ultracold quantum gases in optical lattices - ultracold atoms in … · 2017. 3. 7. · 0 10 20 30...

35
Ultracold quantum gases in optical lattices Ultracold atoms in crystals made of light Fabrice Gerbier ([email protected] ) Master ICFP, Ultracold atoms March 7, 2017

Upload: others

Post on 18-Sep-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Ultracold quantum gases in optical latticesUltracold atoms in crystals made of light

Fabrice Gerbier ([email protected])

Master ICFP, Ultracold atoms

March 7, 2017

Page 2: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

From one to three-dimensional optical lattices

A coherent superposition of waves with different wavevectors results ininterferences.

The resulting interference pattern can be used to trap atoms in a periodicstructure.

Linear stack of 2D gases Planar array of 1D gases Cubic array

Additional, weaker trapping potentials provide overall confinement of the atomic gas.

Many more geometries are possible by “playing” with the interference patterns.

Fabrice Gerbier ([email protected])

Page 3: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Goal of the next three lectures

Why is this interesting ?

1 Connection with solid-state physics (band structure and related phenomenon)(lecture 8)

2 A tool for atom optics and atom interferometry: coherent manipulation ofexternal degrees of freedom (exercise classes)

3 Path to realize strongly correlated gases and new quantum phases of matter(lectures 9-10)

In the next lectures, we will discuss the behavior of quantum gases (mostly bosons, alittle about fermions) trapped in periodic potentials.

Outline

1 A glimpse about experimental realizations, and single-particle physics : bandstructure, ideal gases in 3D lattices.

2 Superfluid-Mott insulator transition for bosonic gases

3 Discussion of a few selected recent experiments

Fabrice Gerbier ([email protected])

Page 4: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

1 Introduction

2 Band structure in one dimension

3 Wannier functions and tight-binding limit

4 Dynamics of Bose-Einstein condensates in optical lattices

Fabrice Gerbier ([email protected])

Page 5: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Optical dipole traps

Two-level atom interacting with a monochromatic laser field:

• Electric field : E = 12E(r)e−iωLt+iφ + c.c.

• Γ: transition linewidth• d: electric dipole matrix element• δL = ωL − ωeg: detuning from atomic resonance

For large detuning, the atom-laser interaction can be pictured using the Lorentz modelof an elastically bound electron.

The electric field induces an oscillating electric dipole moment d ∝ E.

The (time-averaged) potential energy of the induced dipole is

V (r) = −1

2〈d ·E〉 =

d2|E(r)|2

4~δL

• δL < 0 (red detuning) : V < 0, atoms attracted to intensity maxima• δL > 0 (blue detuning) : V > 0, atoms repelled from intensity maxima

Fabrice Gerbier ([email protected])

Page 6: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Some numbers

Potential energy : V (r) = d2

4~δL|E(r)|2

Take 87Rb atoms for definiteness :• Γ/2π ≈ 6MHz,• λeg ≈ 780 nm [ωL/2π ≈ 4× 1014 Hz]• λ0 ≈ 1064 nm, δL/2π ≈ −3× 1013 Hz,• Laser parameters : power P = 200mW, beam size 100µm

One finds a potential depth |V | ∼ h× 20 kHz ∼ kB × 1µK.

Trapping atoms in such a potential requires sub-µK temperatures, or equivalentlydegenerate (or almost degenerate) gases.

NB : trap depths up to mK are possible using tightly focused lasers.

Radiated energy : W = 〈d ·E〉 = ~ωLΓsp : energy absorbed by the dipole from thefield, and reradiated by spontaneous emission at a rate Γsp

Usually Γsp ≈ ΓΩL(r)2

8δ2L

1 s−1 for far-off resonance dipole traps and optical lattices.

Fabrice Gerbier ([email protected])

Page 7: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

One-dimensional optical lattices

Superposition of mutually coherent plane waves :

|E(r)|2 =

∣∣∣∣∣∑n

Eneikn·r∣∣∣∣∣2

=

∑n

|En|2 +∑n 6=n′

E∗n · En′ei(kn′−kn)·r

Intensity (and dipole potential) modulations with wavevectors kn′ − kn

Simplest example :

• Standing wave with period d = π/kL

• Trapping potential of the form (red detuning):

V (x) = −2V1 (1 + cos(2kLx))

= −V0 cos(kLx)2

+kLd = π

kL= λL

2 −kL

position x

For red detuning (the case assumed by default from now on for concreteness), atomsare trapped near the antinodes where V ≈ −4V0.

Fabrice Gerbier ([email protected])

Page 8: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Two and three-dimensional optical lattices

Two dimensions :

|E(r)|2 ≈ |2E0 cos(kLx)|2 + |2E0 cos(kLy)|2

(a)

+kLex, ω1 −kLex, ω1

−kLey, ω2

+kLey, ω2

y

x

(b) (c)

+kLex, ω1 −kLey, ω2

+kLey, ω2 −kLex, ω1

+kLez, ω3

−kLez, ω3

x

y

z

Two-dimensional square potential Three-dimensional cubic potential

Square (d = 2) or cubic (d = 3) lattices : Vlat(r) =∑ν=1,··· ,d−Vν cos(kνxν)2

• Separable potentials : sufficient to analyze the 1D case

Fabrice Gerbier ([email protected])

Page 9: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Triangular/honeycomb optical lattices

Other lattice geometries are realizable as well. Example with three mutually coherentcoplanar beams [Soltan-Panahi et al., Nature Phys. (2011)]:

k3ex, ω1

k1ex, ω1 k2ex, ω1

y

x

• intensity maxima on a triangular lattice• intensity minima on a honeycomb lattice (triangular with two atoms per unit cell)

More complex example : the Kagomé lattice

[Jo et al., PRL (2012)]:

Fabrice Gerbier ([email protected])

Page 10: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

One-dimensional lattice

• Standing wave with period d = π/kL

• Trapping potential :

V (x) = V0 sin2(kLx)

+kLd = π

kL= λL

2 −kL

position x

Natural units :

• lattice spacing d = λL/2 = π/kL

• recoil momentum ~kL

• recoil energy ER =~2k2L2ma

87Rb, λL = 1064 nm:

• d ≈ 532 nm

• ER ≈ h× 2 kHz (kB × 100 nK)

Fabrice Gerbier ([email protected])

Page 11: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Diffraction from a pulsed lattice

• Apply a lattice potential on a cloud of ultracold atoms (BEC) for a short time,• look at momentum distribution :

Pulse duration

Latt

ice a

xis

0 µs 4 µs 8 µs

2 kL

12 µs 16 µs 20 µs 24 µs 28 µs

• initial BEC : narrow wavepacket in momentum space (width kL)• treat it as plane wave with momentum k = 0

Fabrice Gerbier ([email protected])

Page 12: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Diffraction from a pulsed lattice : Kapitza-Dirac regime

Pulsing a lattice potential on a cloud of ultracold atoms (BEC) :

Pulse durationLa

ttic

e a

xis

0 µs 4 µs 8 µs

2 kL

12 µs 16 µs 20 µs 24 µs 28 µs

Raman-Nath approximation:• BEC → plane wave with k = 0

• neglect atomic motion in the potentialduring the diffraction pulse :

Ψ(x, t) ≈ e−iV0 cos(2kLx)t

~ Ψ(x, 0)

≈+∞∑p=−∞

Jp(V0t/~)ei2pkLx.

• Analogous to phase modulation oflight wave by a thin phase grating

0 10 20 30 40 50Pulse duration (µs)

0.0

0.2

0.4

0.6

0.8

1.0

Rela

tive p

opula

tions

p=0

p=1

p=2

Raman-Nath

Raman-Nath approximation valid only forshort times

Fabrice Gerbier ([email protected])

Page 13: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

1 Introduction

2 Band structure in one dimension

3 Wannier functions and tight-binding limit

4 Dynamics of Bose-Einstein condensates in optical lattices

Fabrice Gerbier ([email protected])

Page 14: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Bloch theorem

Hamiltonian :

H =p2

2ma+ Vlat(x)

Vlat(x) = −V0 sin2 (kLx)

Natural units:• lattice spacing d = λL/2 = π/kL

• recoil momentum ~kL• recoil energy ER = ~k2

L/2ma

Lattice translation operator :• definition : Td = exp (ipd/~)

• 〈x|Td|φ〉 = φ (x+ d) for any |φ〉• [Td, H] = 0.

Bloch theorem : Simultaneous eigenstates of H and Td (Bloch waves) are of the form

φn,q (x) = eiqxun,q (x) ,

where the un,q ’s (Bloch functions) are periodic in space with period d.• q : quasi-momentum• n : band index

Hφn,q (x) = εn(q)φn,q (x) ,

Tdφn,q (x) = eiqdφn,q (x) ,

Fabrice Gerbier ([email protected])

Page 15: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Bloch theorem

Bloch waves :

φn,q (x) = eiqxun,q (x) ,

where the un,q ’s (Bloch functions) are periodic in space with period d.• q : quasi-momentum• n : band index

• Periodic boundary conditions for a system with Ns sites (length L = Nsd) :qj = 2π

Lj = 2kL

jNs

with j ∈ Z, |j| ≤ Ns/2

State labelling :• Quasi-momentum is defined from the eigenvalue of Td :

Tdφn,q (x) = eiqdφn,q (x) .

• For Qp = 2pkL with p integer (a vector of the reciprocal lattice),

Tdφn,q+Qp (x) = ei(q+Qp)dφn,q+Qp (x) = eiqdφn,q+Qp (x) .

• To avoid double-counting, restrict q to the

first Brillouin zone: BZ1 = [−kL, kL].

Fabrice Gerbier ([email protected])

Page 16: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Fourier decomposition of Bloch waves on plane waves

Bloch waves :

φn,q (x) = eiqxun,q (x)

The Bloch function un,q is periodic with period d : Fourier expansion with harmonicsQm = 2mkL of 2π/d = 2kL.

un,q (x) =∑m∈Z

un,q(m)eiQmx,

Vlat (x) =∑m∈Z

Vlat(m)eiQmx = −V0

2+V0

4

(eiQ−1x + eiQ1x

)

• the Bloch functions are superpositions of all harmonics of the fundamentalmomentum 2kL.

• the lattice potential couples momenta p and p± 2kL.

Useful to solve Schrödinger equation : reduction to band-diagonal matrix equation forthe Fourier coefficients un,q(m) (tridiagonal for sinusoidal potential)

Fabrice Gerbier ([email protected])

Page 17: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Spectrum and a few Bloch states, V0 = 0ER

Free particle spectrum : εn(q) =~2(q+2nkL)2

2ma, Momentum : k = q + 2nkL

Degeneracy at the edges of the Brillouin zone : En(±kL) = En+1(±kL)

Fabrice Gerbier ([email protected])

Page 18: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Spectrum and a few Bloch states, V0 = 2ER

Gaps open near the edges of the Brillouin zones (q ≈ ±kL)

Lifting of free particle degeneracy by the periodic potential

Fabrice Gerbier ([email protected])

Page 19: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Spectrum and a few Bloch states, V0 = 4ER

Gaps widen with increasing lattice depth V0

Bands flatten with increasing lattice depth V0

Fabrice Gerbier ([email protected])

Page 20: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Spectrum and a few Bloch states, V0 = 10ER

Gaps widen with increasing lattice depth V0

Bands flatten with increasing lattice depth V0

Fabrice Gerbier ([email protected])

Page 21: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Diffraction from a pulsed lattice from band theory

Pulsing a lattice potential on a cloud of ultracold atoms (BEC) :

Pulse duration

Latt

ice a

xis

0 µs 4 µs 8 µs

2 kL

12 µs 16 µs 20 µs 24 µs 28 µs

Bloch wave treatment:

|φn,q〉 =

∞∑m=−∞

un,q(m)|q + 2mkL〉

〈k = 0|φn,q〉 = un,q=0(m = 0)

Initial state :

|Ψ(t = 0)〉 = |k = 0〉 =∑n

[un,q=0(m = 0)]∗ |φn,q=0〉

Evolution in lattice potential :

|Ψ(t)〉 =∑n

[un,q=0(m = 0)]∗ e−iEn,q=0t

~ |φn,q=0〉

0 10 20 30 40 50Pulse duration (µs)

0.0

0.2

0.4

0.6

0.8

1.0

Rela

tive p

opula

tions

p=0

p=1

p=2

Bloch waves

Raman-Nath

Raman-Nath approximation valid only forshort times

Fabrice Gerbier ([email protected])

Page 22: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Very deep lattices

In a deep lattice potential, atoms are tightly trapped around the potential minima.

Harmonic approximation for each well :

Vlat(x ≈ xi) ≈1

2maω

2lat(x− xi)

2,

~ωlat = 2√V0ER.

The bands are centered around the energyEn ≈ (n+ 1/2)~ωlat.

First correction : quantum tunneling across the potential barriers, as in tight-bindingmethods used in solid-state physics (Linear Combination of Atomic Orbitals)

This is best handled using a new basis, formed by so-called Wannier functions.

Fabrice Gerbier ([email protected])

Page 23: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Wannier functions

Wannier functions : discrete Fourier transforms with respect to the site locations ofthe Bloch wave functions,

wn(x− xi) =1√Ns

∑q∈BZ1

e−iqxiφn,q(x).

• All Wannier functions can be deduced from wn(x) by translation of xi = id.• There are exactly Ns such functions per band (as many as Bloch functions).

• Wannier functions form a basis of Hilbert space (not an eigenbasis of H).

V0 = 4ER V0 = 10ER V0 = 20ER

Cautionary note: Bloch functions are defined up to a q−dependent phase which needs to be fixed toobtain localized Wannier functions [W. Kohn, Phys. Rev. (1959)].

Fabrice Gerbier ([email protected])

Page 24: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Hamiltonian in the Wannier basis

Second quantized formalism (useful for the interacting case).

Bloch basis :

H =∑

n,k∈BZ1

εn(k)b†n,k bn,k.

bn,k : annihilation operator for Bloch state (n, k).

Wannier basis :

H = −∑n,i,j

Jn(i− j)a†n,ian,j ,

an,i : annihilation operator for Wannier state wn(x− xi).

Tunneling energies :

Jn(i− j) =

∫dx w∗n(x− xj)

(~2

2ma∆− Vlat(x)

)wn(x− xi).

(also called hopping parameters)

Fabrice Gerbier ([email protected])

Page 25: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Hamiltonian in the Wannier basis

H = −∑n,i,j

Jn(i− j)a†n,ian,j ,

Tunneling energies :

Jn(i− j) =1

Ns

∑q,q′∈BZ1

e−i(qxi−q′xj)

∫dx u∗n,q(x)

(~2

2ma∆− Vlat(x)

)un,q′ (x)︸ ︷︷ ︸

=−εn(q)δn,n′δq,q′

,

= −1

Ns

∑q∈BZ1

εn(q)e−iq·(xi−xj).

Jn(i− j) depend only on the relative distance xi − xj between the two sites.

• On-site energy (i = j): Mean energy of band n

Jn(0) = −1

Ns

∑q∈BZ1

εn(q) = −En

• Nearest-neighbor tunneling (j = i± 1):

Jn(1) = −1

Ns

∑q∈BZ1

εn(q)eiqx = −Jn

Fabrice Gerbier ([email protected])

Page 26: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Tight-binding limit

For deep lattices (roughly V0 5ER), the tunneling energies fall off very quickly withdistance:

Wannier function for V0 = 10ER:

0 5 10 15 20

10−6

10−4

10−2

100

V0 [ER]

Tunn

el E

nerg

ies

[ER

]

0 5 10 15 2010−3

10−2

10−1

100

V0 [ER]

Tunn

el E

nerg

ies

[ER

]

J0(1)J0(2)J0(3)

J0(1)> J0W0/4J0 (approx)

Two useful approximations :

• Tight-binding approximation : keep only the lowest terms• Single-band approximation : keep only the lowest band–drop band index and letJ0(1) ≡ J

HTB = E0

∑i

a†i ai − J∑〈i,j〉

a†i aj ,

Fabrice Gerbier ([email protected])

Page 27: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Three-dimensional lattices

Cubic lattice potential :

Vlat = V0

∑α

sin(kαxα)2

Dispersion relation :

εn(q) =∑

α=x,y,z

εnα (qα),

• εn(q) : 1d dispersion relation,• n : a triplet of integers indexing the various bands• q : quasi momentum ∈ BZ1 : ]− π/d, π/d]3.

Bloch functions :

φn,q(r) = eiq·runx,qx (x)uny,qy (y)unz ,qz (z).

Wannier functions :

Wn(r− rn) = wnx (x− nxdx)wny (y − nydy)wnz (z − nzdz).

Fabrice Gerbier ([email protected])

Page 28: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

1 Introduction

2 Band structure in one dimension

3 Wannier functions and tight-binding limit

4 Dynamics of Bose-Einstein condensates in optical lattices

Fabrice Gerbier ([email protected])

Page 29: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

How to prepare cold atoms in optical lattices

Principle of evaporative cooling :Atoms trapped in a potential of depth U0,undergoing collisions :

• two atoms with energy close to U0

collide• result: one “cold” atom and a “hot”one with energy > U0

• rethermalization of the N − 1 atomsremaining in the trap results in alower mean energy per atom. x

E

U0

Experimental procedure to prepare a cold atomic gas in a lattice :• prepare a quantum gas using evaporation in an auxiliary trap,• transfer it to the lattice by increasing the lattice potential from zero andsimultaneously removing the auxiliary trap.

Why not cool atomic gases directly in the periodic potential ? .• evaporative cooling no longer works due to the band structure as soon as V0 ∼ afew ER.

The best one can do is to transfer the gas adiabatically, i.e. at constant entropy.

Fabrice Gerbier ([email protected])

Page 30: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Quantum adiabatic theorem

Slowly evolving quantum system, with Hamiltonian H(t).

Instantaneous eigenbasis of H: H(t)|φn(t)〉 = εn(t)|φn(t)〉.Time-dependent wave function in the |φn(t)〉 basis:

|Ψ(t)〉 =∑n

an(t)e−i~

∫ t0 εn(t′)dt′ |φn(t)〉,

From Schrödinger equation, one gets [ωmn = εm − εn] :

an = −〈φn|φn〉an(t)−∑m 6=n

e−i~

∫ t0 ωmn(t′)dt′ 〈φn|φm〉am(t),

• Berry phase : 〈φn|φn〉 = −iγB is a pure phase. Wavefunction unchanged up to aphase evolution after a cyclic change.

• The adiabatic theorem : for arbitrarily slow evolution starting from a particularstate n0 (an(0) = δn,n0 ), and in the absence of level crossings, an(t)→ δn,n0

(up to a global phase).

Adiabatic approximation for slow evolutions and initial condition an(0) = δn,n0 :

an(t)→ eiφ(t)δn,n0

Validity criterion :

〈φn|φm〉 =〈φn|H|φm〉εm − εn

=⇒∣∣∣〈φn|H|φm〉∣∣∣

(εm − εn

)2

~.

Fabrice Gerbier ([email protected])

Page 31: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Adiabatic loading of a condensate

• Time-dependent lattice potential :

Vlat = V0(t)∑α

sin(kαxα)2

• V0(t) increases from 0 to some final value.• initial state : BEC in a trap, treated as a narrow wavepacket around momentum

k = 0

Quasi-momentum = good quantum number at all times : only band-changingtransitions are possible

−0.5 0 0.50

2

4

6

8

10

quasi−momentum (2//d)

Ener

gy (E

r)V0=0.5ER

−0.5 0 0.50

2

4

6

8

10

quasi−momentum (2//d)

Ener

gy (E

r)

V0=0ER

−0.5 0 0.50

2

4

6

8

10

quasi−momentum (2//d)

Ener

gy (E

r)

V0=2ER

−0.5 0 0.50

2

4

6

8

10

quasi−momentum (2//d)

Ener

gy (E

r)

V0=5ER

Adiabaticity criterion for the Bloch state (n = 0, q = 0):∣∣∣~V0

∣∣∣ (εm(0)− ε0(0)

)2

Adiabaticity most sensitive for small depths :

• Near band center n = 0, q = 0: |ε1 − ε0| ≥ 4ER• Near band edge n = 0, qα = π/d: |ε1 − ε0| ≥ 0 : never adiabatic !

Fabrice Gerbier ([email protected])

Page 32: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Adiabatic loading of a condensate : experiment

Adiabaticity criterion for a system prepared in a Bloch state (n = 0, q = 0):

Vlat = V0(t)∑α

sin(kαxα)2

Quasi-momentum = good quantum number:∣∣∣~V0

∣∣∣ (εm(0)− ε0(0)

)2

[Denschlag et al., J. Phys. B 2002]:• Near band center n = 0, q = 0:|ε1 − ε0| ≥ 4ER

• For Sodium atoms, ER/h ≈ 20 kHz∣∣∣ V0V0

∣∣∣ ∼ 1Tramp

16E2R

~V0∼ 1

500 nsERV0

Caution: for real systems interactions and tunneling within the lowest band are thelimiting factors, not the band structure. Adiabaticity requires ramp-up times in excessof 100 ms.

Fabrice Gerbier ([email protected])

Page 33: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Band mapping : “adiabatic” release from the lattice

• Thermal Bose gas, J0 kBT ~ωlat : almost uniform quasi-momentumdistribution.

• Mapping by releasing slowly the band structure before time of flight (instead ofsuddenly)– typically a few ms.

• Qualitative value only if band edges matter.

Greiner et al., PRL 2001

Fabrice Gerbier ([email protected])

Page 34: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Time-of-flight experiment : sudden release from the lattice

Time-of-flight experiment : suddenly switch off the trap potential at t = 0 and let thecloud expand for a time t.

Time of flight (tof) expansion reveals momentumdistribution (if interactions can be neglected).

Classical version : r(t) = r(0) +p(0)tM

Quantum version: wave-function after tof mirrors the initialmomentum distribution P0(p) with p = Mr

t.

ntof(r, t) = |ψ(r, t)|2 ≈(M

t

)3

P0

(p =

Mr

t

)

• Analogous to Fraunhofer regime of optical diffraction,requires ∆p0t

M ∆x0 with ∆x0,∆p0 the spread of ψ0

in real and in momentum space.• for a condensate : N atoms behaving identically,density profile ntof(r, t) ∝ N |ψ(p, t)|2 with ψ theFourier transform of the condensate wavefunction.

Fabrice Gerbier ([email protected])

Page 35: Ultracold quantum gases in optical lattices - Ultracold atoms in … · 2017. 3. 7. · 0 10 20 30 40 50 Pulse duration (¹s) 0.0 0.2 0.4 0.6 0.8 1.0 Relative populations p=0 p=1

Time-of-flight interferences

Non-interacting condensate: Atoms condense in the lowest band n = 0 atquasi-momentum q = 0:

φ0,0(p) ∝∑

m∈Z3

u0,0(m)δ(p− ~Qm),

Qm = 2kLm (m ∈ Z3) is a vector of the reciprocal lattice.Time-of-flight distribution: comb structure with peaks mirroring the reciprocal lattice(“Bragg peaks”).

Fabrice Gerbier ([email protected])