalculatedflawlocation. The

    Figure65.Ultrasonicsignalsfrom3.0ft.long1.0in.diameterWilliamstiebackrodswith2.0in.lengthof0.5in.

    diametersimulatedcorrosionat9.28in.,15.97in.,and22.84in.alongtherod.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    97/123

    85

    resultsshowthattheabilitytolocatetheflawpositionwasnotaffectedbythethreadsofthe

    Williamsrods.

    Table17. Comparisonofmeasuredandcalculatedlocationofsimulatedcorrosion

    MeasuredFlawLocation

    (in.) FlawTime(s) CalculatedFlawLocation(in) %Difference

    9.28 79.3 9.13 1.59%

    15.97 138.3 15.93 0.27%

    22.84 197.4 22.73 0.47%

    5.4.2 DiameterofSimulatedCorrosionToverifythedetectionofsimulatedcorrosiondiameteronWilliamstiebackrods,two3ft.long

    rodsweremachinedwith0.5in.diameterand0.75in.diametersimulatedcorrosionregions

    16.0in.

    36in.

    0.500 in. 1.00 in.

    2.0 in.

    *Transducerismounted

    onleftsideofrod.

    *Alltransitionsare90asshownatright

    90

    Figure66. 3.0ft.long1.0in.diameterWilliamsrodswith2.0in.lengthsof0.5in.and0.75in.diameter

    simulatedcorrosion

    16.0in.

    36in.

    0.750 in. 1.00 in.

    2.0 in.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    98/123

    86

    Figure67. ComparisonofWilliamsrodswith0.5in.and0.75in.diameterofsimulatedcorrosion

    (Figure66). Thefirstbackechowitheachdistinguishabletrailingechoeswasprovidedin

    Figure67. Thetimebetweenthetrailingechoeswasmeasured(Table18.) UsingEquation25

    thediameterwascalculatedfromthespacingofthetrailingechoes. The0.5in.simulated

    corrosiondiameterrodhadacalculateddiameterof0.51in.resultingina1.9%difference. The

    0.75in.simulatedcorrosiondiameterrodhadacalculateddiameterof0.73resultingina2.6%

    difference. Thisprovidesaverystrongcorrelationbetweentheminimumdiameter(or

    simulatedcorrosiondiameter)andthetimebetweentrailingechoesfortheWilliamsrod.

    Table18. Timebetweentrailingechoesfor0.5in.and0.75in.simulatedcorrosiondiameter

    RodSmallest

    Diameter(in.)

    Measured

    Time(s)

    Calculated

    Diameter(in.)

    %Difference

    0.5in.SimulatedCorrosion 0.50 3.34 0.51 1.9%

    0.75in.SimulatedCorrosion 0.75 4.79 0.73 2.6%

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    99/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    100/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    101/123

    89

    5.4.4 TransitionofSimulatedCorrosionFinally,a3ft.longWilliamsrodwasmachinedwitha0.5in.simulatedcorrosiondiameteranda

    45transitionangle(Figure71). Thisrodwasusedtoinvestigatetheabilitytodetectthe

    location,diameter,andlengthofsimulatedcorrosionforarodwitha45transitionangleina

    Williamsrod. ThefullultrasonicsignalfromthepulseechotestwasrecordedfortheWilliams

    rodwitha45transition(Figure72). Thesignalshowsadistinctflawandbackecho. Theflaw

    andbackechowereeachfollowedbyfourdistincttrailingechoes.

    Figure72. Fullultrasonicsignalfor2in.lengthof0.5in.diametersimulatedcorrosionwith45transitionangle

    forWilliamstiebackrod

    *Transducerismounted

    onleftsideofrod.

    45o

    36in.

    15.75in. 0.500 in. 1.00 in.

    2.0 in.

    Figure71. Rodusedforsimulatedcorrosiondetectionwitha45transitionangle

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    102/123

    90

    Thearrivaltimeoftheflawechowas138.7s. Usingthelongitudinalwavespeedofthe75ksi

    steel,theflawlocationwascalculatedtobe15.97in,whichhasa1.41%differencefromthe

    measured15.75in.tothebeginningofthetransitionoftheflaw(Table19). Thisshowsthatthe

    methodusedinthepreviouschapterforlocatingthepositionofsimulatedcorrosioncanbe

    usedinWilliamsrodswitha45transitionangle.

    Table19. CalculatedsimulatedcorrosionlocationforWilliamsrodwith45transitionangle

    MeasuredFlawLocation

    (in.) FlawTime(s) CalculatedFlawLocation(in) %Difference

    15.75 138.7 15.97 1.41%

    ThebackechoandsubsequenttrailingechoeswererecordedfortheWilliamsrodwitha45

    transitionangle. Thebackechoandfourtrailingechoeswerevisible(Figure73.) Thearrival

    timeofthefirstbackechoandtwotrailingechoeswereusedtocalculatethetimebetween

    echoes. Thistimebetweentrailingechoeswasusedtocalculatethediameterofthesimulated

    Figure73. Firstbackechoandsuccessivetrailingechoesfor2in.simulatedcorrosionwith45transition

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    103/123

    91

    corrosionaccordingtoEquation25(Table20). Thecalculateddiameterwas0.502in.whichhad

    a0.4%differencefromthemeasuredvalueof0.500in. Thisshowsthatthemethodfor

    detectingthediameterofsimulatedcorrosioncanbeusedforWilliamsrodswitha45

    transitionangle.

    Table20. ComparisonofmeasuredandcalculateddiameterofsimulatedcorrosionforWilliamsrodwith45

    transitionangle

    RodSmallest

    Diameter(in.)

    MeasuredTime

    (s)

    Calculated

    Diameter(in.)%Difference

    0.5in.simulatedcorrosion 0.500 3.27 0.502 0.4%

    TheFFTofthefirstbackechowasrecordedfortheWilliamsrodwitha2in.lengthofsimulated

    corrosionanda45transitionangle. TheresultwasplottedwiththeFFTsignalsfroma0.5in.

    diameterand1.0in.diameter3.0ft.longrodsof12L14steel. Theresultsshowthatthe

    Figure74.Frequencyofbackechoof2in.long0.5in.diametersimulatedcorrosionwith45

    transitioninWilliamsrod

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    104/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    105/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    106/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    107/123

    95

    measuredfromtheleadingedgeofthemainbangtotheleadingedgeoftheflawecho. The

    leadingedgeforeachechoisdefinedasthefirstpointthatappearsoutsidetheboundsofthe

    signalnoise. Figure77plotseachpointoftheultrasonicsignalintherangeofthemainbang

    andtheflawechotoidentifytheleadingedge. Forrodswithatransitionfromtheoriginal

    diametertotheflawdiameter,themeasuredtimemayincludeadelayfromtheactualflaw

    location. Themaximumdelayfora5transitionangleina1.0in.diameterrodwith0.5in.

    diametersimulatedcorrosionwas23.8s,whichcorrespondstoanerrorof0.44in.for

    determiningthelocationoftheflaw.

    Figure78depictsthebackechoandtrailingechoesfora3.0ft.long1.0inchdiameter12L14

    smoothsurfacerodandaWilliamscommercialtiebackrod,bothwitha2.0in.longsectionof

    0.5in.diametersimulatedcorrosionstarting17.0in.fromtheleftendoftherod. Thetime

    betweenthetrailingechoesfollowingthefirstbackechocanbedirectlyrelatedtothediameter

    Figure78. Firstbackechoandsubsequenttrailingechoesforinspectionofsimulatedcorrosiondiameter

    inspectionin1.0in.diameter12L14steelrodand1.0in.diameterWilliamsrod

    12L14SteelRod

    WilliamsTiebackRod

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    108/123

    96

    ofsimulatedcorrosion. Equation31correlatesthediameteroftherod(d)tothetimebetween

    echoes(t),baseduponthespeedoflongitudinalwavepropagation(C1)andthespeedof

    transversewavepropagation(C2). Thetimebetweentrailingechoesismeasuredinthesame

    Equation32

    mannerasthetimebetweenthemainbangandtheflawecho. Theindividualpointsofeach

    echoareplottedtoidentifytheleadingedgewhichisthefirstpointtoraiseaboveorbelowthe

    noiseofthesignal. TypicalvaluesforthelongitudinalandshearwavespeedinsteelareC1=

    19,190ft/sandC2=10,597ft/s. Thediameterofsimulatedcorrosioncanbeusedin

    conjunctionwiththeoriginaldiametertodeterminethereductioninloadcapacity. Equation

    32depictsthepercentloadcapacityfora rodwithsimulatedcorrosion.

    %

    Equation33

    Theloadcapacityisdependentuponthediameterofthecorrodedregion,dc,andtheoriginal

    roddiameter,do. Theabilitytoidentifythelocationanddiameterofcorrosionprovidesan

    inspectorwiththeabilitytoapproximatethestructuralintegrityofatiebackrod.

    Theselectionoftheultrasonictransduceriscriticalwheninspectingatiebackrod. Themain

    variables toconsiderincommercialtransducersarethediameterofthetransducerandthe

    frequencyoftheultrasonicsignalgenerated. Thetransducerdiametershouldbeaslargeas

    possiblewithoutexceedingthediameteroftherod. Anincreaseinthediameterofthe

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    109/123

    97

    transducerresultsinanincreaseintheenergygeneratedintheultrasonicwavewhichinturn

    increasestherangeofinspection.Thetransducerwavelengthisdependentuponthediameter

    ofthetiebackrodandthesmallestexpectedflawdimension. Toensurebulkwavepropagation

    thetransducerwavelengthshouldbeatleastoneorderofmagnitudelessthanthediameterof

    therod. Thewavelengthoftheultrasonicsignalwilldeterminetheminimumflawdetectablein

    thespecimen. Theminimumdetectableflawdimensionisapproximatelythewavelengthofthe

    ultrasonicpulsefrequencyintroducedintothemedium(Figure17). Thesetwocriteriawill

    determinethetransducerfrequencyselection.

    Figure79. Minimumdetectableflawdimensioninsteel

    6.2

    Endpreparation

    and

    Transducer

    Coupling

    Asignificantvariationintheamplitudeofthesignalcanoccurduetotheconditionoftherod

    end. Ifthesurfaceisnotplanar,thewavewillexperiencedispersionfromareflectionfromthe

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    110/123

    98

    endoftherod. Anothersourceofamplitudelosscanoccurinthecouplingofthetransducerto

    therod. Itisimperativetohaveasmoothplanarsurfacetoattachthetransducer. Thus,itmay

    benecessarytocutanewsurfaceattheendoftherod. Also,contaminantslocatedbetween

    thetransducerandtheendoftherodmayresultinpoortransferofenergytotherod.

    Therefore,theendofeachrodmustbecleaned,andacouplantgelappliedbeforethe

    transduceriscoupledtotheendoftherod. Withoutthegel,thetransducerwillnoteffectively

    coupletheultrasonicsignalintotherod,resultinginanextremelypoorultrasonicwave,ifany

    atall. Amagnetictransducerisalsorecommendedtoprovideaconsistentadheringforce

    betweenthetransducerandtheendoftherod.

    6.3 CommercialTiebackRodTestingThefollowingguidelinesarepresentedtoassistindevelopinganinspectionprocedurefor

    tiebackrodsinthefield. Transitioningfromtestingsmooth12L14samplestoinsitutestingof

    commercialtiebackrods introducesseveralpotentiallimitations. First,turnbucklesareoften

    usedwhenadesigncallsforrodslongerthan50ft. Anultrasonicsignalisnotabletopropagate

    throughtheturnbuckle,thusonlythefirstsectionofrodisinspectable. Second,actual

    corrosionwillnothaveasmoothsurface,orasinglediameter. Theirregularsurfaceofactual

    corrosionwillincreasescatteringoftheultrasonicwaveduringreflection. Third,curvaturein

    thetiebackrodmayeliminatethedetectionofthebackecho.Ifadirectlineofsightthrough

    therodfromthefronttothebackoftherodiseliminatedthendetectionofadirectbackecho

    isnotpossible. Thesefactorsmaylimittheeffectivenessofultrasonicinspectioninsome

    scenarios. Thefollowingchartsprovideguidelinesfortheuseoftheultrasonicpulseecho

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    111/123

    99

    methodforinspectingtiebackrods. Theguidelinesaredividedintotwosections. Thefirst

    sectioncoversinspectionsofnewconstruction. Theseguidelinesassumethatinitialultrasonic

    pulseechomeasurementswillbeperformedaftertheplacementoftherodsandpriortothe

    facadeconstruction,whichcoverstheendsofthetiebackrods. Thesecondsectioncovers

    inspectionofexistingconstruction. Thissectionisdividedintotwosections. Thefirstsub

    sectionincludestiebackrodlengthsthatarerecordedinthedesignplans. Thesecond section

    isforinspectionoftiebackrodswithunknownlength.

    6.3.1 NewConstruction

    Thissectionintroducesinspectionguidelinesfortiebackrodsinnewconstruction. Performing

    severalmeasurementsduringtheconstructioncansignificantlyincreasetheabilitytomonitor

    corrosioninsteeltiebackrods. Anultrasonicpulseechomeasurementperformedafterthe

    placementoftherods,andpriortothefaadeconstructiongeneratesa"controlsignal"to

    comparewithsubsequentmeasurementsduringthelifeoftherod. Thecontrolsignalshould

    includetwoseparateinspections. First,afullsignalshowingalldetectablebackechoes,and

    secondthefirstbackechowithalldetectabletrailingechoes. Thefullsignalcanbeusedto

    calculatetheactuallongitudinalwavespeedofeachrod,usingthetimebetweenthemain

    bangandthefirstbackecho. Apublishedvaluefortheshearwavespeed,C2=10,597ft/swill

    beused. Thefollowingisaseriesofstepstoaidinfutureinspections:

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    112/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    113/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    114/123

    102

    6.3.2 ExistingConstructionInterpretationofinspectionofexistingconstructionismoredifficultthannewconstruction.

    Sincethereisnotacontrolsignalgeneratedduringtheconstructionprocess,theseguidelines

    mustbedividedintotwosubcategories. Thefirstapproachassumesthattheoriginalplansare

    availablewhichidentifytheoriginalrodlength. Thesecondapproachisforinspectionofrods

    ofunknownlength.

    6.3.2.1 OriginalrodlengthisknownRodswithaknownlengthprovidedimensionstoidentifythebackechointheultrasonicsignal.

    Thefollowingisseriesofstepstoaidininspectionoftiebackrodsofknownlength:

    Step#1: Calculatethetimebetweenthemainbangandthebackecho

    UsingthelengthoftherodandalongitudinalwavespeedofC1=19,190ft/scalculatethe

    expectedtimebetweenthemainbangandthebackechousingEquation30.

    Step#2:Performapulseechoinspectiononthetiebackrod

    Recordthreedifferentsectionsoftheultrasonicsignal. First,recordthefullsignal,extendingto

    thefirstbackwithalldetectabletrailingechoes. Usetheexpectedtimefromthemainbangto

    thetrailingechofromStep#1toapproximatethetimewindownecessarytocapturetheentire

    signal. Second,recordthebackechowithalldetectabletrailingechoes. Third,recordanyflaw

    echothatappearsbeforethebackechoandalldetectabletrailingechoes.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    115/123

    103

    Step#3: Verifythelengthofthetiebackrod

    Measurethetimebetweenthemainbangandthebackechointheultrasonicsignal. Usethis

    measurementtocalculatethelengthoftherod,usingalongitudinalwavespeedofC1=19,190

    ft/swithEquation30. Comparethecalculatedrodlengthwiththeoriginalrodlengthtoensure

    thattherearenocompletebreaksintherod.

    Step#4: Verifytheouterdiameterofthetiebackrod

    Ifaflawechodoesnotexist,calculatethetimebetweentrailingechoesafterthebackecho. If

    aflawechoexists,calculatethetimebetweentrailingechoesaftertheflawecho. Usingthe

    appropriatetimebetweentrailingechoesandEquation31,calculatethediameteroftherod.

    Measuringthetimebetweentrailingechoesmaybedifficultforthreadedrods,becausethe

    threadscausedispersionoftheultrasonicwavewhenitreflectsandmodeconvertsfromthe

    outerdiametertocreatethetrailingechoes.

    Step#5: Calculatethelocationoftheflaw(ifaflawechoexists)

    Measurethetimebetweenthemainbangandthefirstflawecho. Usethismeasurementto

    calculatethedistancetotheflaw,usingalongitudinalwavespeedofC1=19,190ft/swith

    Equation30. Repeatthisstepforeachdistinctflawecho. Becarefulnottomistakeasecond

    flawechoassecondflaw. Anechothatappearsattwicethedistanceofthefirstflawismost

    likelyasecondflawechoandnotasecondflaw.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    116/123

    104

    Step#6Determinetheminimumdiameterofthetiebackrod(ifaflawexists)

    Measurethetimebetweenthebackechoandthefirsttrailingecho. Usethismeasurementto

    calculatetheminimumdiameteroftherod,usingthelongitudinalwavespeedofC1=19,190

    ft/s,andashearwavespeedofC2=10,597ft/s withEquation30.

    6.3.2.2 UnknownlengthofrodArodwithunknownlengthrequiresacloseinspectionofthetrailingechoestoidentifypossible

    flawsintherod. Thefollowingisseriesofstepstoaidininspectionoftiebackrodsofunknown

    length:

    Step#1:Performapulseechoinspectiononthetiebackrod

    Recordthreedifferentsectionsoftheultrasonicsignal. First,recordthefullsignal,includingall

    detectableechoes. Second,recordthefurthestechowithalldetectabletrailingechoes. Third,

    recordanyotherechothatappearsinthesignalwith alldetectabletrailingechoes.

    Step#2:Determineifnodetectableflawsarepresent

    Measurethetimebetweentrailingechoesforeachechorecorded. Usingthetimebetween

    trailingechoes,alongitudinalwavespeedofC1=19,190ft/s,ashearwavespeedof10,597ft/s

    andEquation31calculateadiameterforeachsetoftrailingechoes. Ifthecorresponding

    diameterforthefirsttwosetsoftrailingechoesisapproximatelyequaltotheoriginaldiameter

    oftherod,thentheechoesrepresentthefirstandsecondbackechoes. Sincenoflawechoes

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    117/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    118/123

    106

    7 SummaryandConclusionsThisdissertationconcentratedonthedetectionofsimulatedcorrosioninsteeltiebackrods.

    Ultrasonicsignalswereusedtodeterminethephysicalgeometryof0.25in.,0.50in.,and0.75

    in.diametersimulatedcorrosionin1.0in.diametersteelrods. Researchwasalsoperformedto

    investigatetheuseofultrasonicwavesinWilliamscommercialtiebackrods. Guidelineswere

    developedforinspectingtiebackrodswithactualcorrosioninfieldapplications.

    Thelocation,diameter,length,andtransitionofconcentricsimulatedcorrosionwere

    investigatedforstraightsteelrods. Fora90transitionangle,thelocationofsimulated

    corrosionwasdetectablebaseduponthetimebetweenthemainbangandtheflawechointhe

    ultrasonicsignalandthelongitudinalwavespeedofthesteel. Adecreaseinthetransition

    angleresultsinadelayinthearrivaltimeoftheflawecho. Thelargestdelaywas23.8sfor

    the5transitionwhichrepresentsapotentialerrorof5.5in.whenestimatingthelocation.

    Theminimumdiameterofconcentricsimulatedcorrosioninastraightrodwasdetectable

    baseduponthedistancebetweenthebackechoandthefirsttrailingecho,andthelongitudinal

    andshearwavespeedsofthesteelinaccordancewithpreviousresearchbyLight&Joshi(Light

    &Joshi,1987). Thetimebetweenthebackechoandfirsttrailingechoisexclusivelydependent

    upontheminimumdiameteroftherod,andisnotdependentuponthetransitionangleofthe

    simulatedcorrosion.

    Thelengthofconcentricsimulatedcorrosioninastraightrodwasdetectablebasedontwo

    differenttechniques. First,anincreaseinthepeakfrequencyofthebackechocorrelatedwith

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    119/123

    107

    anincreaseinthelengthofsimulatedcorrosion. Second,theratiooftheamplitudeofthefirst

    trailingechoandthebackechocorrelatedwithanincreaseinthelengthofsimulated

    corrosion.

    Theinvestigationofthetransitionofthesimulatedcorrosionconcludedthattheflawechois

    detectableforabrupttransitionsof90downtoassmallas5. Theflawechoexperienceda

    decreaseinamplitudebelowa80transitionanglebutwasstilldetectable. Twopeakswere

    evidentat transitionanglesof27.5and45. Thesepeakscorrelatetoashearandlongitudinal

    wavereflectiondirectlyacrosstherodfromthetransitionsurface.

    Williamsallthreadtiebackrodswereinvestigatedincludingprojecteddetectablerodlength,

    signalattenuationduetosurroundingmedia,andsimulatedcorrosionintiebackrods. The

    signalsintiebackrodsshowedadistinctbackecho,withlowsignalamplitudefollowing,dueto

    thedispersionofthewavefromthethreads. Sincethebackechodidnotreflectfromthe

    threads,theamplitudewasnotaffected. Thesignalattenuationtestsrevealedthattherewas

    nosignificantamplitudelossinthebackechoforsand,loosesoil,orcompactsoil. Aprojected

    detectablerodlengthwasfoundtobe40feetwiththepulseechomethod. Finally,simulated

    corrosioninWilliamstiebackrodsshowedthatlocationanddiameterofsimulatedcorrosion

    weredetectableinthreadedrodswitha90anda45transitionangle.

    Theworkpresentedinthisdissertationformsoriginalresearchthatcontributestothefollowing

    fields:

    1. SafetyofstructureswithinthefieldofCivilEngineering

    2. AddingtothecurrentliteratureofNDTtesting

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    120/123

    108

    Thesecontributionsinclude:

    1. Effectoftransitionsontheultrasonicsignal

    2. Effectoflengthofcorrosionontheultrasonicsignal

    3.

    Effectofsoilontiebackrodsignalattenuation4. DetectionofsimulatedcorrosioninWilliamstiebackrods

    Basedontheresearchpresented,thefollowingrecommendationsweremadeforfuture

    research.

    1. Investigatetheminimumdetectablecrosssectionlossin1.0in.diametertiebackrods.

    Forexample,machinerodswith0.8125in.,0.875in,0.9375in.diameterofsimulated

    corrosionandidentifythesmallestsimulatedcorrosionthatexhibitsaflawecho.

    2. Investigatethedetectabilityofsimulatedcorrosioninlargerdiametertiebackrods. For

    example,machinesimulatedcorrosionin2.0in.and3.0in.diameterWilliamsrods,and

    identifythedetectablegeometries.

    3. Investigatethedetectabilityofadditionalgeometriccharacteristicsofsimulated

    corrosionontheultrasonicsignalforthepulseechomethod. Forexample:

    machinesimulatedcorrosionwithavariationindiameterinthecorrodedregion,

    insteadofuniformreduceddiameter.

    machinenonconcentriclossofcrosssectioninsteelrods.

    4. Investigatethedetectionofultrasonicsignalsinrodswithcurvaturetomimicrodsthat

    havebentduringsettlement. Bendmultiplecommercialtiebackrodstovariousradii

    andmonitortheultrasonicsignal.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    121/123

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    122/123

    110

    ReferencesCited:

    ASTMStandardA108.(2007).StandardSpecificationforSteelBar,CarbonandAlloy,Cold

    Finished,DOI:10.1520/A010807.WestConshohocken,PA:ASTMInternational.

    ASTMStandardA29.(2005).StandardSpecificationforSteelBars,CarbonandAlloy,Hot

    Wrought,GeneralRequirementsfor,DOI:10.1520/A0029_A0029M05.WestConshohocken,

    PA:ASTMInternational.

    ASTMStandardA615.(2008).StandardSpecificationforDeformedandPlainCarbonSteelBars

    forConcreteReinforcement,DOI:10.1520/A0615_A0615M08B.WestConshohocken,PA:

    ASTMInternational.

    ASTMStandardD2216.(2005).StandardTestMethodsforLaboratoryDeterminationofWater

    (Moisture)ContentofSoilandRockbyMass,DOI:10.1520/D221605.WestConshohocken,

    PA:ASTMInternational.

    ASTMStandardD422.(2007).StandardTestMethodforParticleSizeAnalysisofSoils,DOI:10.1520/D042263R07.WestConshohocken,PA:ASTMInternational.

    ASTMStandardD4318.(2005).StandardTestMethodsforLiquidLimit,PlasticLimit,and

    PlasticityIndexofSoils,DOI:10.1520/D431805.WestConshohocken,PA:ASTMInternational.

    Beard,M.,Lowe,M.,&Cawley,P.(2001).InspectionofRockboltsusingGuidedUltrasonic

    Waves.ReviewofProgressinQuantitativeNondestructive Evaluation,11561163.

    Bray,D.E.,&Stanley,R.K.(1989).NondestructiveEvaluation.NewYork:CRCPress.

    Davies,R.(1948).ACriticalStudyoftheHopkinsonPressureBar.Phil.Transactions,375457.

    Esser,A.J.,&Dingeldein,J.E.(2007).FailureofTiebackWallAnchorsDuetoCorrosion.Geo

    Denver2007,(pp.110).Denver.

    Hudson,G.(1943).DispersionofElasticWavesinSolidCircularCylinders.PhysicsReview,46

    51.

    Kolsky,B.(1963).StressWavesinSolids.NewYork:DoverPublicationsInc.

    Krautkramer,J.,&Krautkramer,H.(1990).UltrasonicTestingofMaterials.Berlin:Springer

    Verlag.

    Light,G.M.,&Joshi,N.R.(1987).UltrasonicWaveguideTechniqueforDetectionofSimulated

    CorrosionWastages.NondestructiveTestingCommunications ,1327.

    Main,L.G.(1988).VibrationsandWavesinPhysics.NewYork:CambridgeUniversityPress.

    Niles,G.B.(1996).InSituMethodforInspectingAnchorRodsforSectionLossUsingthe

    CylindricallyGuidedWaveTechnique.IEEETransactionsofPowerDelivery,16011605.

  • 7/31/2019 ULTRASONIC DETECTION OF SIMULATED CORROSION IN 1 INCH DIAMETER STEEL TIEBACK RODS

    123/123

    Pochhammer,J.(1876).Aboutthereproductionspeedsofsmallvibrationsinaninfinite

    isotropiccircularcylinder.JournalofPureandAppliedMath,324336.

    Pollock,D.G.(1997).ReliabilityAssessmentofTimberConnectionsThroughUltrasonic

    InspectionofBolts.TexasA&MUniversity.

    USArmyCorpsofEngineers.(1994,March31).RetrievedJanuary18,2009,fromDesignof

    SheetPileWalls:http://140.194.76.129/publications/engmanuals/em111022504/

    WilliamsFormEngineeringCorp.(2008).RetrievedApril2,2009,fromTieRodInformation:

    http://www.williamsform.com/