ucgaps suslow 6/17/2010ucce.ucdavis.edu/files/datastore/234-1633.pdfucgaps suslow 6/17/2010...

12
UCGAPs Suslow 6/17/2010 [email protected] 1 Trevor Suslow Trevor Suslow Dept. of Plant Sciences Dept. of Plant Sciences [email protected] [email protected] Overview of postharvest water Overview of postharvest water applications applications Postharvest washing efficiencies Postharvest washing efficiencies Trevor Suslow Trevor Suslow Dept. of Plant Sciences Dept. of Plant Sciences [email protected] [email protected] Postharvest washing efficiencies Postharvest washing efficiencies Mechanical removal of pathogens Mechanical removal of pathogens Overview Overview of of disinfection disinfection: Goals and Options : Goals and Options Emerging audit compliance standards Emerging audit compliance standards The The Predominant Predominant role of role of Disinfection Disinfection is to is to ti t d ti dt ii i ti t d ti dt ii i di t ib ti di t ib ti prevent introduction and to minimize re prevent introduction and to minimize re-distribution distribution of plant and human microbial pathogens in water of plant and human microbial pathogens in water Tertiary Wash 99.9% Removal Triple washed cilantro leaves Primary Wash 93% Removal (T. Suslow 1999) LopezGalvez, F., et al., Crosscontamination of freshcut lettuce after a shortterm exposure during prewashing...,Food Microbiology (2009) Unwashed Unwashed E. coli E. coli on lettuce on lettuce Washed Washed E. coli E. coli 100 100 ppm ppm Hypochlorite Hypochlorite Post Postwashed washed E. coli E. coli

Upload: others

Post on 15-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • UCGAPs Suslow  6/17/2010

    [email protected] 1

    Trevor SuslowTrevor SuslowDept. of Plant SciencesDept. of Plant [email protected]@ucdavis.edu

    Overview of postharvest water Overview of postharvest water applicationsapplications Postharvest washing efficienciesPostharvest washing efficiencies

    Trevor SuslowTrevor SuslowDept. of Plant SciencesDept. of Plant [email protected]@ucdavis.edu

    Postharvest washing efficienciesPostharvest washing efficiencies Mechanical removal of pathogens Mechanical removal of pathogens  Overview Overview of of disinfectiondisinfection: Goals and Options: Goals and Options Emerging audit compliance standardsEmerging audit compliance standards

    The The PredominantPredominant role of role of DisinfectionDisinfection is to is to t i t d ti d t i i it i t d ti d t i i i di t ib tidi t ib tiprevent introduction and to minimize reprevent introduction and to minimize re--distributiondistribution

    of plant and human microbial pathogens in water of plant and human microbial pathogens in water

    Tertiary Wash99.9% Removal

    Triple washed cilantro leaves

    Primary Wash93% Removal

    (T. Suslow 1999)Lopez‐Galvez, F., et al., Cross‐contamination of fresh‐cut lettuce after a short‐term exposure during prewashing...,Food Microbiology (2009)

    Unwashed Unwashed E. coliE. colion lettuceon lettuce

    Washed Washed E. coliE. coli100 100 ppmppm HypochloriteHypochlorite

    PostPost‐‐washed washed E. coliE. coli

  • UCGAPs Suslow  6/17/2010

    [email protected] 2

    S. S. entericaenterica [GFP] on cilantro [GFP] on cilantro leaf leaf 6 days6 days after after inoculation inoculation

    and vigorous washing and vigorous washing

    Courtesy: Courtesy: Maria Maria BrandlBrandl, USDA/ARS, USDA/ARS

    Interactions between Food‐Borne Pathogens and Protozoa Isolated from Lettuce and Spinach.     Gourabathini et al. 2008.  AEM p 2518–2525

    Protozoa‐Glaucoma sp. 

    Vesicles with Vesicles with GFPGFP‐‐labledlabled EcO157:H7 EcO157:H7 

    Enhanced Survival of Salmonella enterica in Vesicles Released by aSoilborne Tetrahymena Species.  Brandl et al. 2005. AEM p 1562–1569

    Salmonella survival  free‐floating or in vesiclesTetrahymena with Salmonella vesicles

    I filt tiI filt tiInfiltration occurs:Infiltration occurs:

    •• When outside water enters the produceWhen outside water enters the produce•• In produce with air spaces within cellular tissuesIn produce with air spaces within cellular tissues•• Temperature differential (water colder than produce) Temperature differential (water colder than produce) 

    ••Causes air in cell space to contractCauses air in cell space to contract••Draw water in through pores, channels, bruisesDraw water in through pores, channels, bruises

    Photo courtesy: M.J. Mahovic, UF/IFAS

    Fruit pulp should be 10Fruit pulp should be 10ooF (6F (6ooC) cooler C) cooler than water than water temperature temperature to to prevent infiltration.prevent infiltration.

    Microbes in water

    ApplesApplesMelonsMelonsPeppersPeppersSpinachSpinachMangoMangoCitrusCitrus

    TempTempPressurePressureTimeTimeDepthDepthWater deficitWater deficitVacuumVacuum

    Adequate water sanitationAdequate water sanitationwill minimize problems will minimize problems

    PrePre--Cooling Operations:Cooling Operations: HydroVacHydroVac™™ HydroVacHydroVac Ice InjectionIce Injection HydroHydro--CoolingCooling

    Wash and Dip TanksWash and Dip Tanks Flume Wash SystemsFlume Wash Systems Spray Wash SystemsSpray Wash Systems IceIce--makingmaking Cooling CanalsCooling Canals

  • UCGAPs Suslow  6/17/2010

    [email protected] 3

    ExamplesExamples Brush bedBrush bed “Jacuzzi” bath“Jacuzzi” bathUltrasonic bathUltrasonic bathCOCO22 cavitationcavitation

    ExamplesExamples Disinfection treatment of postharvest water 

    Potential Transfer of Salmonella during Postharvest Handling 

    Disinfection treatment of postharvest water maintains cleanliness of brushes and rollers 

    Pao et al. 2009 Journal of Food Protection722: 2448–2452

    Water and Immersion only

    Water and Brush‐bedWater and Brush bed

    ClO2 and Immersion only

    ClO2 and Brush‐bed

    What is the origin of microWhat is the origin of micro‐‐loadingloading to dump to dump tanks when bin dumping occurs in packing tanks when bin dumping occurs in packing houseshouses

  • UCGAPs Suslow  6/17/2010

    [email protected] 4

    Fruit Fruit –– averageaverage log CFU/fruit (25 fruit/log CFU/fruit (25 fruit/samplesample))

    Sample Location Code

    PCA ECC-TC ECC-E. coli(presumptive)

    Roma-type incoming

    6.25 5.11 < 1.0

    Mature Green Incoming

    7.16 6.16 4.15

    Maintain consistent sanitizer levels in dump tanks and Maintain consistent sanitizer levels in dump tanks and   h  hspray washersspray washers

    Regularly check automated sanitizer equipment during    Regularly check automated sanitizer equipment during    daily packingdaily packing

    Double check automated equipment with    manual Double check automated equipment with    manual methodsmethods

    •• Multiple chemical choicesMultiple chemical choicesu t p e c e ca c o cesu t p e c e ca c o ces•• Multiple product typesMultiple product types•• Diverse microbe typesDiverse microbe types•• Different load throughputDifferent load throughput••Varying wash/cooling conditionsVarying wash/cooling conditions•• Different equipment designsDifferent equipment designs•• Different retention timesDifferent retention times

    TPC Total Coliform E. coli

    Unwashed T0 5.79 4.67 1.01Unwashed T3 5.70 3.27 2.07Washed T0 3.83 2.04 0.35Washed T3 3.27 0.88 0.35

    N = 25N = 25

    Log CFU/fruitLog CFU/fruitStart‐up + 3h

    Non ChemicalNon Chemicall ll lUltra VioletUltra Violet

    UltraUltra‐‐FiltrationFiltrationChemicalChemicalOxidizerOxidizerOxidizer and AcidOxidizer and AcidNonNon‐‐OxidizerOxidizer

  • UCGAPs Suslow  6/17/2010

    [email protected] 5

    Flume Flume FlocculantFlocculant

    SelfSelf‐‐purging filtrationpurging filtration

    ChlorinationChlorinationHypochlorousHypochlorousAcid (Acid (HOClHOCl) + ROS) + ROSHypochlorousHypochlorousAcid (Acid (HOClHOCl) + ROS) + ROSChlorine GasChlorine GasSodium HypochloriteSodium HypochloriteCalcium HypochloriteCalcium Hypochlorite

    Chlorine Dioxide Chlorine Dioxide ChlorobrominationChlorobrominationPeroxyaceticPeroxyacetic Acid or Hydrogen PeroxideAcid or Hydrogen PeroxideOzoneOzoneCopper ions + low Copper ions + low HOClHOCl (+ Silver ions)(+ Silver ions)

    Sodium Hypochlorite (liquid) Sodium Hypochlorite (liquid) •• Most widely used methodMost widely used method•• Relatively inexpensiveRelatively inexpensive•• Readily available and flexibleReadily available and flexible•• Easy to adopt for smallEasy to adopt for small‐‐scalescale•• Broad spectrum of activity (yeasts, molds, bacteria,  Broad spectrum of activity (yeasts, molds, bacteria,  algae, many viruses)algae, many viruses)

    •• Less effective  for parasite cysts, some fungal spores Less effective  for parasite cysts, some fungal spores 

    Combined ChlorineTotal Chlorine

    Free Chlorine

    pH HOCl ‐OCl6.5 95% 5%7.0 80% 20%7.5 50% 50%8.0 20% 80%

  • UCGAPs Suslow  6/17/2010

    [email protected] 6

    70

    80

    90

    100

    e Fo

    rm OC (32F)20C (68F)

    0

    10

    20

    30

    40

    50

    60

    5 6 7 8 9 10

    Solution pH

    % F

    ree

    Chl

    orin

    e 30C (86F)

    4

    HOClHighly active

    OCl‐less active

    Potential for toxic chlorine gas formationPotential for toxic chlorine gas formation Potential for toxic chlorine gas formationPotential for toxic chlorine gas formation Poor penetration of Poor penetration of biofilmsbiofilms and scaleand scale CorrosiveCorrosive Irritation (eye, respiratory, mucus membrane)Irritation (eye, respiratory, mucus membrane) Unstable (pH < 4, high temp), short halfUnstable (pH < 4, high temp), short half--lifelife Formation of potentially toxic byFormation of potentially toxic by--products products (THM’s, chloramines)(THM’s, chloramines)

    Potential for sodium injury (ex. some apples)Potential for sodium injury (ex. some apples)

    68% Ca(OCl)2tablets

  • UCGAPs Suslow  6/17/2010

    [email protected] 7

    6060

    8080

    100100

    120120

    Effect of EOW on Penicillium digitatum conidia in water

    % Kill % Kill 

    00

    2020

    4040

    00 3030 6060 9090 120120 240240

    215 215 ppmppm HOClHOClpH pH –– 4.84.8

    Adapted from Adapted from WhangchaiWhangchai et al 2009et al 2009ActaActa Hort. 837 ISHS 211Hort. 837 ISHS 211‐‐215215

    Time (Time (SecsSecs))

     % of fruit 

    Storage Time (Days)@ 5C (40F)

    Dec

    ay In

    cide

    nce (%

    Adapted from Adapted from WhangchaiWhangchai et al 2009et al 2009ActaActa Hort. 837 ISHS 211Hort. 837 ISHS 211‐‐215215

    Tangerine

    ••Oxidizer 2.5x “more effective” than chlorineOxidizer 2.5x “more effective” than chlorine•• Low Sodium, Low ChloriteLow Sodium, Low Chlorite•• Does not form byDoes not form by‐‐products THMs /DBP’sproducts THMs /DBP’s•• Does not form chloraminesDoes not form chloramines•• Effective at wide pH rangesEffective at wide pH ranges••Good Good bioflimbioflim penetrationpenetration

    Approved in U.S. for 5 ppm for 1 min treatment of whole and fresh‐cut fruits and vegetables with no rinse requirement

    Using Aqueous Chlorine Dioxide To Prevent Contamination of Tomatoes with Salmonella entericaand Erwinia carotovora during Fruit Washing

    PAO et al   JFP 2007 p 629 634PAO et al.  JFP 2007 p 629‐634

    0 ppm5 ppm10 ppm20 ppm

    Dose  RangeInoculum in Water 

    Using Aqueous Chlorine Dioxide To Prevent Contamination of Tomatoes with Salmonella enterica and Erwinia carotovora during Fruit Washing PAO et al.  JFP 2007 p 629‐634

    20 ppmWet Inoculum

    Dry Inoculum

    Time ; 0‐60 sec

  • UCGAPs Suslow  6/17/2010

    [email protected] 8

    Chlorine dioxide system:On-site chemical generator

    • Two-chemical • less expensive

    • Three chemical• more efficient conversion

    Washing Conditions Sample Type Trihalomethane DBP (μg/L)

    Municipal Water Process‐Cooling Water

  • UCGAPs Suslow  6/17/2010

    [email protected] 9

    Less impacted by organic matter and soilLess impacted by organic matter and soilL  f iL  f i Low foamingLow foaming

    Very good Very good biofilmbiofilm penetrationpenetrationVery good on molds and spores Very good on molds and spores 

    Oxidizer and Metabolic PoisonOxidizer and Metabolic PoisonNo residue or DBP’s No residue or DBP’s  Breaks down to water, oxygen and acetic acid)Breaks down to water, oxygen and acetic acid)Generally nonGenerally non‐‐corrosivecorrosive

    Corrosive to soft metals and skinCorrosive to soft metals and skinS     d   f    d dil  f  S     d   f    d dil  f   Strong, pungent odor of concentrate and dilute forms Strong, pungent odor of concentrate and dilute forms 

    (worker discomfort & safety)(worker discomfort & safety)Varied activity against fungiVaried activity against fungi Build up of acetic acid in water; translucency Build up of acetic acid in water; translucency Need to monitor water turnNeed to monitor water turn‐‐over closelyover closely Prolonged exposure may cause product damageProlonged exposure may cause product damage

    0 15 150 300 3000 0 15 150 300 3000

    Flume Line Shed A

    Flume Line Shed B

    Quality Turbidity (FAU)

    3060 333

    Conductivity 1558 mS 721 mS

    pH 7.2 6.4

    Free Cl 55 12

    ORP 420 825

    Total fecal coliform

    log 5.4 CFU/100ml

    < 0.9 log CFU/100ml

    ••Spot CheckingSpot Checking••Chemical Test KitChemical Test Kit••Chemical Test KitChemical Test Kit••Chemical Test StripsChemical Test Strips••ColorimeterColorimeter•• Direct Measurement MeterDirect Measurement Meter

    •• Portable ORP and pH MeterPortable ORP and pH Meter•• Fixed Continuous MeterFixed Continuous Meter

    ••ORP and pH MeterORP and pH Meter•• Direct Ion SensorDirect Ion Sensor

  • UCGAPs Suslow  6/17/2010

    [email protected] 10

    Fast Spot Checking  Fast Spot Checking 

    Simple “Dip & Read” 1 Step

    Colorimetric Analysis

    Visual Reading

    Low CostIS THIS FLUME WATER IN IS THIS FLUME WATER IN GOOD SHAPE GOOD SHAPE ??

    Oxidation Reduction Potential ( mV)Oxidation Reduction Potential ( mV) Predicts Disinfection PotentialPredicts Disinfection Potential Measures Disinfection Potential Measures Disinfection Potential NOTNOT ppmppm Single Value Assessment of DisinfectionSingle Value Assessment of Disinfectiongg

    pH ORP (mV)

    Water Quality Measurements

    Time Temp (tank) Temp (bag) pH ORP pH ORP EC Turbidity Free Cl- TSS

    Water Source °C °C mv mv ms FAU mg/LDump (Time 0) 12:35pm 25.6 25.0 6.8 795 6.5 755 0.92 79 4.6Dump (Time 2h) 2:40pm 29.3 30.1 6.8 795 6.5 804 1.17 131 8Flume (Time 0) 12:40pm 36.0 34.4 6.8 780 6.9 811 0.68 15 21Flume (Time 2h) 2:45pm 36.5 36.1 6.6 821 6.6 843 0.85 19 37

    Time of Sampling Following Day

    ORP 795ORP 795‐‐821 mV; pH 6.6821 mV; pH 6.6‐‐6.86.8

    TPC Total Coliform

    E.coli

    Dump T0 2.98 -0.05 -0.05Dump T2 2.95 -0.05 -0.05Flume T0 2.95 -0.05 -0.05Flume T2 4.02 -0.05 -0.05N = 6; n = 12N = 6; n = 12

    Log CFU/100ml

    Water Quality Measurements

    Time Temp (tank) Temp (bag) pH ORP pH ORP EC Turbidity Free Cl- TSS

    Water Source °C °C mv mv ms FAU mg/LDump (Time 0) 4:00pm 37.5 32.0 8.8 655 8.9 668 3.47 19 194Dump (Time 2h) 5:00pm 36.4 34.9 8.5 667 8.8 682 3.30 46 112Flume (Time 0) 4:15pm - 36.3 8.7 650 - - - - - -Flume (Time 2h) 5:10pm - - - 663 - - - - - -

    Time of Sampling Following Day

    ORP 650ORP 650‐‐667 mV; pH 8.8667 mV; pH 8.8

    TPC Total Coliform

    E.coli

    Dump T0 3.30 -0.05 -0.05Dump T2 5.31 -0.05 -0.05Flume T0 3.95 -0.05 -0.05Flume T2 5.85 -0.05 -0.05N = 6; n = 12N = 6; n = 12

    Log CFU/100ml

    Rate of diffusion of Rate of diffusion of free chlorine free chlorine through the through the membrane depends on temperaturemembrane depends on temperature sensor response must be corrected for changes in sensor response must be corrected for changes in membrane permeabilitymembrane permeabilityp yp y TemperatureTemperature‐‐compensated sensorscompensated sensors

    pH compensated sensorspH compensated sensors

  • UCGAPs Suslow  6/17/2010

    [email protected] 11

    99.99999192006.9200 ppm Cl

    99.9207422019.8200 ppm Cl

    99.9909001007.1100 ppm Cl

    550.96981008.2100 ppm Cl

    % Spore Kill 5 min

    % Spore Kill 15 secs

    ORP (mV)Free ClpH Treatment

    Comparative Oxidative Disinfection Potential: Comparative Oxidative Disinfection Potential: Penicillium expansumPenicillium expansum

    0.10.13722.27.5MWS

    99.99999192006.9200 ppm Cl

    NaOCl (bleach) pH endpoint Measured Free Chlorine(ppm)

    ORP value(mV)

    Approx 6-log Inactivation Time

    (low burden water)E. coli Fecal

    ColiformMunicipal Water

    Sourceunadjusted

    8.3 0.2 365 > 1h >1h

    Municipal Water Source

    adjusted

    7.0 0.2 595 > 30min >1h

    MWS +100ppmunadjusted

    9.8 100 656 < 15s

  • UCGAPs Suslow  6/17/2010

    [email protected] 12

    C. Product Water ManagementQ# Requirement Procedure Verification Corrective Action/

    Disposition2.15 Re-circulated

    and re-used water is changed at least daily, and records of changes are

    Operation shall maintain records to demonstrate water changes. Water may be used for longer than daily if a validated

    Auditor reviews records to verify at least daily changes of all wash water.

    Procedure is developed or revised. Retraining is performed.

    POSTHARVEST AUDIT METRICS

    gkept. regeneration

    system (e.g., a water pasteurization/filtration system) is being used.

    2.16 If water quality is based upon a chlorine-based sanitizer and Oxidation Reduction Potential (ORP), the process shall be targeted to be at least 800 mV. ORP levels shall not be less than 650 mV

    Operation shall have a procedure to manage ORP levels, shall establish process adjustments for when the ORP drops below 800 mV, and shall maintain records to verify proper management of levels.

    Auditor shall review the procedure and shall review records of ORP measurement and appropriate management. Auditor reviews records for deviations and their disposition.

    Procedure is developed or revised. Retraining is performed. Tomatoes washed in water at ORP less than 650 mV shall be discarded back to the last evidence of compliance.

    650 mV, measured at the exit of the product from the water system, unless validation data are available to demonstrate a lower ORP is effective under operating conditions.

    2.18 If water quality is based upon an aqueous chlorine dioxide sanitizer, chlorine dioxide levels shall not be less than 1 ppm,measured

    Operation shall have a procedure to manage aqueous chlorine dioxide levels, shall establish process targets so as not to drop below the minimum ppm, shall establish adjustments for

    Auditor shall review the procedure and shall review records of aqueous chlorine dioxide measurement and appropriate management. Auditor reviews records for deviations and their

    Procedure is developed or revised. Retraining is performed. Tomatoes washed in water at less than 1 ppm aqueous chlorine dioxide shall be discarded back to the last evidence of

    at the exit of the product from the water system, unless validation data are available to demonstrate a lower ORP is effective under operating conditions.

    when the chlorine dioxide drops below the target ppm, and shall maintain records to verify proper management of levels.

    disposition. compliance. The The potential risks of potential risks of waterborne contamination waterborne contamination

    demand special attention for Quality and Safetydemand special attention for Quality and Safety

    Select disinfectant on microbial reduction objectivesSelect disinfectant on microbial reduction objectives

    Weigh the pros and cons of each sanitizer to find the Weigh the pros and cons of each sanitizer to find the one that’s right for your operationone that’s right for your operation

    How Do I Calculate How Much Bleach To Add To My Wash Tank?

    (target ppm of Free Chlorine) x (total tank volume) x conversion

    (% NaOCl in source) x (10,000)

    = Volume to add

    Example:  I want 100 ppm to wash cucumbers.

    100 ppm x 50 gallons x 128 oz./gallon         

    pp 5 g /g5.25% NaOCl x 10,000 ppm/%

    = 12 oz or 1.5 cups

    100 ppm x 189 liters

    5.25% NaOCl x 10,000 ppm/%= 0.36 liters or 360 ml or 1.5 cups