uci c h e m i s t r y p e n n e r g r o u p nanowire "thinning" by kinetically controlled...

30
UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires 2005 IM-SURE Symposium Mike Thompson, R.M. Penner. Department of Chemistry. UC Irvine

Upload: jonathan-fisher

Post on 18-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra

Small Metal Nanowires

2005 IM-SURE Symposium

Mike Thompson, R.M. Penner. Department of Chemistry. UC Irvine

Fig 2: At left is an SEM image of antimony wires with no stripping. At right is an image of the same sample that has been set at a potential of 0.01V for 60s. The diameter of the wire and the number of particles on the terraces have been greatly reduced by the stripping, while still retaining the morphology of the original wires.

Page 2: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

1. Electrochemical Step Edge Decoration (ESED) as a method for making metal nanowires.

2. My mission: Make smaller Sb and Au nanowires

3. Smaller nanowires: Results and discussion

outline

Page 3: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

1. Electrochemical Step Edge Decoration (ESED) as a method for making metal nanowires.

2. My mission: Make smaller Sb and Au nanowires

3. Smaller nanowires: Results and discussion

outline

Page 4: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Electrochemical Step Edge Decoration:

Page 5: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Page 6: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Our electrochemical setup…

Page 7: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

-2000

-1500

-1000

-500

0

500

1000

-1000 -800 -600 -400 -200 0 200 400 600

Scan 1

Scan 2

Scan 3

Potential (mV vs. SCE)

Cu

rre

nt

(A

)

EoxEnuc

Egrow

Three steps : oxidation, nucleation, and growth

Sb3+ + 3 e- Sb0

Sb0 Sb3+ + 3 e-

Page 8: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

0

200

400

600

800

1000

0 5 10 15

Wire

Dia

met

er,

nm.

Time1/2,s1/2

-0.75 V, 1.0 mM Na2MoO

4-0.90 V, 0.16 mM Na

2MoO

4

4 s 16 s

256 s128 s

64 s32 s

ESED allows for size selective growth (MoO2 wires pictured):

Page 9: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

1. Electrochemical Step Edge Decoration (ESED) as a method for making metal nanowires.

2. My mission: Make smaller Sb and Au nanowires

3. Smaller nanowires: Results and discussion

outline

Page 10: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

-2000

-1500

-1000

-500

0

500

1000

-1000 -800 -600 -400 -200 0 200 400 600

Scan 1

Scan 2

Scan 3

Potential (mV vs. SCE)

Cu

rre

nt

de

ns

ity

(A

cm

-2)

Egrow, 75 sEox, 5sEnucl, 40 ms

A case study using antimony nanowires… 5 mM SbCl3, 0.1 M Tartaric Acid, 0.1 M Nitric Acid

Page 11: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

122 nm

Page 12: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Page 13: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

THESE WIRES ARE TOO BIG! Antimony nanowires with diameters larger than 40 nm have no interesting properties, and thus are useless.

How can we reduce the minimum size of these wires (from 120 nm to 40 nm)?

The answer is simple: Use electrochemistry to slowly etch them away.

Page 14: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Sb CV(vs. SCE)

-2000

-1500

-1000

-500

0

500

1000

-1000 -800 -600 -400 -200 0 200 400 600

Scan 1

Scan 2

Scan 3

-1000

-800

-600

-400

-200

0

-100 -80 -60 -40 -20 0 20 40

Potential (mV)C

urr

ent

(μA

)

Using kinetically-controlled anodic etching to make the wires smaller...

Potential (mV vs. SCE)

Cu

rrent (

A)

Sb3+ + 3 e- Sb0

Sb0 Sb3+ + 3 e-

Page 15: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Penner, JPC-B 106 (2002) 3339.

Walter et al. ChemPhysChem 4 (2003) 131.

nanowire smoothing is predicted by the growth law...

nFL

Vt2iR(t) mdepdep

R= nanowire radius

idep=constant deposition current

Vm=molar volume

n=moles of e-

F= the Faraday

L= nanowire length

Page 16: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

nF

t2jVR(t) stripm

kinetically controlled stripping causes a constant anodic current density, thus...

Thompson, Menke, Penner. in preparation

Page 17: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

1. Electrochemical Step Edge Decoration (ESED) as a method for making metal nanowires.

2. My mission: Make smaller Sb and Au nanowires

3. Smaller nanowires: Results and discussion

outline

Page 18: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Sb CV(vs. SCE)

-2000

-1500

-1000

-500

0

500

1000

-1000 -800 -600 -400 -200 0 200 400 600

Scan 1

Scan 2

Scan 3

-1000

-800

-600

-400

-200

0

-100 -80 -60 -40 -20 0 20 40

Potential (mV)C

urr

ent

(μA

)

Choosing the right stripping potential…

Potential (mV vs. SCE)

Cu

rrent (

A)

Sb3+ + 3 e- Sb0

Sb0 Sb3+ + 3 e-

Page 19: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

-0.060 V

-0.025 V

Stripping is extremely sensitive to the applied potential…

Page 20: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

0

5

10

15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Sb no stripping

Count

Wire Diameter (nm)

No stripping122 nm

Page 21: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100110120130140

250 s @ -0.060 V vs. SCE

Count

Nanowire Diameter (nm)

73 nm

250 s stripping

Page 22: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

500 s -0.060 V vs. SCE

Count

Nanowire Diameter (nm)

33 nm 500 s stripping

Page 23: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

33 nm

Page 24: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Nanowire Diameter vs. Etching Time

y = -0.1717x + 117.64

R2 = 0.987

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600

Etching Time (s)

Nan

ow

ire

Dia

met

er (n

m)

nF

t2jVR(t) stripm

Page 25: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Gold nanowires are interesting and difficult to make small…try stripping!

Au CV 7-15-05

-250

-200

-150

-100

-50

0

50

100

150

-200 0 200 400 600 800 1000 1200 1400 1600 1800

Potential (mV vs. SCE)

Cu

rre

nt

(uA

)

Scan 1

Scan 2

Scan 3

Oxidation: 5s @ 0.8V

Nucleation:

100ms @ -1.0 V

Growth:

30 s @ 0.45 V

Page 26: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

158 nm145 nm

Page 27: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90100110120130140150160170180

Au no stripping

Count

Nanowire Diameter (nm)

No stripping145 nm

158 nm

Page 28: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90100110120130140150160170180

600 s @ 0.810 V vs. SCE

B

Count

Nanowire Diameter (nm)

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90100110120130140150160170180

1200 s @ 0.810 V vs. SCE

Count

Nanowire DIameter (nm)

600 s

1200 s

109 nm

66 nm

Page 29: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

Gold @ 0.810 V vs. SCE

y = -0.0707x + 144.4

R2 = 0.9909

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000 1200 1400

Stripping Time

Nan

ow

ire

Dia

met

er

Series1

Linear (Series1)

nF

t2jVR(t) stripm

Page 30: UCI C h e m i s t r y P e n n e r G r o u p Nanowire "Thinning" by Kinetically Controlled Electrochemical Stripping: A New Route to Ultra Small Metal Nanowires

UCI C h e m i s t r yP e n n e r G r o u p

THANK YOU!

Thanks also to:

Prof. Reg Penner

Erik Menke

Ben Murray

Said Shokair and UROP staff

Konstantin Arutyunov

Funding provided by:

NSF

UROP

EU Commission ULTRA 1-D project for the HOPG