two dimensional analysis of fluid-structure interaction by

150
TWO DIMENSIONAL ANALYSIS OF FLUID-STRUCTURE INTERACTION BY METHOD OF FINITE DIFFERENCES HYDRAULIC RAM, THE FUEL TANK PROBLEM John Charles Bitzberger

Upload: others

Post on 11-Jun-2022

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Two dimensional analysis of fluid-structure interaction by

TWO DIMENSIONAL ANALYSIS OF FLUID-STRUCTUREINTERACTION BY METHOD OF FINITE DIFFERENCES

HYDRAULIC RAM, THE FUEL TANK PROBLEM

John Charles Bitzberger

Page 2: Two dimensional analysis of fluid-structure interaction by

DUDLEY KNOX UBRMWNAVALP0ST6RADUATES-.il

MONTEREV. CAUFORN.A 939V

Page 3: Two dimensional analysis of fluid-structure interaction by

UATE SCHOOL

Monterey, California

TWO DIMENSIONAL ANALYSISOF FLUID-STRUCTURE INTERACTION

BY METHOD OF FINITE DIFFERENCES -HYDRAULIC RAM, THE FUEL TANK PROBLEM

by

John Charles Bitzberger

June 1974

Thesis Advisor: R.E. Ball

Kppnovtd loh pubtic -te£eo6e; cLU&UbuZLon unLunti;e.d.

T161724

Page 4: Two dimensional analysis of fluid-structure interaction by
Page 5: Two dimensional analysis of fluid-structure interaction by

SECURITY CLASSIFICATION OF THIS PAGE fVfh.n Pete Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subline)

Two Dimensional Analysis of Fluid-Structure Interaction by Method ofFinite Differences - Hydraulic Ram, TheFuel Tank Problem

S. TYPE OF REPORT & PERIOD COVEREDMaster's Thesis;June 197^

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf»;

John Charles Bitzberger

8. CONTRACT OR GRANT NUMBERf*)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate SchoolMonterey, California 939^0

10. PROGRAM ELEMENT. PROJECT. TASKAREA « WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADORESS

Naval Postgraduate SchoolMonterey, California 939^0

12. REPORT DATE

Jimp IQlh13. NUMBER OF PAGES

72J*. MONITORING AGENCY NAME & ADDRESSf// dlllerent from Controlling Olllco)

Naval Postgraduate SchoolMonterey, California 939^0

IS. SECURITY CLASS, (ol thle report.)

Unclassified

1 5a. DECLASSIFI CATION/ DOWN GRADINGSCMEOULE

16. DISTRIBUTION STATEMENT (ol (Ma Report.)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ol the eoetract entered In Bloc* 30, II dlllaranl Itotn Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae alda II naceaaary and Identity by block number)

Fluid-Structure InteractionHydraulic Ram

20. ABSTRACT (Continue on taveraa alda II neceaaary end Identity by block number)

As part of an ongoing research program at the Naval

Postgraduate Schsol concerned with aircraft vulnerability and,

in particular, the "Hydraulic Ram" phenomenon, two Fortran IV

computer codes were written to analyze in two dimensions

problems concerning structure-fluid interaction. This thesis

DD | janM73 1473 EDITION OF I NOV 65 IS OBSOLETE

(PagC 1) S/N 0103-014-66011SECURITY CLASSIFICATION OF THIS PAGE (rThen Data fnterej\

Page 6: Two dimensional analysis of fluid-structure interaction by
Page 7: Two dimensional analysis of fluid-structure interaction by

i'tXUWlTY CLASSIFICATION OF THIS PAGEfHTi.n Data Enleric'.

(20. ABSTRACT continued)

presents the method selected for solution, details the codes

written and presents test cases and example problems. User's

instructions and program listings for both codes are also

included.

DD Form 1473, 1 Jan 73

S/N 0102-014-GG01

(BACK)

SETURlTV CLASSIFICATION OF THIS PAGCC***" Oml* Enlmrmd)

Page 8: Two dimensional analysis of fluid-structure interaction by
Page 9: Two dimensional analysis of fluid-structure interaction by

Two Dimensional Analysisof Fluid-Structure Interactionby Method of Finite Differences -

Hydraulic Ram, The Fuel Tank Problem

by

John Charles BitzbergerLieutenant, United States Navy

B.S., Naval Postgraduate School, 1973

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOLJune 197^

Page 10: Two dimensional analysis of fluid-structure interaction by
Page 11: Two dimensional analysis of fluid-structure interaction by

D'JDLLY KNOX LIBR'iRY

NAVAL POSTGRADUATE S~

MONTEREY, CALIFORNIA 93940

ABSTRACT

As part of an ongoing research program at the Naval

Postgraduate School concerned with aircraft vulnerability

and, in particular, the "Hydraulic Ram" phenomenon, two

Fortran IV computer codes were written to analyze in two

dimensions problems concerning structure-fluid interaction.

This thesis presents the method selected for solution,

details the codes written and presents test cases and

example problems. User's instructions and program listings

for both codes are also included.

Page 12: Two dimensional analysis of fluid-structure interaction by
Page 13: Two dimensional analysis of fluid-structure interaction by

TABLE OF CONTENTS

I. INTRODUCTION 7

II. DERIVATION OF GOVERNING EQUATIONS 9

A. THE WAVE EQUATION FOR AN INVISCID FLUID 9

1. Equation of Motion 9

2. Constitutive Equation 9

3. Equation of Continuity 10

1. Potential Equation 10

B. THE GOVERNING EQUATION FOR THE STRUCTURE — 12

C. INTERFACE CONDITIONS 12

D. SUMMARY l2j

III. NUMERICAL METHOD OF ANALYSIS -ACCELERATION FORMULATION l6

A. FINITE DIFFERENCING SCHEME l6

1. The Fluid l6

2. The Beam Equation *«

3. The Calculation Scheme 1 7

B. INITIAL CONDITIONS 20

C. THE TIME STEP FOR NUMERICAL STABILITY 20

IV. NUMERICAL METHOD OF ANALYSIS -

VELOCITY FORMULATION 2 3

A. VELOCITY FORMULATION APPROACH 2 3

B. FINITE DIFFERENCING SCHEME 25

1. The Fluid 25

2. The Wall 26

3. The Combined System 2 ?

Page 14: Two dimensional analysis of fluid-structure interaction by
Page 15: Two dimensional analysis of fluid-structure interaction by

C. INITIAL CONDITIONS 29

D. THE TIME STEP FOR NUMERICAL STABILITY 29

V. DESCRIPTION OP THE COMPUTER PROGRAMS 31

A. GENERAL FEATURES 31

B. MAIN PROGRAM 32

1. Variable Description -

Velocity Formulation 32

2. Main Program Functions 3^

C. SUBROUTINE INP(IER) 3^

1. Variable Description : 3^

2. Input Cards 35

3. Non-Zero Initial Conditions 35

D. SUBROUTINE CUIPaER)' 36

E. SUBROUTINE WALL(IER) 36

F. SUBROUTINE FLUID(IER) 36

G. SUBROUTINE GRAPHO(IER) 36

VI. SOLUTIONS 38

A. CHECK CASES 38

1. The Fluid — 38

2. The Wall ^1

B. EXAMPLE PROBLEMS 4l

VII. CONCLUSIONS ^

APPENDIX A: USER'S INSTRUCTIONS ^5

COMPUTER PROGRAM - VELOCITY FORMULATION ^ 6

COMPUTER PROGRAM - ACCELERATION FORMULATION 59

BIBLIOGRAPHY 71

INITIAL DISTRIBUTION LIST ? 2

Page 16: Two dimensional analysis of fluid-structure interaction by
Page 17: Two dimensional analysis of fluid-structure interaction by

I. INTRODUCTION

Many important structural problems In aerospace engi-

neering involve components that are in contact with a fluid.

One example is the fuel tank located in a wing or fuselage

of an aircraft. Another example is the fuel tank in a

liquid fueled rocket. An example in the field of civil

engineering is the dam and reservoir system.

An ongoing research program at the Naval Postgraduate

School is concerned with aircraft vulnerability in the fuel

tank area. This program is currently devoted to a study of

the Hydraulic Ram Problem. "Hydraulic Ram" is the dynamic

loading of fuel tanks when impacted by bullets or warhead

fragments. This loading gives the appearance of a simple

pressure pulse with a resulting deformation or rupture of

the tank. It has been found, however, that the loading and

deformation are a combination of a number of events called

"hydraulic ram components." [Ref. 1]

As part of the theoretical analysis of the fuel tank

response to a penetrating projectile two computer codes were

written to solve for the response of the fluid and the walls

of a idealized two-dimensional fuel tank. The codes will

compute the pressure throughout the fluid and will calculate

the wall response to this pressure. The user can prescribe

the problem to be analyzed, includingsbut not limited to:

Page 18: Two dimensional analysis of fluid-structure interaction by
Page 19: Two dimensional analysis of fluid-structure interaction by

Fluid surface pressure disturbances, initial wall displace-

ments, initial wall velocities, pressure distributions through

the fluid, etc.

This thesis presents the method selected for the solution

of problems involving two-dimensional fluid-structure inter-

action. The types of problems which can be solved using the

codes are described. Section II contains the theoretical

description of the problem, and the following two sections

outline two finite difference formulations that were used

to obtain solutions. Section V contains a description of

each code and describes the modifications necessary to

change the boundary and initial conditions. Section VI

presents the solutions obtained with the codes, including

the check cases and several example programs, and discusses

the comparison of results obtained from the two code formula-

tions. Users' instructions and program listings for both

formulations are included in Appendices A and B.

Page 20: Two dimensional analysis of fluid-structure interaction by
Page 21: Two dimensional analysis of fluid-structure interaction by

II. DERIVATION OF GOVERNING EQUATIONS

A. THE WAVE EQUATION FOR AN INVISCID FLUID

1. Equation of Motion

Euler's equation of motion can be given in the form

P §f+ grad p = (1)

where P is the fluid density, p is the fluid hydrostatic

pressure (positive in compression), q is the velocity vector

and t is time. The total derivative =jr- is given by

bit=

!t+ u fe

+ vi?

+ wft < 2 >

where u, v, w are the components of the velocity in the

x, y, z directions respectively. When the fluid velocity is

sufficiently small,

2- * £- (3)Dt atVJ;

Superscript dots will be used to denote partial derivatives

with respect to time.

2 . Constitutive Equation

The constitutive equation of the inviscid fluid is

given by

p = - K div q (4)

where K is the bulk modulus.

Page 22: Two dimensional analysis of fluid-structure interaction by
Page 23: Two dimensional analysis of fluid-structure interaction by

3. Equation of Continuity

ij^ + divq = (5)

Applying Eq . (3) we obtain

- p + div q = (6)

Eliminating div q between Eqs . (4) and (6) gives

K p

4 . Potential Equation

Define a potential

q ^ grad tj> (8)

Thus Eq . (1) becomes

p grad $ + grad p = (9)

when Eq . (3) is applied. Assuming p to be essentially

constant throughout the fluid, Eq . (9) becomes

grad (p4> + p) = (10)

or

p$ + p = constant (11)

10

Page 24: Two dimensional analysis of fluid-structure interaction by
Page 25: Two dimensional analysis of fluid-structure interaction by

The constant term is set to zero since it implies a base

pressure which is constant throughout the domain.

Differentiating Eq . (1) with respect to time gives

pq + grad p = (12)

Applying Eqs . (4) and (8)

p grad<J)

+ grad (-K div grad<f>)

= (13)

Since p is assumed to be essentially constant, Eq . (13)

becomes

grad(p<J) - K div grad <j>) = (1*0

or

grad(p<{> - KV2

<}>) = (15)

Then

2p<f>

- KV <{> = constant (16)

or

p<j> = KV2

<f>(17)

Recalling that the speed of sound in a fluid can be deter-

mined from the relationship

c2

= £ (18)P

11

Page 26: Two dimensional analysis of fluid-structure interaction by
Page 27: Two dimensional analysis of fluid-structure interaction by

we obtain the wave equation

c2V2

<{> =<J> (19)

B. THE GOVERNING EQUATION FOR THE STRUCTURE

1. Two-Dimensional Idealization

Consider a long open box composed of five uniform

plates. It can be idealized in two dimensions as a structure

composed of three unit width beams attached at right angles

as shown in Fig. 1. In the analysis each beam is considered

separately, with its own set of independent boundary conditions

In all of the examples considered, each beam was assumed to

be clamped at both ends.'

The equation for the 'lateral displacement of a uniform

beam under dynamic load is [Ref. 2]

EI —jj- w(x,t) + mw(x,t) = - p (20)9x

where E is Young's modulus, I is the section moment of

inertia, m is the mass per unit length, w(x,t) is the lateral

displacement of the beam, and p is the pressure applied to

the beam. A positive pressure is in the opposite direction

as w(x,t) as shown in Fig. 1 for the tank.

C. INTERFACE CONDITIONS

From Eq . (11) the pressure on the beam is the fluid

pressure given by

12

Page 28: Two dimensional analysis of fluid-structure interaction by
Page 29: Two dimensional analysis of fluid-structure interaction by

HP

i

-t H

W

1—<—H—1—I—}—<—

*

-1

VXS

1-3

II

•r-3

^H~

EH

w

o

P4CO

HH"

I

MEH<HCOOPh

«

oEH

COM MI

gM1CO

<II

r

M

i

i

i

i

i

H 1—f- ^—*.^ J- II

PIG. 1t'jc

13

Page 30: Two dimensional analysis of fluid-structure interaction by
Page 31: Two dimensional analysis of fluid-structure interaction by

P = - P4> (21)

where again a positive pressure is in the opposite direction

as w(x,t)

.

Another interface condition is the requirement that the

normal velocity of the fluid potential at the interface is

equal to the velocity of the wall, i.e.

w(x,t) = K <J> (22)8n

where —— indicates a partial derivative normal to the wall.8n

Where the fluid has a free surface and the pressure is

zero, the boundary condition is given by

* = (23)

When an excitation pressure is applied to the free surface

I = - E. (2*0

D . SUMMARY

In summary, the equations used in the analysis are

c2V2

<{> = 4> (19)

11]

Page 32: Two dimensional analysis of fluid-structure interaction by
Page 33: Two dimensional analysis of fluid-structure interaction by

EI —jr w(x,t) + mw(x,t)9x

-P (20)

P = - P<f> (21)

w(x,t) = —<t>

8n(22)

15

Page 34: Two dimensional analysis of fluid-structure interaction by
Page 35: Two dimensional analysis of fluid-structure interaction by

III. NUMERICAL METHOD OF ANALYSIS - ACCELERATION FORMULATION

A. FINITE DIFFERENCING SCHEME

1. The Fluid

The wave equation is hyperbolic in nature and for

this reason an explicit formulation for the timewise response

is chosen. The conventional central finite difference

equations are used in both space and time, and when applied

to Eq. (19) give [Ref. 3]

2c

(Ax)2 {*i,j-l

+*i,j+l " 4

*i,j+*i+lj

+l-l,j}

( AT)2

\*k-l " 2<{,k

+*k+l} ij (25)

where Ax = Ay in a square mesh, i and j are mesh point

reference indices, and k is the time step. 4>i

.

k+1is the

only unknown. All other terms are known or can be evaluated

prior to the calculation of $. . . + , .

2. The Beam Equation

Conventional central finite difference schemes are

also used for the walls in both space and time. The resulting

equation is given by [Ref. 3]

16

Page 36: Two dimensional analysis of fluid-structure interaction by
Page 37: Two dimensional analysis of fluid-structure interaction by

-^ {w^ - Uw1_1

+ 6w±

- 4wi+1

+ w1+2

J+

m

(At) K-i - 2wk

+ wk+ i}

1

= -p i,2 \"k-l k k+lj, *Xk (26)

where

Pi,k " " 2At {~*k-l+

^k+l}. .

(27)

and j = 1 or j = J max . See Fig. 1.

A similar pair of equations can be written for the wall

along the boundary where 1=1. In Eq. (26) w. ... is the

only unknown in the explicit scheme. Note that the pressure

given by Eq . (27) is a function of the fluid potential at

the wall.

3- The Calculation Scheme

When the two systems are combined, the other linking

mechanism is the interface condition on the fluid and wall

velocities. Using central finite differences, Eq . (22) is

given by [Ref. 3]

2AT fWi,k-l

+ Wi,k+l}

=2AT {"i.j-l.k

+*ij+l,k} (28)

17

Page 38: Two dimensional analysis of fluid-structure interaction by
Page 39: Two dimensional analysis of fluid-structure interaction by

In the calculation scheme the wall deflection at each new

step k+1 is computed first, and then the velocity potential

is computed throughout the fluid. In order to compute the

wall displacement at k+1 the pressure must be known at the

preceding time step k, which requires knowledge of the

velocity potential at the wall at the new time step, k+1,

according to Eq. (27). The solution to this problem is to

solve for the wall displacement by implicitly solving for

the new velocity potential at the wall. Thus, using

Eq . (25) to eliminate <j>. . .,, from Eq . (27), and using

Eq. (28) to eliminate <}>. . , . (when j = l) from the result

gives

pi,k=

" 2At {"ij.k-l " i,J,fc-l+

2<f>i,j,k+

(tf )2[ *i-i,j,k

+i+i,j,k • Hij,k +

*i,j+i,k

*i,J +l,k+zf (w

i,k-l )]}

A similar equation can be obtained for the wall where

j = j . Substituting p given by Eq . (29) into Eq . (26),fflclX

combining terms, and solving for w. .

+_ gives

18

Page 40: Two dimensional analysis of fluid-structure interaction by
Page 41: Two dimensional analysis of fluid-structure interaction by

wi,k+l

&- At \2$. , ,-

2(f). , , . +2m ^

Ti,j,k yi,j,k-l

(TT } c *i-i,j,k+

*i+i,i,k - ^i.l.k + 2*i,2,k

+ -rr- WAt i,k^

+ 2Wi,k " Wi,k-1

EI , At v2 / i. , c

(Ax) Ii-2,k l-l, k l,k i+I, k

Wi+2,k}, /, , 1 At

22v

, ,7 (1 +S A3T c } (30)

Equation (30) Is written for the wall where j = 1, <_ x < aH

For x > aH, p = 0. Once the wall deflection is known at k+1,

the interface conditions on the fluid are known. The calcula-

tion of the fluid velocity potential is now quite straight-

forward using Eq. (25) and Eq . (28) at an interface.

On the free surface of the fluid the velocity

potential may be excited by an applied pressure. In this

case, applying central finite differences to Eq. (24) gives

*k + i *k-i - 2 f (pb>k (31)

where (P b )^ i- s the pressure exerted on the boundary at time

step k.

19

Page 42: Two dimensional analysis of fluid-structure interaction by
Page 43: Two dimensional analysis of fluid-structure interaction by

B. INITIAL CONDITIONS

1. The Fluid

Since the governing partial differential equation

(Eq. (19)) is second order with respect to time, two initial

conditions are required; 1) the velocity potential at time

zero", and 2) the first time derivative of the velocity

potential, which is proportional to any initial pressure in

the fluid.

2. The Wall

The beam equation (Eq. (20)) is also second order

with respect to time, and two initial conditions are required;

1) the initial displacement of the wall, and 2) the initial

velocity of the wall.

C. THE TIME STEP FOR NUMERICAL STABILITY

1. The Fluid

For hyperbolic systems solved using Eq . (25) 3 the

non-dimensional time step ratio

& (32)

where primes denote non-dimensional quantities, must be less

than 1 for numerical stability for a one-dimensional system

[Ref . 3] and must be less than \J 2/2 for numerical

stability for a two-dimensional system [Ref. 4].

20

Page 44: Two dimensional analysis of fluid-structure interaction by
Page 45: Two dimensional analysis of fluid-structure interaction by

Non-dimensional time t' is given by

f = 4r (33)

where L is a reference length. The non-dimensional length

x' is given by

x' = r (34)

Substituting Eqs . (33) and (3*0 into Eq . (32) gives

* < -H=T (35)c vl 2

for numerical stability of the two-dimensional system.

2. The Wall

Non-dimensionalizing the time and length coordinates

in the beam equation gives [Ref. 3]

t» = 4- \ 51 ( 3 6)L2 II m

x» -g (37)

The beam equation is parabolic in nature [Ref. 31 and

requires a non-dimensional time step ratio

1

< i (38)(Ax')>2

- 2

21

Page 46: Two dimensional analysis of fluid-structure interaction by
Page 47: Two dimensional analysis of fluid-structure interaction by

for numerical stability. Substituting Eqs. (36) and (37)

into Eq. (38) gives

1 > At2 " (Ax)

2 SÂ¥ (39)m

Therefore

At < (A^l |g ( 4o)

3. The Combined System

The assumption has been made that the fluid will

require the smallest time step for stability. Thus, there

is a restriction on the value of the parameters used in the

combined analysis, in particular the physical parameters of

the beam. This restriction is given by

< 4£ \\£r (41)cIT " 2

according to Eqs. (35) and (40)

22

Page 48: Two dimensional analysis of fluid-structure interaction by
Page 49: Two dimensional analysis of fluid-structure interaction by

IV. NUMERICAL METHOD OF ANALYSIS - VELOCITY FORMULATION

A. "VELOCITY FORMULATION APPROACH

Kreig and Monteith [Ref. 5] have suggested a modification

to the timewise finite differencing scheme outlined in

Section III. This modification is described as a "velocity"

formulation.

Consider their example of the one-dimensional spring mass

system.

Mw + Kw = (42)

Using central finite differences, Eq . (42) becomes

M

(At)2 K-l " 2w

k+ W

k+ l}+ Kw

k= ° (ZJ3)

or

"»i [2 - 1 (At,2]wk - -Vi < M)

Now consider the velocity formulation

Mv + Kvj =

W = V (15)

23

Page 50: Two dimensional analysis of fluid-structure interaction by
Page 51: Two dimensional analysis of fluid-structure interaction by

Defining the velocity at half time steps and the displacement

at whole time steps leads to

At {" v.*,+ VbJ + KW

k= °

•

W)

or

vk+i,

= Vk-H " I At w

k ^7)

and

wk+ l

= wk

+ At vk+%

(J48)

With either formulation the time step is the same, and in

the real number system without round-off error the results

would be identical. However, computers do not compute in

the real number system. Round-off errors are always present

Consider the term in brackets in Eq . (44)

[2 - | (At)2

]

Depending on the number of digits retained, the significance

K Pof jjr (At) could be completely lost in round off.

24

Page 52: Two dimensional analysis of fluid-structure interaction by
Page 53: Two dimensional analysis of fluid-structure interaction by

B. FINITE DIFFERENCING SCHEME

1. The Fluid

The fluid equation derived in Section III can be

written as

c2V2

<J>= 41

(i»9)

--•-* (50)

A central finite difference scheme is proposed centering

the "velocity" at whole time steps and the "displacement"

at half time steps. Note, the pressure is directly computed

at each whole time step since

Pk= - P ^ k

(51)

The finite difference equation for the fluid is given by

2c

(Ax ^2 {l,J-l+

*i,J+l " "l.J+

*i+l 9 j+i-l,J/kji

=

AT K-l + \} .

,

(52)

where \\> . . , is the only unknown. The potential is obtained

from the finite difference expression for Eq . (50)

ij.k+ii=^i,J,k-%

+ At*ij,k (53)

25

Page 54: Two dimensional analysis of fluid-structure interaction by
Page 55: Two dimensional analysis of fluid-structure interaction by

and

2. The Wall

Similarly, the beam equation can be written

EI —jj- w(x,t) + mv = -p (54)dx

w(x,t) = v (55)

For these equations a central finite difference scheme is

proposed centering the velocity v at half time steps and

the displacement w at whole time steps . Note that the

velocity needed for the interface condition is directly

computed,

Vi,k^= U {-l.J-1

+*l,J+l}k^

(56)

The finite difference equation for the beam is

(57)

it <w. „ - 4w. , + 6w. - 4wj. n + w. ,„>,. vl 1-2 l-l i l+l i+2],(Ax) l J k

AT {-vi,k-%+ V

i,k+J=

p *i f j,]

The unknown is v. , ,, . From Eq . (55)1 ,K + *2

wi,k+l

= wi,k

+ At vi,k+^ (58)

26

Page 56: Two dimensional analysis of fluid-structure interaction by
Page 57: Two dimensional analysis of fluid-structure interaction by

3. The Combined System

With the velocity function there is no need to solve

for the beam displacement in terms of an Implicit solution

of the potential at the wall. In the velocity formulation

the pressure is computed directly; no differencing is

required. Figure 2 graphically illustrates the time step

centering of both the acceleration formulation and the

velocity formulation.

The solution scheme for the velocity formulation is:

1. Solve for the wall velocity, Eq . (57), based on the

known pressure at the wall and the previous displace-

ment and velocity.

2. Calculate the new wall displacement, Eq . (58), based

on the new wall velocity and the previous displacement.

3. Solve forty } Eq. (52), based on the previous

ty a the

new wall velocity (for the interface conditions) and

the previous (j>.

4. Calculate the new <J>, Eq . (53), based on the previous

$ and the newly calculated lfi.

5- Return to step 1 and repeat.

As in the example given by Kreig and Monteith this formula-

tion is exactly equal to the acceleration formulation if the

beam and fluid equations are considered separately. However,

in the combined system the fluid equation is displaced

exactly one-half time step from the fluid equation used in

the acceleration formulation. In the acceleration formulation

27

Page 58: Two dimensional analysis of fluid-structure interaction by
Page 59: Two dimensional analysis of fluid-structure interaction by

ACCELERATION FORMULATION

4>

-1

w

+1 +2

* TIME

+3

£

W

VELOCITY FORMULATION

-1

C$\ $ \ <p <f>\ $($\

+1 1 +2 +3

T -V TIME

FIG. 2

23

Page 60: Two dimensional analysis of fluid-structure interaction by
Page 61: Two dimensional analysis of fluid-structure interaction by

the pressure depends on(J>k+1 and

<f>k _-, v;hereas in the velocity

formulation, it depends on <{> and <(>, . Thus, even with

no round-off error there will be a difference between the two

solutions. Refer to Part D for a discussion of the signif-

icance of this difference.

C. INITIAL CONDITIONS

As with the acceleration formulation a total of four

initial conditions are required. However, recall that two

of the four variables are defined one-half time step on

either side of t = 0. They are the wall velocity and the

velocity potential of $ in the fluid.

The actual initial conditions can be denoted as w ando

<j) . The computer code assumes that

v . = wrt (59)-% "O

and

« =o

(60)

D. THE TIME STEP FOR NUMERICAL STABILITY

Theoretically, since the same parameters are used in

both formulations, the time step for numerical stability

should be exactly the same for both formulations. In fact,

this was found to be true for the beam equation and for the

fluid equation when each was tested separately. However,

when the systems were coupled, and. the maximum theoretical

29

Page 62: Two dimensional analysis of fluid-structure interaction by
Page 63: Two dimensional analysis of fluid-structure interaction by

time step was used, substantial instability exhibited

itself immediately in the computer results. The instability

occurred at the interface and it occurred within two time

steps of a pressure pulse striking a wall. A subsequent

velocity was imparted to the wall which was always large

enough to cause a reversal in the fluid pressure at the wall

at the next time step.

A primitive but effective solution to the instability

problem was obtained by reducing the time step arbitrarily

to

At = A *(61)

c i 3

30

Page 64: Two dimensional analysis of fluid-structure interaction by
Page 65: Two dimensional analysis of fluid-structure interaction by

V. DESCRIPTION OF THE COMPUTER PROGRAMS

Two Fortran IV programs were written and tested. The

theory behind each is outlined in Sections III and IV above.

The two programs are quite similar in construction and

require similar amounts of core storage. C.P.U. time

required is also similar. Only one program will be described

in detail, but differences between the two will be pointed

out where they occur.

A. GENERAL FEATURES

The programs allow for complete flexibility in any of

the possible initial conditions, both on the walls and on

the fluid. At present the program allows for three walls

and a variable fluid depth. The ends of each wall are

considered to be clamped. The wall boundary conditions can

be changed by any future user by changing six equations in

the velocity formulation and twelve in the acceleration

formulation. The location of these equations will be pointed

out below. The program provides for a non-dimensional thirty

by thirty mesh point domain, with the reference length being

the length of the horizontal wall (See Fig. 1). All variables,

vectors and arrays are placed in blank Common, to allow for

complete flexibility in communication between subroutines.

Further all vectors, and arrays are initialized to zero value

before analysis begins.

31

Page 66: Two dimensional analysis of fluid-structure interaction by
Page 67: Two dimensional analysis of fluid-structure interaction by

Subroutines are provided to:

1. Compute constants derived from input parameters,

normalize the dimensions of the problem, and compute

or set initial conditions.

2. Output data obtained for each mesh point in the domain.

The format is tabular.

3. Compute the beam equations.

*1 . Compute the fluid equations.

5. Provide for a special graphical output.

Each subroutine will be described in detail.

B. MAIN PROGRAM

1. Variable Description — Velocity Formulation

wa(i;

WB(I;

wc(i:

va(i:

VB(I

vc(i;

ua(i;

ub(i;

UC(I

XA(I

XB(I

XC(I

WADOT(I)

WBDOT ( I

)

- left vertical wall displacement at k

- horizontal wall displacement at k

- right vertical wall displacement at k

- left vertical wall displacement at k+1

- horizontal wall displacement at k+1

- right vertical wall displacement at k+1

- left vertical wall velocity at k-Jj

- horizontal wall velocity at k-h

- right vertical wall velocity at k-%

- left vertical wall velocity at k+%

- horizontal wall velocity at k+h

- right vertical wall velocity at k+%

- initial left vertical wall velocity

- initial horizontal wall velocity

32

Page 68: Two dimensional analysis of fluid-structure interaction by
Page 69: Two dimensional analysis of fluid-structure interaction by

WCDOT(I)

PRA(I)

PRB(I)

PRC(I)

PK(I)

IWA(I)

IWB(I)

IWC(I)

- initial right vertical wall velocity

- initial left vertical wall pressure

- initial horizontal wall pressure

- initial right vertical wall pressure

- fluid free surface applied pressure

- integer value of left vertical walldisplacement

- integer value of horizontal walldisplacement

- integer value of right vertical walldisplacement

P(I,J)

PN(I,J)

PL(I,J)

PRESS(I,J)

PHIDOT(I,J)

IPRESS(I.J)

- value of<J> in the fluid at k-%

- value of <j> in the fluid at k+%

- value of ty in the fluid at k-1

- value of pressure in fluid at k

- initial value of \p in the fluid

- integer value of pressure in the fluid.

In the displacement formulation the following variables differ,

VA,VB } VC are not used

WA,WB,WC

XA,XB,XC

UA,UB,UC

P(I,J)

PN(I,J)

PL(I,J)

are values of wall displacement at k

are values of wall displacement at k+1

are values of wall displacement at k-1

are values of $ at k

are values of $ at k+1

are values of<J>

at k-1

33

Page 70: Two dimensional analysis of fluid-structure interaction by
Page 71: Two dimensional analysis of fluid-structure interaction by

2. Main Program Functions

In the velocity formulation the main program

accomplishes the following functions:

1. Controls calls to other subroutines.

2. Computes first value of PN(I,J) from initial conditions.

3. Saves the value of the displacement at a selected

wall mesh point at selected time steps for later

plotting as a time vs. displacement graph.

4. Turns off a free surface pressure disturbance at any

preselected time step.

In addition the "acceleration" formulation program

5. Computes the k = 1 value of wall displacement from

initial conditions.

C. SUBROUTINE INP(IER)

This subroutine

1. Reads all input data.

2. Computes constants.

3. Assigns values to initial conditions other than zero

value

.

1 . Variable Description

RHOF - Density of the fluid

E - Young's Modulus

RL - Horizontal length

RH - Vertical height where RH <_ RL

AL - Fractional depth of fluid < AL < 1.0

C - Speed of sound in the fluid.

34

Page 72: Two dimensional analysis of fluid-structure interaction by
Page 73: Two dimensional analysis of fluid-structure interaction by

TH

RHO

NH1

Nl

DELX

DELT

RIO

NA

C1,C2,C3

04,05,06,07,08,09,0

D1,D2,D3

NH

NHI

N

NAI

- Thickness of beam

- Density of beam material in lbsper in3

- Number of vertical mesh points

- Number of horizontal mesh pointswhere NHI < Nl = 30

- Width of mesh

- Time step

- Computed value of I, moment ofinertia

- Number of vertical mesh points inthe fluid.

- Constants common to both programs

- Constants used only in accelerationformulation

- Constants used in velocity formulation

- Equals NHI - 1

- Equals NHI - 2

- Equals Nl - 1

- Equals NA - 1

2

.

Input Cards

Only two input cards are used to input RL, RH, AL,

C, TH, RHO, RH0P, E. The format will be described in

Appendix A.

3. Non-Zero Initial Conditions

Any non-zero initial conditions are inserted by the

user at the end of Subroutine INP

.

35

Page 74: Two dimensional analysis of fluid-structure interaction by
Page 75: Two dimensional analysis of fluid-structure interaction by

D. SUBROUTINE OUTP(IER)

Subroutine OUTP prints out in tabular format the values

of each wall mesh point displacement and the pressure at

each mesh point throughout the domain.

E. SUBROUTINE WALL(IER)

Subroutine WALL computes the values of the wall velocity

and displacement in the velocity formulation and the wall

displacement in the acceleration formulation. If a future

user desired to change the boundary conditions of the beam

equation, then any equation with a computed answer stored

in a variable indexed with a 2, N, or NH would have to be

changed. In the velocity formulation only the equations

for VA(2), VA(NH), VB(2) 5VB(N) , VC(2), VC(NH) need to

be changed. In the acceleration formulation these equations

are for XA(2), XA(NH), XB(2), XB(N), XC(2), XC(NH) and recall

that these equations must also be changed in the main program,

F. SUBROUTINE FLUID(IER)

Subroutine FLUID computes the value of ty and<f>

at k and

k+h respectively in the velocity formulation and computes

the values of<J>

at k+1 in the acceleration formulation.

Pressure at each mesh point is also computed in FLUID.

G. SUBROUTINE GRAPHO(IER)

Subroutine GRAPHO is an attempt to make some sense out

of the possible 1900 numerical values calculated at each

time step. The subroutine locates an absolute maximum value

36

Page 76: Two dimensional analysis of fluid-structure interaction by
Page 77: Two dimensional analysis of fluid-structure interaction by

for wall displacement and fluid pressure and from these

values normalizes the entire domain to integer values from

-99 to +100. This information is then presented in a format

quite similar to Fig. (1) . An integer value is placed at

each mesh point in the domain.

37

Page 78: Two dimensional analysis of fluid-structure interaction by
Page 79: Two dimensional analysis of fluid-structure interaction by

VI. SOLUTIONS

A. CHECK CASES

In order to determine if the programs correctly modeled

the system described above, several test cases were run on

each formulation.

1. The Fluid

By controlling the subroutines called by the main

program, the user is able selectively to compute results

for the fluid alone or the wall alone. One test case for

the fluid alone was a step pressure disturbance applied

uniformly over the entire upper surface for a finite time

interval. The walls were treated as rigid. This test

showed that the pulse propagation and reflection behaved

as expected in both formulations. The uniform pulse traveled

uniformly through the fluid. The value of pressure doubled

as expected at the horizontal rigid wall and returned

uniformly to the free surface. See Figs. 3 and k.

Another test case consisting of a point pressure

disturbance at the middle of the free surface showed that

two-dimensional pulse propagation in the fluid was as

expected. The amplitude of the pressure decreased radially

from the point source.

In both test cases the theoretical time step for

stability proved to be valid in both formulations.

38

Page 80: Two dimensional analysis of fluid-structure interaction by
Page 81: Two dimensional analysis of fluid-structure interaction by

O THEORETICAL VALUE

-<- VELOCITY FORMULATION

-O- ACCELERATION FORMULATION

PRESSUREIN PSI

10 15 20 25

-H >

a

D-«-

FLUIDSURFACE

<t3

QHORIZONTAL

6 <D

TIMEs .2167*10-3 sec

FIG. 3

WALL

39

Page 82: Two dimensional analysis of fluid-structure interaction by
Page 83: Two dimensional analysis of fluid-structure interaction by

O THEORETICAL VALUE

< VELOCITY FORMULATION

-D- ACCELERATION FORMULATION

PRESSUREIN PSI

TIME= .9031*10-3 S ec

HORIZONTAL

WILL

FIG. 4

^0

Page 84: Two dimensional analysis of fluid-structure interaction by
Page 85: Two dimensional analysis of fluid-structure interaction by

2. The Wall

A free vibration analysis was conducted using the

beam equation to test the wall response alone. The wall

was initially displaced to conform to the first mode of

vibration. Rogers [Ref. 1] gives a value of 51.3 cycles per

second for the value of the frequency of the first mode of

vibration for the beam parameters used in the test. The

results from both formulations returned a first mode of vibra-

tion frequency of approximately 50 cycles per second. Again

the theoretical time step for stability proved to be valid.

B. EXAMPLE PROBLEMS

The types of problems these two codes were developed to

solve involve the combined system. The first example prob-

lem consisted of a uniform pressure pulse at the free sur-

face of a flexible tank for 2.26 milleseconds . When a solu-

tion was first attempted using the velocity formulation, the

previously mentioned instability was discovered when the

theoretical time step for numerical stability of the fluid

was used. Since no other solutions to this type of problem

were available, first priority centered on determining the

cause and cure of the instability. A reduction in the time

step as discussed in Section IV solved the instability prob-

lem. The velocity formulation was run with a reduced time

step, and the acceleration formulation was run using the

theoretical time step. The results for the displacement

ill

Page 86: Two dimensional analysis of fluid-structure interaction by
Page 87: Two dimensional analysis of fluid-structure interaction by

of the center of the horizontal wall are shown in Fig. (5).

The dominant frequency of vibration is approximately 12

cycles per second for both formulations. There is a small

amplitude discrepency of about 5% between the two formula-

tions. The resulting vibration appeared to involve all

modes in the beam.

The acceleration formulation was also used to solve the

same problem with a uniform pulse held for .226 milleseconds

or 1/10 the previous example. Figure (5) again denotes

a frequency of approximately 12 cycles per second, and the

amplitude is proportional to the previous case. Maximum

amplitude is about one-tenth that of the previous case.

It is interesting to note that if the fluid is considered

as incompressible, and its mass is added to the mass of the

beam, the frequency of free vibration as given by Rogers

[Ref. 2] is 11.1 cycles per second.

Another example problem was run with a pressure exerted

at the two center mesh points of the free surface for approx-

imately 450 microseconds. In this case, the first mode of

vibration predominated in the horizontal wall at a frequency

of 13 cycles per second. Again only minimal differences

in amplitude were observed between the two formulations.

42

Page 88: Two dimensional analysis of fluid-structure interaction by
Page 89: Two dimensional analysis of fluid-structure interaction by

fa COo M

W« C">

w £;M M<^H SO Mfi< \Ao hp

<$f^ ^sM Kla <jw E-t

o S<n Ot-p tsi

^ MCO «M OPI m

1.0-

.8

.6-

.4-

.2

-.2 -

-.4 -

-.6

-.8-

-1.0 J

O Accel. Form, pulse for 25 time steps

V Accel. Form, pulse for 250 time steps

-D- Vel. Form, pulse for 306 time steps

FIG. 5

13

Page 90: Two dimensional analysis of fluid-structure interaction by
Page 91: Two dimensional analysis of fluid-structure interaction by

VII. CONCLUSIONS

The results obtained to date appear to support the

following views:

1. The amplitude of vibration in the walls are depen-

dent upon the length of time the free surface excitation

pressure is applied. This would be expected purely from

energy concepts

.

2. Choice of formulation is up to the user. Each has

its own virtues and its vices. The velocity formulation

requires less core storage and less CPU time for the same

number of time steps. (The acceleration formulation requires

15% more CPU time than the velocity formulation; however,

the time step required is 19 percent smaller in the velocity

formuation.) The velocity formulation would be easier to

modify

.

3. No claims are made as to the efficiency of either

program as presently written. In fact it is estimated that

the program size could be reduced considerably.

ty . More work needs to be done in checking out other

simple cases to prove the validity of the codes, for exam-

ple, pressure pulses passing through the fluid at angles

from the horizontal.

5. Either program will give a future user valuable

insight about structural behavior in contact with a fluid.

Hl\

Page 92: Two dimensional analysis of fluid-structure interaction by
Page 93: Two dimensional analysis of fluid-structure interaction by

APPENDIX A

USER'S INSTRUCTIONS

Input of Initial conditions has already been discussed

in Section V above. Actual input data is contained in two

cards with the following format

:

Card 1

Column Variable

Card 1:

1-10 RL

11-20 RH

21-30 AL

Definition Format

Reference length F10.4

Vertical height F10.4

Fractional depth F10.4of fluid

31-40 C Velocity of sound F10.4in the fluid

41-50 TH Thickness of wall F10.4

51-60 RHO Density of wall _ F10.4material in #/in

Card 2:

1-12 RHOF Density of fluid E12.4in #-sec 2/in^

13-24 E Young's Modulus of E12.4wall material

45

Page 94: Two dimensional analysis of fluid-structure interaction by
Page 95: Two dimensional analysis of fluid-structure interaction by

0OOOO00O0O000OCO00000OOOO00O000OO00O000000O0C500Ot^c\jro<ru^vOr^coc^o^^^tn>ttrv^ois~coos o>-Hrgrri-j-Li~\-or^-coa^O'-<(\!rO'.i Lnor-ooo1 Of-u\jro^i-u"\^or>-coOOOOOOOOO^-^^,Hi^^^^^^c\ir\j(\ic\irMr\j{\|c\jc\jc\j:vir0rnnr0^(v>r0r^OOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOO'iOOOOOOOOOOQOOooooooooooooooooooooooooooooooooooooooooooooooooOOOOOOOOUOOUOOOOOOOOCJOOOOUOOOOOOOOOOOOOO'JOOOOOOOoouoouoououuuuuouuooouuoouuouuoooouoouuooououoooO LU O O oo z o o oo i— o > •> oo oO 2—1-3 U •" »-<X UU OU 0<0 O — <2T -O U<_> mmo:i o o «-2; »• ooo oO »— i— cooo o ro-» ••< oo OO UmDOJ o —O— 2T «-0 oo <zws: O cor<-io •« l^-O oo «•-< o s*>-»cqz oo oo U-l 20 o ••< •• • »o oo 1—co»-«rn o -soci <oo oO ZD O OMcfio UU Oo >-<c3o> o rn ..— ». »o oO i-hLUcQ O «•»«-«(— <M IT>0 OO Qtth o <ooo 00 oO »-<<O0 O XrOQ •• «-0 Oo r>>Q-f<i o —-n^ —.0 oo -J 2: O ~<_)XO 00 oO LL iOO O OcCCi. - MO OO r QOH- O mo. .-U_ -»o oo _iuj o «— •>~o ^:o oO _Ji/>QC<X O H—OX tX(_) Oo «ud o ooma: *o o02 o am » * o oO tO<vO O cOwOO 00 oO Jm(-3 O 3cQfOI «-0 Oo < <o o ocwa: <t<j> oO ZQQ-J O ~Q I - ^U OO OO _l O O CLH- »>0 Oo »-«it/>< o m— »-_i *:o oo oot— <a o wo—lu *o o oo 2lu 5: o h-rnoa hu a: oo uj2:2< o o-'Oi •• 2:0 ijj oo «2; ho: o o< -x »-o m oo Zh-ilu o o <o:o_j •••--o oo oooqo o—^Q-maimiu o oO m Z<tt Ovf »• -wQOZO h- Oo I— qujujq. t o~"-»— 2: •> •< »o oO <3icCcC 7Z Ocr'OOQ.-'fMUJO f) Oo —J(— uj uji-h o xfom -oaru >- oo 3 u_«:x< O—•———»CM «mU <t oO 2"UJU_UJ|— ?: Or-fOOO »—If—O QC OO CCX>~«X C U02D,f|0Q KJ OC OO Of-Qi— ULQ O^t •> •" »-r0 '20 < OO U- i-hO O- —.O—— UJO OO l/-;UJUJ UJ 0«OOi-<1iflOZO O Oo >*uj|— z:a: ot-mrn— oornxo 2 oo i— >>— ujcj< o »-^— a_iu-~» ••(_) < oo »-<—jzcoi-io o—cdcd c^co^o oo oo«-< too U-<2D-«a>ZU oo oo c^ilzccw 00 •• •-O'-' •» o <y„ oO —1 <£u.J O^—— fi ——10 O Oo ujj:hju>< 0--00—•—oxo i— 00 oo xx o:ioircitjoi02'o o om • • • roO aih-ooooot: o w^.3(T)w .-<_) uj (_> ^ 000 •» •

O <0 ZwO 02<<i-« »-<-~o > 0>-t II II II t • t • • «r-i .0O O tOXLL 0023 OOO OH ••••••• i-.-»~OQO • • • <OOOilOIIO OOd 5-i-ih- Oi-i —

.

.cr\ .-(Tio —I O'-'O0OOOO00O'-"-'•--• II II II OOOO II II II ~i II —O 1-.Q.LLII— to OoOZ-^O——~-0 —I O U II II II II II II II II ww--_.—• II II II II——— ~-jO _!•-« h- OZOOOIi^OI-O < OO——<^.————.—— I— (—(--< •-'•-'--—•—

—

>-<>-<y-,Cj—> *

O vOoocOQ »2! OIU^;" ro—i/)'<1DO i_)r-ii-ik-ii-itHi-<i-<w-i>-<QCa>">'w>-<Mi-ii-<wwwi-< ».«—

i

O mm CJ 2: D. i-i UZi-HUJ-QO — O -vwvw»wv«,QQQ<n)0'>'w««>'<(BU »-4wo ilccazu oi->oo-sa:ooo uj ua<icoo<XKj<i^O<s5Ui)f.ixa:^<icouj::i:iD>'ZO l-f-Q-O—"O. UQUXHtl->:<U '-O OQ32SXXXJDJjIi^liaQ a>»HWHQaQ.o o —KNjnm-ro oo o 00o e> 00o o 00o o 0000000000000 00000

it 6

Page 96: Two dimensional analysis of fluid-structure interaction by
Page 97: Two dimensional analysis of fluid-structure interaction by

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO(7»0—4<\lrrivtin-0l^coa>0—<c\lrO>3- Lf\sOr--caO-0 —ic\jcT)>J- u tv0C~X>OO—<!Nr<")~J-ir\s0rs- aocro—<^jm<}-ir\oxj-inmLrMnin'-ALnLamLn-o^o^ONO -o^o -OvOvO -or- 1— f^-r^~r— r— r^r~r~i*-ao coco toco co coco oocooct^c7> cr-a^cT'oooooooooooooooooooooooooooooooooooaooooooooooonOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO U O oo o o oo o o oO O O Ou o o oo o o oo o o oo o o oa o o oo o o oO O O Oo o o o<*J <^> LJ ou o o oo o o oU l-> D Oo o o oo o o oo o o oo o o oo o o oo o o oo o o oo o o oo o o oo o o ou o o oo o a oo o o oo o o oo o o oo o o oO O O Ou o o Oo co o o o

-» o z o o o-30000 o•> o <-< o o o

»-•—• o f— o o o— -> O •-« o o o

h- t. o Q O O O0*-< 0200 oQw OOOO Ow|- OOOO oXO O O O t oOlQ o —J o o 0.. O* *-t O < O OOO

—-t-x «-* u 000-J_lO_ o I— O O —I o••UJ-ii- O t-n o o ot-<OU- O Z O —O O- 00— +O O 1-1 O O^O LU OO—-. -»v_—.X O O—«IJLK_) f- 00 -«

r-i>-ii—1 —>o~)cc o lu ocm->o co om ocx^—-^^^-q •- 1 ox oaiwij o—i ^lu x— ZHi-zhmh 11 o 1— uhqo lu o * a:»-<z——<z-*

in -oo -oiw^ o o^-xo s: 0—1 #>- «-•-<>-< '-'r-i HCOr-tQaa.-: o (— oaau hh oh f— icnj—•— c\i~-'w • 11 <(_) 11 rn II II *• o O 0l~<0 I- O^ _J _l II CD JD II <cdom3:3t3-,«,m «o o or>«:o o u_i<t>~<x:>'-«X3 11 II II M -5-J—OO OOOO K OO OS II II i|

II —-o'l CM—• » »-co II O h- o o cr: OO 11 o-^—•<-«—II Z—<— i--4r-1>-l i-<i"4 —) v-tt-iCOIUO Z OJJO <t (Or—li^LU ICNJ»—II—1CXI'—

1

II .—*-—"

•—•" —^«~IU2.0 •-< O-J-IU t— O II 5:_l •"-"«• -'•j£w>-.t)<j.(_)OC]J__IZ<X»-iO (X 0<l«g.O CO OU^'-<<Uu3'iJU<22hdjDODaaai-u a. i-»^)u^> ooa'f-OQS^o^

o o o omo o o o mo oH O O O O —!•—I (Mo o o oO O O o00000 00000

OOOOOOOOOOOO

t O5: OLU O_J OCD O

Occ OCl OOLU OX OH- OOLL OO O

OLU OM OH-l OCO OO

Oz O< O

OCO Oz O

Or-< Oh- Ot-H O,Q OZ OO OO O

O_l O< Or-4 O1- O

• «o Hi O»oo 2 O—

II II r-

<

ODC-~ II —0 OLU.-7—-50 LU Oh

••-3 ••o X o~-II r-1 «.»—<,_) 1— UCLH rH^H-.w,-,wO OZ+ + 1

-5H-— 1/>0 f- OwXH<I^•-OuOcOO LU ^+ZZ

1

»-iO'y)LLH_) O O-J II Z II II z—'.-HLUOCO OO—< H l-"—

'11

_jx<xo.o O UIXHtllHQ.Q.Q.I—nj O <->{j>zzz:z:v<

OO-10

00000

17

Page 98: Two dimensional analysis of fluid-structure interaction by
Page 99: Two dimensional analysis of fluid-structure interaction by

ooooooooooooooooooooooooooooooooooooooooooooooooIs- co cr>o --i cmm <tm -o r~~ oo u>o —< <\j rn <}m vo r- co u>o —* cmm -4- loo r~- oo oo .-icMi<"i^-Lnor-Goa> 0'-H(Mrn<fo»(?o^oooooooooO'-iH^iHHHr-i^HrH(MN(Ni(Mt\j(\ir\j MrNjojromrnromrommmro ^ >*•>?•->} -j-

OOOr-(HHt-(HH'-<r-(HHf-<rHHHH^^rHHr4rHHHHHr^r-l r-4>—!—(.—4,—|r-IHHHr-<r—<i—|i—| .—4 ,-4 r-4 ,—< r-|ooooooooooooooooooooooooooooooooooooooooooooooooOOOUOOUOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

o o o o oo o o o oo o o o o (.J

o o o o oo o o o o m

u o o o u —u o o o o 1—

1

o o o o o »-

o o o o o 3Eo o o o oo o o o o 5To o o o o 1—4

o o o • o oo o o a. o o UJo o o o o o cco o o LL o oo o o o o Ho a o H- o o COo o o r> o oo o o o. o oo o Q H- o o zo o o 3 o o <o o o o o oo o o o o Xo o o < o o 0-O o o o o <o o o 1- o o CLo f- o o z o oo LU o o < o oo > o o J£ o o a:o o o o o UJo z o o 3 o o 1-

o a o o o o o <;o 1—4 o o >- o o -Io 1— o o o oo < o o 00 o o cco CD o o a. o oo r£ o o UJ o o ILo o o o H- o oo I— o o 00 o oo cc o o o o LL,

o LU o o O- o o zo Cl o o o o o 4—4

o o o o oo ll. o o Q_ o o _J

o LL oo o LU o CA o _Jo a OrO o h- o Q-> o <c r-l Xo o o 00 o o 3 CL

o z oo o ooo o a <o or. Oh o IJU OOh o 1— or

o _J o o 5: oo —

.

o 1—

t

~>o H- oo o l-H otnouL o~o:o oo o H O-if- OLD o OOO CC "^

H ~~5LUO o o o o-~ *—

4

o »—

4

OLO r-H

<1H wlj 1- o— i-H o X oo ^^ >io^ o u. Ott —

*

—^ u.—~.—.Zii—"-

o

oo z o o oooo o UJ 0-. inui1- om •- o >—

1

oo •X o Q, 00 t ~<:sc 00 •tf-

—• «— i-H—I^mU z OCM r-4 o I OiniuCL o Oltmjj «—-1—

1

CC LU -O<0 II II Q-OO <. o • II • LULUO 3C o^Z<LUU t- OS2 CQI— LUO LU oa>a> s:o><>>•>-<-> 11 _io .*"£ OLLI ~>OZ)^>U o^ • a^ oo 0*: « r—

1

13 II 00 1- t • •!—1»—

'

II II II — U-O o^ II ZZO t- o— ->o;2:0 a o-~- -> + II—>zo LU 1 OH

—»—.-»(\ir\j-j o Uj O ti—iO——'—>o o O I ii I-cO 1 j<ii»i—^hU s: II II II II LU

«— •—*—<r\j fNj «-_jo -^. OV<I -J--

>t— 1—o UJ o^—_ll~o ^ 0*:~-Z^Z|-U < o~~^« .—h-•—»«»— mJO o—

z

"ZZO -J O H -J^iO II II 2^- zu cm om^-rxIrHt-H

o<*o cjo >* <io u OIL || oynoo UJ UOIL4QU 4—4 >~<->LL^ —«-(00 < o~-—»—

.

•^a"JD^ooaou CJ Uhi-oauuu 00 o*:-HOOO U- ov.«ZSH00 a. Uaura UC3o o o o

>-l C\JsOO o OOCOO o 00 0>O 00r\j r\ji—it_> o vfmoMj o >-<C7*0 <_> 00

o o o o HUo o o oOOUOL) i^>L.)<^>^^ <JHJ^JU^~> 00000

48

Page 100: Two dimensional analysis of fluid-structure interaction by
Page 101: Two dimensional analysis of fluid-structure interaction by

ooooo

OOOOO

^»o- t-or-lCXtm —) -^-CLsO

t-<-h-r>< OJ5:_jhclo:_l—'OQo<(x^^:IL<_> ~£ <s> UJ

*ioo-r

^9

Page 102: Two dimensional analysis of fluid-structure interaction by
Page 103: Two dimensional analysis of fluid-structure interaction by

oooooooooooooooooooooooooooooooooooooooooooooooo<\)rrivfiA>or-uoovO'-<rxjro^Ln>or^cocKo—< NJi^^Lnsor-oo^o—<rvjm^-tr\^or~co(j>Or-irNj(^ vj-mNUf^coy*inLnLacnLfMri'-nm^o -oooo<i-o--oo or^r^r-r^i^-r-- r~f-r-r- cococo cococoooco cocoeso^o^o* cmj^u^

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooOOOOOOOOOOLJOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooouooooooooooooouooouuooooouuooooooouuoooouoooo O Oo O O Oo O Oo O •• » 0>O Oo O " •-'X 00 Oo O— <.2 0 Oo OO -2 »• COO Oo ore)—. •-< 00 Oo 0—0—2 0 Oo OCDrOO •> r~o Oo 0>C«-C^2 00 Oo O •-< » •> •-0 Oo 0->SOtf) -00 Oo UO«t<lU 00 Oo Oro ..— . 0 Oo 0—— t— c\j mo Oo u<ooo 00 Oo to UXCIO •- o Oo H-« O "wwH — Ou X o—oxo 00 O LUo H- OOOCQ. » too O l*sl

o omo_ »-u. — O >—

1

o 2: 0— •— ^^ O <_> _l

o —

*

01—ox Q-O O <to oooma: -O O i.

o a oam « - O O QC

o UJ OfflwOO OO O ao l~ osmnx 0 O 2o cf «-ct:— a: <ro Oo < 0—a.—1

• OO Oo h- OO ~0-(— 0 O 00o OO OcO— »._J i^O O Jo O—O— LU 0 O <lo to 01—moa »->o Oo H-« OO— fO - 20 oa •

o UD< -X »o 5; ox a.u 2 0<ct^O_l mU UJ UcC UJo OjianluirAIO _J •> f-o 1—

t

«• •-—oa120 cq ox 00o H O——2 > •< »0 C UHo < oooa_—ojajo nc •• LU 3O CO OrOrO ^QTU D. srs: UJ —o a: O———-m ^hO 00 i-cLU 2 r\J

o r? 0000 »-r~<l-o LU * H--J —

.

X #o H UJDmOQ1 .-o X o_i CQ ~ >». «•

o uC O •> •• »-ro ••so (— o< QO • X — «—o LU O—O— -«LUO O »-LJJ zee m _l — \- x

—

o

a. uoomooo'20 LL ox • <CL —

-

X UJ • _J CMJ—oro omoi-wmio O OoiU. K LA _i Q (M LU ft #ujo LU O—'— CLLU— 1 »o »o OO UJ c* • LU * -1— ft Ol-HO ocdcd «-o:'X'r-<o 00 UJl H-X or + O — •« X^ —X—

o

< O^D~.0.>20 C£ Oa:c*— 2h OOLO-J tt —ifNj-ti— t\j Xa:CLO LL •• •0»—< •» ••O UJ <N-0 < «• • or. —

»

<»-<r--if -tf _J—20 a: O— rO •—

•

.-lO h- 0—— •vt-O H-U. O+V. X— t-«>fci""»CHf UJ^.-o Z3 OOO——

C

<XO IJJ Or-irvio »0 000 — —I 7*^-Zm — (T) .XX 01— h-00 • OrOrOOO^i20 s UOOr-ir\|u 2 ^aio:»-IW_J l-*Na:j ^_l _J

ujo LU 0~~»:£m— ' »o -a OOOILHU o<o ZX\»Xh< <i# m— lu(~»"Uji-iu20 c£2 0<J<I>-) ••<— a: O'H—IsCLUO od: Q.JZXa <~- QI-SOJJOJQHO UJl-H 023 -OOO <£ » ••—r\JO UJ ^Luarecw•ox _lh- •>»0'—-LULUrc LU^hO CL.H- O •-— t*l ^0 CL OiA-H —0 Ulf— jQ-:t •;;- x_i»-h ^spu^aoxox30 n.3 OZ-O—— Ow—f-f-U H- lU a: 11 X _j>-'LLLLOIl «I^>v^-lt O^-l00 DO OO Oc-lt//Oh-0 <r<o D2 11 iy;<Lt, 11 «<i2-ia^ ^t^-<OX(\J.UCCO vC us m—oornOO a OCQSSU D-< ocr> 2X1— II 11

—13: II •-HLU II II UJOO— cr.00COO >C0 ox— rouj—OO -a o-a<- '-tlXO 3Lo: OM II 1 l>--ii--i 11 LU_J II 2OO II II 11 11 11 n 11

00 2_> ooosaouo LU OLLIUJ000 LJ<I II Z^JJLUJ a?<l<JHl.-i^ir\J<\jrTiMl/)0 <u0 oox>-,a.> -co (X Oria: Li-LLO oa 02'£QQa<.2:ihz<o:q:ooqoqoo

^HC\jroLn^}-o.-i<\jo000000rtrlO

U^-><J>^>^J<-> 00000 000000

50

Page 104: Two dimensional analysis of fluid-structure interaction by
Page 105: Two dimensional analysis of fluid-structure interaction by

ooooooooooooooooooooooooooooooooOr-(tNjrosftr\ or*-ooa»Ot-»tMtn'*irnOf*cDo»o«-t<Mrn*tn'>oiN~ •-oc^o»-iOOOOOOOOOO--i^>-i^r^^»-i'-«'-i^c\j^MCMcMCMrMrMfMCMCMr'"lC-

r\J(MCMCMCMCMCMCM<NICMCMC\)<NJcMiMCMC\JCMCM i'sJ<M i\jrMi~MCM<MC\J<MrMiMCMlMooooooooooooooooooooooooooooooool^<J>UU^U^l~>i-)Ul~>lJi<~J<^l-><J>l-)<~>LJ^><^><^>Kj^LJljLJ\*Jt^><J)<*J^KJ<^<^^LJ<^<^U^lJt^>'*J<*J ,~>LJt*-)lJ><~)l-><*J<^<^l-}lJ<*JtJ>l-)lJ>^>U<^l~)OOOOOUOOOOOOOOOUUOOOOOOOOOOOOUOO

OUJ o or*t- o oU_UJ •• o osrm o o

•.<! • •• o o«- mo- o oII <LL II o oIO.H- o ol~ X_l o o

u_ O—Jmui u uo Z< »0 l_) oX UJ3- - o oOt _lf— II •> o o•» - o<x <_> oo ••<xo— CJ o•» x- a_.-«>*. o o

h- O »-_J »«, o o_J .-ix<:>3-*v o t_>

UJ •O" • •» o oo >^—l ^M-4" o o•» ^ ».><.—1 • o oX >^"N.muj(M o o_J *\ *. »*T-H o oUJ w \<-» UJ o oo s: • ii o o»• UIXOX- (_> o< _JL'\r-l_J || o oz co »-u,uj>- o o•» O-t -CH- o oX OC •- « •—

1

o oz CLO II »-00 o o•> U-H-XZ o o2 uj iooi l_> oUJ X- Or-IQ o oz 1— 11 •—1 *• o o_1 <UJ\0 o o< U_XX^s«-< o o»• oo.- ^r? u o3D _1 •> .._} o o

UJ • t/XXmii. o oz^ ££«• 0"» a oIO UJ ..,-( » «. o o

** •. r I-X - X o oX _Jcn m ujlo no o o u.»- <o O It. - <r-< u o o# •- ^-^ •• <>t 2! •• o o Xo XCM\c\j-~a: • » <T u o aX QCO •>O^-ctO • • o o *xa: •" *»>^ .. Q.r-I KO o 00 o ~* -J—1 • —i-t- u_ in^-i o z o —>t OfUMO • •• * -U. LJ o o w

(M T-H MX- rO •- u 1—

(

o ^wen -,~-»-UJ——tO II M- o H o 0--«»o -HCMinrouJ^H- .-ii o <t o 1

(-«• oo om »-x - o <_> CO O—

I

II

_J<M «oo- O •- O II - o Z3 OZ »>.

UJO u. OCMCM cm» <—l*—i X • 0> o \- o - ->

Ott OO* i—I r a*v •• - UJ 2X u"> o cc O-H • •

CMU-OOV.ct'tta. voo— •O- »^X - O

.4- rv ii ^

UJa

O II

0-5o

0>-i

UJ H- HI- «-^X ••~li-l.-« yv.O II 1—

z

—n •moc\i_i— ujLU<uj<<rxv.Ovj- + + t -HO H OUY~OoCOCC1.-HO II DlLINI- 1— S 1— 7T. ZZ. <£\ •>—4 •< ZrOZCJ r> ut\noDii ii ii ii co ii com-icy »-«a:a: »•» «>cm.2 II II !l O CL o -•i—1(—

o

vrmvOf-uc^ ii II aro'.DillCG'MINH || r-4>-l CMO ^: oo^xuiicOOOO U0022U.3:il.X ifiSUJ'-f ZO.HO »-H uoaaauj

^cMrn 4- o uCM rarH o o ino oo o o CMo oo o oCM CM CM o oooooo

51

Page 106: Two dimensional analysis of fluid-structure interaction by
Page 107: Two dimensional analysis of fluid-structure interaction by

ooooooooooooooooooovj- m^or~foo^o>-<(Mr<)vj-irior^-coj>0'-iovJm rn rn rqmm <j- -r <r -4- >4- <j- <j- -4- 4- -4- in in in

(M CM CM f\| [\J c\J CM CM (M rsj CM (M (\| CM r\J CM CM CM c\lOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOO

•• •» o»-iX o

-» <z •»

o -z - COm—» -<i o—0—2: •»

como » r-X—mz o<r •- •— JSOrO vO0>-"rriU o(f\ ».«* .. •-

_^.|_C\j in<ooo oxmo •*

».wMH .—.

-~U?:U oOCCCL •• m«ia «-ul m*— •—-o M1 OI CXGO«loC •om •• ••

CO-OO orsmmx •-of— a: >J-

—»<X_I »• oO -cx\— •*

m—« •>_! *i~>o—uu •»

—moo l-H

o«-m ^a< -x *~

<xc£o_i ++—

4

XD-nujrrix•• ~DO?~-»2 - »- V

OOCX— <MUJmm oos*-*^^*"^m »-* 4

ooo —-<h-3Z5moo». •» »*m •-^:

—«.-».— 0—»-—ijj

CM ^cv!-

UJ sJ-UJ »o •O-*.r-l CM—•>*•» I—I •» ••

—

X

UJXvtr-tin om •

X— -I— CMz:m •-m--*

»- «. X "UJ'-'V. msoII V. — v.^-i

f—1 •• m • •t-fc •-- X—

z

s»zw^o ^o—z.-. «hO•+- - hO1

HU zu «II UJ cais>-3-J •-MSt-U. t— U- --*tu Oi-U»-30 UJQO

— —-<_) LI »Z3!-!-»•-<

| _J— UJ-J_IX—IX--<<"^Q<U-ZZZ+3S 3• •. •>.-< »•_! UJt-H--i^X_J4-—l—IXII II II 2< t<<th-

•• •- »V)t-tH mZ-— ~-«.l/)f— UJ -J|— t—

«

i—i.-«t"lUJc£ ••<tCY'

QiOOmoOOZ'LI—^ciLU- I— LULUujco«v—i/>fOXs:<eDoa.> " z>a:— men «.or:cQ^-ti-->————>— uj mi— oo

l— •- »-Oi--« » «.-^—.-^-^.^LLIh-iO" OuU3-~-»m —•--KM'-ircvi-m—ji— o>-«oiaoo—^oxooooo- - xoro-mmoom^ooooo •»»»*•LU«——•^m'-- »-CMCMC\l C\|C\IX- * • •"

2"<<>-< *<— •- » » wflrlXXXi-<3£3 OOO'OOO'O'-* minini— •—»m »-m— •-«•——•—' «^———r>z:~o—-*— t-t-(-;-i--^CJoOm i oo h- uj lu uj u j i u< - -i < -tr < ccCtSfO-iOCIiJI-Hk-l-hSX.TXXDffij-cauj-^Oi-o-Hi-ii-iH-irtixaiitn'l— Q—> i :o 3: ccoo ce cc ir. a: ar.oaooo ujzt^ox •-< a. > 3: 3: ^ s :< 3: u. ll ll ll a.a uj

f-icMmm>r--<cMm-4-inoooooooooo(MOJCM'MCNJ

52

Page 108: Two dimensional analysis of fluid-structure interaction by
Page 109: Two dimensional analysis of fluid-structure interaction by

ooooooooooooooooooooooooooooocoooooooooooooooooou^vor~OTO^o-^cNj(riNrin.or^coo-Or^(xr^^in<>r^OT<?, OrH(\i(rivfu^

cm r\j CM cm cm cm cm cm cm cm r\j c\] rsl iM f\l cj cm cm rv) cm cmCM c\j cm (\j eg c\j <\j cm <%j cm c\j cm cm cm cm cm cm cmcm cm cm cm cm CMmmmooooooooooooooooooooooooooooocoooooooooooocoooooOOOOOOOOOUOUOOOUOOUOOi_>000000(_)(_)OOOOOOOOUOOOC>OOl.>00OOOUUOOUOUOOUUiJUOUUUUUUUWUUUUiJUOIJOUOOUUOUOOOUUL)o o o o o o oo o o o o o oo o Ch o o o o o

*- •• oo o a* o o o o o -^ -at o•• >-H 1" oo o o # o o o o -» «— o

*-. <z •o o •H- —

»

o o o o CM CM oo *z •> COO o —

»

^H o o o o + + om—» »•< oo o I~t z o o o o HH 1—

1

o—o~z o o * •» o o o o •^ w ocamo *• r^o o X X CJ> o o o o < o oX—mz UU o Z Z o o o o o 3 3 o*-<X •- •* o o <-» c* ^* K- o o u> o + + o-30I<1 oo oo 00 o </) o —

.

o o •-» o o •-^ •>• oo>-<mo oo oo 00 •sv CO o z o o .-1 o o l-l r-l om *•»»» • o o# UU —» LU * • o o + o o + + o——f-CM mo o o-*> CC ft ex —

»

I—

1

o o 1—

1

o o HH 1—

1

o<ooo°-o

LU 0.-I a. Z a. CM «— o o —

»

o o —

<

— oxmo »• CC o 1••

1 Pi U) o • o co o o < o o*wHpW —o UU OCM *^ CM *•* —

<

00 o _l o 3 o o 3 3 o-oro oo h- LU o _l o «• o o * *• oocca. *• mo _l O00 CM 00 CM O0 Cu o < o • o o • • oma. *-u_ •i-O <-J OOO 1 00 1 OO a. o 3 o -J- o o <r >r o»~* *•—*o l^O _l OLU X IX) X LU 1 o o 1 o o 1 1 o1 'OX Q.O a!<; oct z CC z cc —

,

o _J o «-» o o -». -% oOOolCC •-O 00 3: oa. — a w> a. —« o <I o t—

1

o o »-H —

1

oom •• • O O 1 <; 1 o 1 CM o t- o —

«

o o w> ^» oCO^OO CO zlu o— 2 —

»

3 —

.

1 o z o co o o < o o3comx O <x o-^ + —. + —

.

z o o o 3 o 83 3 o

-niv-a: •j-o ot- o^ •— <t »"» ^~ w< o M o X- o « v< o— Ol-J •» oo o— i—

1

>~* 1—

1

*-* CO o »—

1

o • o o • • oo •a.h- -o 00Z o< X o X co 3 o DC o vO o • o -o o om~ «-_i iCO zo OS z s z 3 + o o o + o _l o + + o— O-^LU ~o o o + *—

*

+ ^^ + *-* o X o *-. o LU o -^ -«. oH-moa «o MC/J o-~ < —> o —> f~l o <_) t-l o > o —

1

T-k o—m »• 2U r-Z om _s m 3 m z o cc o 1 o LU o K 1 oo< »-x O <Q O— «• — # »• *«•» o a o HH o -J o 1—

1

h-l o<cco_i mO r>—

.

o<t • o • CD CD o LL o «.* o o ^r M o3CL.mLumXO G*t— 03 >t 3 -t 3 ^ o o CO o Q o < o o•• •—oozo LU.-i otf 1 H- t

« "« o 00 o 3 o n o 3 3 o——«Z - »• »-o Q o • ~~ • —

•

• • o 1- o •is- o x> o -«• « oooq-~nuju u-isr Uxf X vt X •J- 4- o ^ o • o _l o t • omm ooso O0Q O 1 z— • 1 z-• 1 1 o »~H o Nt o u_ o vd- >t ow— —»m ••nO UJ(_> o u o 1 o o 1 1 oOOO i-i-ll-

o

X OCM <i£CM OZCM z o a. o — C^ o ooV

o2DmOD *o h->- o—•s—•w—»3-r »«- --tj -»o o CMO— o »- 1CM CM o•• •» «-m 3D cc 0<CM-K- <OCM# OtQN'QZU _l o 1 ttt- o o-< 1 1 o

-^-**~-»o—

~

-»LUO < OS-' »3:3~—' »33~'3*^CJ _l o H-*^-^v-# o _J o »—

*

t—

1

oq:oomi/)Ozu •a oh:- <tr»- + >'(-or- + -«- cd-k- <no < o wh(Q o < uo- — oLumm—oomxo H-Z O »3:— ^« 1 «

3

:~"-• «"3: »30 3 o CD ~3 o Z3 ur-< o o1-1—— ClLU*- *0 O0Z5 or--*'H- Xf~4 -:s- xr- + r- + o o 3-H + o Of o 3 3 ow COCC .-C<CO.—IO DCO o—

-

HZ *-*^-.rA-^-— — • ~^Jf-»o ar o Srf<^^ o LU oo— «_» o-J33—a.>zo •-"CD Ott CMQ— •K- CNJO*. . « cm # :20 o o •!!• oo>-< o OO-B- ft- o_j .. •O'—

i

- -O u_ Or-f— | <t r-l>a | Or-I —>•-*-o —4 o r-HOO-— o 1- o —

1

^-1 o<^,~.-o -..-—to o OQ<->>QU~>Q«OtOO CC o QLU-Xli-CLJ) z o-a Q oJOO-~OXO 00Z O 1 >IS 1 >x 1 > i >o LU o«-< | d:>xu 1—

(

o>~• 1 1 ocncfioornzo Qh O— -Ir Zh -"^->r Z(—•» —» o 1- OZ— CL# zo o 0<L— — 0> o

lu——2m~- r-O zee O CMt- w-_jcMH- >-_JCM l~Z l-O z o <M-H | I-' -o a. OZ'-'CT^O o2<<>-h •.<-.

o

LUJJ o— _.J<i Jj w_JOLU-_l-JU 1—1 om——>_joTo O 'p—o— -^ o<-<3:d »-o>oo LL 0<UJZ>DOUJ3CiaiUJcaUJO O II CQ-»LU II o _J OU-K-M o—CMOH -—

m

mO LULL. ODQ II M Z>Q It II Z3 300 LU o—ocmci.-iO _l U2:r>—3-<hUZ)Z~ —~—

O

OOOCl'.OOhUccscfi-ionno

|— *—

i

3aO II II -*—o-^-^xx

' II II

_ -I r• II II II II o

-»o na.

o1 > f—

II + II o cr

3O i• ii —* ir z o

cMrvj^r^ojiMz:; CJ ^H-!--. H-< r-( (_J o-"-'^-•i^l—

o

cos;- raiu--oo s:lx O'-'-r^^NM- - -~ -^*- ^.*>»• --o £ o — CO— o oo o — a_— a. oJUU^'CO'JU CO 0<3.<S<-~1 Oooocucaajajo o UUOJiCQUCJ »—

4

OLL<I I O I ooWOX>hQ.>5U OLU o>x:>x>k>x>x>xo o oo> + xau Oi~'> > oo.-•cMmiAvro o o o t-H o o f-4 r-< o

o o o o o o o oo o o o rH o o ou o o o o o oo o o o o o ooooooo ooooo W^<~>i-i<~-> OC

53

Page 110: Two dimensional analysis of fluid-structure interaction by
Page 111: Two dimensional analysis of fluid-structure interaction by

oooooooooooooooooooom ^t u~io r— 03 c^O .-t fnj ^t -J- tn vo p- 03 ^o »-i (MOOOOOOOHr-<Hr-lHH'-IHr-IHf\j(\l(\J

00000000000000000000000000000000000000000000000000000000000000000000000000000000O O OO OO OO .->.-» O o-»O *m 1^ O o-~O (NJOvJ O OCMO + + O +O 1 tl '< O o>-<O —•—

<

O O^O <o O o<O 3; 3: O 37

O + + O +O .-«—

«

O O^ **

O l-l—

)

O O-t rH

O + + O + +O MM O Om MO *_>^* O 0— «-«

O <o O 0<L OO 3:3: O U2 3O •«« O o* *O • • O • «

O -t-4" O o<r <rO 1 1 O 1 1O ^^'^ O 0— *»»

O l-Ht-i O On-t *-H

O _«w O O— ^_*

O <o O o< OO 22 O 03: _£O M--H- O 0-* *t

O • t O • •

O sOO O 0-0 vOO + + O + +O ~— *^ O 0— —

»

O ^Hi-l O OfH rSO 1 1 O O

1 1

_J O MM O _J o*-« •—

*

UJ O <_*•_• O UJ o« •w> O <o O > o<r OUJ O 3: .2 O UJ OS 3_J O •** O _J O-H- *

O • • O O • •

O vf-J- O OxJ- «t•—

«

O 1 1 O t—

4

<-> I 1 CT>

:_• O —» —

»

O O— ~o_) O-J-CMOvJ O _J OC\) C\J# ——

»

U- 0-1 1 1 O u. 1 f—.»—<H-

1

•—41—

1

O Om MH<—LU 00—•«- O 3: 0— —;2<o> OI-<IU O a o< •>__O 23: O _j U2 2«-< + +ro OOw— O UJ O^ w^-—*~»< OO -Si- -it- O CO O-JS- N # <.T-<>-<

i-Hr-< O O—i;JMOOww,H O'-.OQ O I/O OO -ir O UJ<O2: 0~

1 1 O 1—

(

O | -- I C_>>»—1 o«i-~— O 0— r-i-~o_-s;- -is-

O O-'.-.H-l O t— o>—

«

•-I—t | t— |

a * — O ^ Owh-.~--._J_JOK-<OCMO t—

I

o<<— 0-»LUUJUJ^DH'J U3ulDf\iQO

_j • 11 II O a. O 11 to II + II II Z<£ 0—1—.00

_j_i

0—.id—-n—.—._:—^ 0—"x—0—-*f-a

CO uikoou <a 0<r. 1 U,£<UU)_H-* 0»-'>>00 2 o> > + XXu-UJ

O O —1 —4om O Ovt f\|f-i

0-1 O Om -^r—

•

OOOOO OOOOO

5't

Page 112: Two dimensional analysis of fluid-structure interaction by
Page 113: Two dimensional analysis of fluid-structure interaction by

oooooqoooooooooooooooooooooooooooooooooooooooooom>of^-ootr>Or-icMi-<-)^"tr\ or-3oa'0'-if,vj(r)«tLnor~co^o^-<i>ir<>vj- in^i^coc^o-Hcvirn-rin^or-coc^Or-irsic\ifN|(\ic\j-Njmroi"niO(ni-<inimr<iro^-vf«3-srvj- -4-^^ ^^LnLntnLOLPiLnLnLOinin-o-O--0<><j 0'0oo>o^^^OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOUUUOOUOOUOUIJOOOI.IUL)OUUU(JOOOUUUUOL)UUUUOOOUOOOOOUUOOOUOOUUUUUUUUUUUOUUUlJOGOUyUOUUUOlJOUOOOOUUUiJOUUOU

O o o o oo o o o oo o o o o

•* •• 0>O o o o o•• MT uu o o o o— <Z -o o o o oO -Z •> coo o o o om—» "< oo o o o o f

*-0~Z o o o o # o —^1

coroo r-o o o o • o • zx—roz oo o o o CM o o •»

»-<t »• •* •-o o o o 1 o —

*

1 r—

f

-^Orfl -oo o o o •"« o 3 -» »^o«-too oo o o o -J o _) C\J Q-

m »w » •-o o o o •» o LL •* K---«h!M lt\o o o o CM o r—

1

t

<ooo u^> o o o w o U- «-> CMxmo « "O o o o a. o a Q- +».>»* lr—4 —

o

o o o K- o Li •H-*-*

~OIU oo o —

«

o o • o Q- • r-t

OlXH •• rrio o »«• o o 00 o LUO og zmo. •»u. —

O

o r-4 o o + o h-t- + ^»— •—•

u

KiO o • Z o o *-* o J ^m r—

€

1 OX o_o OC\J • o o ~5 o Q-O r-* >—CiOma. o o* r-t o o Pi o sz 0^ •k Q-oro •> • o o— w o o .-1 o 0>H t—

1

*CO—oo oo o-~ a o o «— o oo •«« •

3toni -o o-< « o o 0_ o o a. -4-

••of— ci: -to o - t o o •K- o z_l K- 1—.0 1• oo o~» CM o o • o LUO • *-*

O ""Q.H O o— 1 o _J o -d- o IZ n3- I-*

m— »--i ^o OQ_ •"» o _J o 1 o H-r-H1 ^L

-0~uJ *o o# 2T o <I o ~*» o ^* VHMOQ •-o o • • o ;s o r-l o t-H -I rHo—m •• zo oc\j r-l o o + o t^O a +0< -X •o O |

w o _l o -3 o 0:2: r-H 1—

1

<CfO_J •-.—.o O— <x o < o •• o 1—

1

+ »3Q-fHU(<-|IU OC\J + o H- o r-l o LLH- l-H Q.•> t^QDZO o «- •»— o "Z. o »— o *-* +~->Z •» »o Or-! r-4 o o o O- o _ica Q. •rai

OOQ--.MUJU o~ Z a. o M o + o _l + r-l CLron t-OOSCO OCL •> s: o »—

t

o —

.

o <r ->• z K—•s^^^rq nhU o + O- CM LU o a: o r^ 0l o 3 r-( Q. •fc UJOOO »-r-ii—

O

o— s: W H o o o 1 s o •" 5: r-l H.socooo »-o Orl LU ClO-# o X o -J LU o LU(— r-l LU r a.*

-. .. - rO so h- O -Q-t— -Sh o o rr. D.I- o _l 1 Q-h- f—

1

Sha:-.-»Ow.~LUO oo ocnjs: £_ % LU_I o o r-H s:-:t o OQ- r—i s:-> •^ LU_IWOO^IWOZU a: O— IXih- •h- LU o o o ~ UJK- o "-•O —

•

LUI— Q- 1— IX*

wrtm-oomxo »-H OCL(— _J fM-> O o z o Q. (~_l o t- a. l-_J >^ H-OwwwCLLU^~ ~o UL O— tt LU it U.+ o a o ^- H LU o a: ^•1* > LU •i:- U- +OoDcq «-o;cQt-<o o# u_o no— o _l o -It LLO o LU 1 « LLO o-) 0—Hj;3-a>ZO 00 OfflO + OX-I o < o m o + o >00 ro + X-l3 f t-Of-H o a£ OQX—

»

+ a: ^J o o o X— o l~ o^<,Ir> + -•QiZ_J TO -~r-l(_) 'XI O+ttr-4 — 1

•1xo o o + 0£-> o oz + —.CrTr-i *«H*~l1 fO.

u.oo^—.oio "7^ O— Ia r~l II rJlL) HH o *-*.

1 -13-0 Z. r-< o<r~_ 1 1 .-O-—<r-1 II M£PlolOOflZO a: UH l| HZZ'"'W|XIo o OZ-5- > ii i-h:so 00 UZH- ' II r-I^Z—.— -^LU

HJ-s^SM.- «-o a o .--^^LU »-r-lO-l—

O

_J o »• f«*^ .wlUL) _IQ. - < -— >-LU MJIr-IO-H-Z<l<tr-i •-<:—-O o U-^HO.(-H2 II II o LL OC\ir-|-3-5Q-t—

O

< OfM-*X r-lO-l-r-<X>Z II II

>-<:iO »-0:>00 o— II 1 1— • ^-* -»o O 1 1 wr.w •.

|| M O a: II — K- •-II 11—•;!- ».•»>,—«

J— •~n mo xi oo--* -»-«J^I--IHCl UJ O*")_ia0.-i—

•

->o LUO O r-l -J • r~l— --. 1 tr-Ir-ii—1

3 2~Ow--»—

o

h- ua-Hna>*zzu ^- o o_o— -jnu |--H Cl(Xl^-r^-lr-IQ-CN1—zzGCOmwOl-U o O || oo »» »• II l/j ^ •-o o OO II "r oO - o Da: UO II * 00 II !!• 00 » ••

a; s: to-— oo rooo a. UO-WHHClI/) -(.-<o a U'-iQ.Xi/I'-ihij Q-LU OCMQ-XOOi-.r-ra-XOOr-'l-.OJX'— cckjj--oo ^_ O^tXJ— „-2C IJJ -_«—

o

s o 5C_JLU^-'—o ZH e;_jllj——21.JLU——

-

juojiauou o o lu c£ z _i xi cc ^1 _IO u uomujaz-jo uz ooluiuccz-jluluq:^:—J

i/hjx«ql>3:u o Ol— Q.Q-Q.I— O-ClClO o OOh- OQ-Q-Q.O Uh OQH-OQ-CLQ.h-OQ.CLn-HiNrnLn-4-O o o o r-4 o rH 1 r-l

o o o o 1DOo o o o •HOo o o o oo o o o oIJX^^^JLJ ooooo oooooo

55

Page 114: Two dimensional analysis of fluid-structure interaction by
Page 115: Two dimensional analysis of fluid-structure interaction by

ooooooooooooooooor^r»- r- r^- r- f- r~ oo co» co co go co co co 03rn f^ fO rn rn r>T rO o"> rn ("0n roM co ro ro rnooooooooooooooooooooooooouuuouoouoooooooooooooooooo

o ou oo o

^^ o O•% o O~y o O•» o a

•—

i

o o<—

>

o oO- o os;- o o• o o

vj" u oJ^

o ou oH o o

+ u o-> o a*• u <_>

•-H o o*«^ o oo. o o+ o o— o or-1

1

oo

oo

-5 o o» o o

1—4 <_> o^* o oO- o o+ o o*"^ (J o-J o o•• o o

r-« o o+ o o Li.

•—

*

o o O^ o o XCL o o or+ o o *s—

*

o LU o —>

»

-3 Ol o o o ~3• s: o < o *^

»-< UJ o a. o ^J O.H o a: o Q_H-.5

-3& o o o At

wUJf- u 00 o I-ILClH _j o o _IO-"i'r HI o UJ o LUXK-LLO o LU o CCntoo + o or o 1 *v~3ox -«. o LL o —>—^—

•

+ o;-3 o o -}—>i£— I

*-0- o O <_>--l ••—Q-z-> ii >-«3£ o »—

«

OZf-nii II

»• •••'* «-»LU u =) O •"•"• CL-*(MHH-JO.H- o _J O-IO- |

-3

II «— • II II o LL O II II II •>

-3-1-' .».-. o 0~3 .l-H

Q_wmno 1- -3-3— Z.O II oo •. •» + o r> (_>^-< •> 00a:(NIG. 00 •-HK-

»

<o a. l_) CM >-<-< 003SLUW-^ so 2; —— UJI—

O

oluci;^_i ii o LJ UO^_li£UJ2[Ol— CLCLCL'-iO o UQa.aaa.uj

oo o O r-l

f\l ooo OO

cm

OOOOO

Page 116: Two dimensional analysis of fluid-structure interaction by
Page 117: Two dimensional analysis of fluid-structure interaction by

oooooooooooooooooooooooooooooooooooooooooooooooo(\jr<"i>^u^^r^uJU^O'^(\joiNriA-£>r^ooa>0'-^ovjri->~j-in>or-cocr>0'-(rsiiri-J"Ln or-ooos o--Hi-MrOv}-Ln.oe~oocT>C7*a^O^C^O^cr*c^OOOOOOOOOO^^'^^'^^rH.-ir^.-iCM(NCMrMCMr\lcMr\jr\i^

oooooooooooooooooooooooooooooooooooooooooooooooo

O O Oo o Oo o O O•» •* OO o O

• 1—1 "V OO o O— <2 o o OO -Z - OOO o Of<-|- ••< OO o OwO—

^

•o o Ooomo •• r-o ox—mz OO o O•*^ •• • o o O—30m nOO o OOMflO OO o O

rr> •«— •. -o o O—f— CM ir.o o O O<ooo oo o OXrOO o o O»*— i it—

i

•—

o

o O-»oxo oo o Ooq:cl roo o Ocoo. «-u. —

o

o O—• •—» LJ v;o LU o O

1 -OX Q.O (X o OQOrOoc o ^ o

o 00 o Oco—OO QU oo o •

XCDrtll O LU o f- O»-a:«—-a' <J-o CV o O «£. O— Q 1

»- f^)^ a. o CM »-H OO *0-f- o o CJm— »--J ^o Q o 0. O—O— LU «-o 2 o h- OHTOQ H-«0 <l o X OO— ro •• ZO o CM i-t in 00Q< «-X «-o CL o —1 LU O<ra:o_i ^o oo o O O 2: O3 a.m lu m xo H-

4

o h- 1- a —- f«OQZO a o H- -T X O——2 » - -O o O Ooon_—cmluo LL o O O -J < Ororo -OQ5TO o o •s vor- oo LU O«-r^*^^C<> K-.O o •^ •-% t-1 (MC\I CM OOOO >-Hr—

O

LU o —» -^ —*. »-# h- O-23nOD «0 3 o — — — 00 00 O <L Oof •• » »>fo ~30 _J o — —4 M •va 00 -» l-H f— OLU——O—

-

»ujo <J o — ^- — LTV-) LU— OO O

hOOiOi/jOZO > o r-4 < O .-1— CC~) OO O LU O— 01m— oo <r>xO o »- 3 3 CO O- • OO O X) OOw-aiu- «»o X o t-l — — 02 »— 1 -( _J OXiOCO a'CQr^U < o-— 00—co- 1——

•

-»O0— — .-. — <f OCL2D-Q.>ZO -2, o—.00 co -» oa—

.

oo.— fOoO • • • > O«? »- ••O*-' »o Or-4 00 <M<JH O CO —><. O0 00 O Oa—.— ro --~-(U LU Ow•LU t— t— o< — »LU • • • LU O^UOO—OIL) 1— o<td'Xui<luo r-* • 1nujur t-H O. 3 31— Q- X CLO X OXKl^OOdZO -O usazojui z— Ul 300- ooa Q- Q-OO. Q. CI. h- 02uj— SrO-- .-O _J o—'** •.' •— t—- *i-HtD'— IW * osr s: 5: »s; s: 5:0 t-

2 <.<>-. .-<•-..o o OOOOOr-13003 00 i-< t II•)O-O0 r<Q.LU LU LUQ.LU LU LUO LU 0—1•-•ISO «-o>oo oo OlOCQ II Q.CDQ.COUJ II UJ3iUO-COLUa.Ci.r— • H- • CM— Q.K- • CM- •t-o rM II

h- —»n COO CO o<r<»-t5:<j:<io—

j

iCO <>:<ir3 5"s: 11 —« II •—«CNJ II S! H r-ICM II l-l- II M 0>-ix>;^—o—

-

-—

O

< 11 II LU II 1U II Z •z 11 lu 11 zu-ilus: 11 rr 11 srius: 11 5^ II 5:0 _lOGOil'/lOt-O 02aoi-2hi:HO 1—1 LU. Sl—O.—'(— 1— 0.0.330 3>- 0-0,03: 2 0-0 <. 00CCSC «*l-»»«y}f'K:0 o OO-CXCM— Q_— Q-h-CM—h-c—

a

—-— o. a. a Q.I-- o_—cxo-h-a Q.0-0 ST orocos:— cdlu—oo i: 02 2: 2: 2.2 •_•;a; 2:2 s:Si.2L 2. ius: s_;SS-O a:JOOiQ.UUU ~4 OLUtUOLLaJli.LUoUL)_LLIJ-IU.UJOU_LL^LlUULUUJOLUlJ_LULU OtULUIUO CJ 00wox^a>3o UL Ohl-Qwt-HKOa H-<1-<|— -»(— CJ 1

1—1f-4 1— (— t— 1—O H- 1-« 1— 1—O t— 1— t—O ^ OQ

^CMrO'/W O Oo CM O in c 1 r~- COO ou>o r-4 —t C\ 1 CM CM (MO OfMo Oo Oooooo UJUUi^U

57

Page 118: Two dimensional analysis of fluid-structure interaction by
Page 119: Two dimensional analysis of fluid-structure interaction by

ooooooooooooooooooooooO^fMM<TL0>0rv-0D0>O>-H(NJr0-J"ir\Or""-u0C^O'—

'

^^vt^^Nt^^^^mminmmunintnmLnsOvO

ooooooooooooooooooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

+

X

o3:

o -lUvf_J •

JJJr-4

QUJ

o3: II

+in -< xo• X <t-i+ Z SZ>• —

'

- -JO 00 u.051 CO — Xi-m lu >^ olu

-^5: a. <? -y~

mm mo.i— — ,-1 ». .2• • »2! • *• Z" <NI»—

1

+ + + 1X15" —. -. • ~» -»• • tf—3 l-t S r-*- LLjaiv.OO O^cl 10 •> 11 » ••a'. •>

00 o-»s: f*<f *» -5<t- » x>~»

* * * -i- ^n 1 -~ov» oo l—— 0~t-4 ». XI— - ~>rr\ LULL'":£;s m3:— lu 2: — — ••<i-s:a—'CL.Q. Q-ooS: wO O CD- WMQ.O5:5: 05:00—t <o r-i :s—01- r\i

aiiu 1— LuLui— 3: .-< h-4- rn. x—<1— 1— y—oc »—1—* •• ^- »• ». •-<! ».

^^ o^.o_~. < X —^-cfXXSX-»— o——ro^-^z-»m >j-(M»-imin- m—

• •—«•—1 -3 11 ox—i 1 m •• <z>C> »•>»••••«——2:-——^ozoxo- 00- - » X-<J O •-HCQ-J.-H OZOt rHt-H HOIS I> —* t i * P' l 4t—I i. U *. ».* . «« H*—'—

' II LU—-HO II LU fc~*LUvO -O— "->* ••—II II —fZ. II —W-.02T -0 O—— 4"— -— «—.o0 *« •«»>-2 (— t— H- •(—

2

m '-<0'-o>.0 i-U0uji-iuj<>-•LUuj<<'<:!\j<r*:w^ (r|^,wUJh-vl->— >—HZ I— I— I— 3". ?_2 —ISO<ao cDoc—< •-< —"1X2^'—•—<ai'.>c fULUith-oiiUu.iQ.^C'au.nLuaiia DCJOQ.O"J2hmQmmhj:Q3m.su.(J'{ _£U-LLU_c-<U_<XUJ

O mo —ir-jr"i -j-

m Osr 000o 000 o

58

Page 120: Two dimensional analysis of fluid-structure interaction by
Page 121: Two dimensional analysis of fluid-structure interaction by

UUW->U>tJ>lJ<*JtJ><~> o ooo oo oo oo oo «->

o oo oo UJ oo z oo HH oo t- o •. *o>o Z-13 o •" HIUo o<o o — <tz:o MMCtl o O -~ZL »-0O

u H-t— CD 1/5 o crw «-<oo 0>-Olu o >-o—zo 0:2005: o coroo «-r~-

o C£»—

«

o x^nzoo LU ZO o ••<£ •••».o l— uo>-<ro (_> —.^om-oo ZZJ O OMfilOOu h-<00:>- o (T) «- •> •>

u 1-1LUCO o —•—— <\jmu Oa:i- o <ooouo h<DO o XmQ ••

o r>>Q-rn o whHH-«o _i s: o -^oioo<_> LL iOD o OlTQ. fr>

o I DUh o ma -llwo -JLU o — •—»CJi^u _icooro. o H~oia(J <3U3 (J ooma:o 3 o QrO • •

o 1/)<L<jO o [EvOQQo -ji-Hi-rs o 2rornXo < <o u Qi— Di-to ZQQ-J o —a._J «-oo OO _J o O .Q.H «-

o ZHllfl< o (O-. -J^io oooh- <i o wQ^LU O-o >-«2lu s: o hnOQw CLo h-lJUSZ< o O— fO -2 LU

o ^2: mcc o o< -X - M<_> _J»-<LU O u < C£O „! «*o DQOOO o->j:Q.r^LUX au 5=- 2<U. o>t •> -^d'^. Ho QiOLUOJO. • o-r^.^^:o O IS CC CC *1 UrtOOa-UJ 00o LLI— LU LU'-l o n^i -os: >o LLQr;x<: o-»w-w*%rOM <o ZLULLLUf-S: OHLIUO ••(— a:o OlHl UOSDClO 0Co -Hi— Ql— U-O t^)<f - - «-(<13 <o t- *-<o o~ O-^IUo <XOOLULU LU oi-ioonwz oo CiUJJ— ZCC OI-Kl^l-WI 2o LU> i-i LUO <t O ••«—~-Q-LU •• <o _j_jprcot-iri o-• CDcO -££•-*o LUO—• (/)D o-i?o-»az 00o O 00 U.2 G£ 00 OO •- ••O*-' •> o;u O <oj Ovl-—— cO •»-< oo <?uju>< 0*-00~-—

X

h- Oo <x OSMnUOZ o mo Z CCh~ 00 LOO' o — :sn • 1U

o <0 ZwQ L)Z«h •—

.

> r-t

u o »oxa. ooj-j oo II

u iOi/TmH Of-< ..-•r'V'O _J -<o i-i Q. LU 1— 00 O00 3T—O—'—

'

_lo —)<-' (— o ^L-iOro ool- < O(.J oo<y)cuO »z ong <vwooo 1—

1

(_> ""O^IXH o: ;. . li— CQLUlJ h-o xiaozu o>-•uu-iao IJJ IJ

o t-i-tiu'-'Q. UOUXwQ.3: o-) Oo o ^-irvJrOJ-o oo oo oo o oooouoouooo ooo

LU_lCOO(XQ.

LUX

LUOLUMi—

i

00

O<

O

Oo

o «o 2:O H O II

»-"

• • • CO -» II —OOO •- • •—>— ~~> LUII II II « • • • • •<--< iOO -~~> - X(••*•• ..-,— ^..OOO iOOOHOII II >-i »••-< f—

-^0O00O0000 ,-<,-, '-' II II II O l| II II -} II—.~<->m—

II II II II II II II II |l w_-w-.~.~ |t-»««.—. ^.-}->|_w.00 I—

*-*—.-^*~,^^-^,-^—,^|- 1-^|.- i—(—< i—i -^i—4t—»»—iO ~"3 •* •CHO'l-y) LU>—•»-<—ih-ii-Hi—ii-Hi—^^-^o _^CD'--,-'•~' ,—<-—— <-»i—I •>>—<•—(Qt/'ilJJ Ow».*.^v<wwwxqoq< 1jjl;^,<!DU 1-iw.w.wujq:

i j <.cqo<iclio<3. cuo<: troiLanc ^^s^Q'-'ZJXu.a oQ2:ii'XXxoo3252Q.a.Q.aHHMQo.aa.aaH o

oo

^9

Page 122: Two dimensional analysis of fluid-structure interaction by
Page 123: Two dimensional analysis of fluid-structure interaction by

* # f\l t— •—

I

r-l r«»

(- h- tww w -,

-»_J — _l —2 <I O CO r-l

CMUJ C\|UJ —.w 3 3 3 2wQ wQ vfOQ # # # •"

H-+ (- + w3 • • • —^O— O—• CO I -O O «0 —"-OX QI 3— r \ I -«Q-<2 UZ M — — — *3w -3w «~> | .—1 —I r-l r-l t

*< -frO • cti2 I | | WC\Jr-3 H-3E WW r-l r-l r-l 0. |

—1+ _l+ CQCQ WW w #~oi-^ uj—. 3s <; o co «2Q— O— !«« 3 3 3 CNJ -+ rg + cm • t # « * |h-»

I—.

I<j->j- • • • —-w

<MX <MX ++ -J" «fr * CMCL—2 w2 -»— + + + ..+<W (_)*- (M2 — — -» r-l-»

3< 30 —w (M <M CM w-H+ 3 +3 OJCU | | | o_2—

•I— I 33 H r-< r-l +. ».

-^r-| -fr-i • » <t O CO l-IWw | w| r-r- 33 3 »-a

<X OX I I II I CNJw2Z 2Z QQ Q Q Q —«I— I — tt-H- -M- •» * O.CSJ

r03 d12 MZ h r-i -!•}( +—# —•« W-W W W W <\J—< • O • COCO <t (_) CO o--<3>r 3<j- oicc a: cc cc + 2•»• + -jf + «-^o.o- o. a. q. -» *•— »— XX——' ww w r-tr-4

-J-X -fl ZZ#* -M- vr * •—

'

—» + 2 +2 -»—.ww >J-vJ- —.-» -<f -J- -»—. .J- -.HI-'S ~—' —— NNhhOU <N2 o (_j f-<r-i o i-4wO•> (M<£ (MO —On-|.+ ww + J. ww + wf—Q— r-l w3| W.^ |_-f_QQ_-, t_|_ -, ^ |_|_ -.^l-QH

»»h —.

w <# u* oa<oNz oa *-* — oo m«oqiHZ »H f- 3 • 3 • Q033——' OQ — — QQ wC\JO'-<Q.».»-». o «-f"- -M-r- <(_>-;! -if J—l— COCO H I— <0 I— + 1XIX4!-r-in r-l Q . | •

| 231-HOO 33 O O 33 OWSOlI-ww w -. r-o r-o jt-sjjoa );-;:- q^q— -ins- Ow^^-„ii— I- - x l -ir l * h-v-ujLucaco t-i- <t-~o~ i— h- coco(-(-luOO O O- O-^ O— JJOO^S _J_J 3r-l3:rxl_j_| 33_J_JQOO O « * X * X IJU UJ # -;S- -ft -)c LUU.I •!,<• | ,'( +UJUJ •{;-

IUJLU +"M r-! u. -«— Z: —2 OQ • •(-!— OO hHhwQQ I— -»oo-~XX X o crtfMw OsJw -K- •« c\Jc\j_j_j •«• * j-j-#« _l-n;-+rH

Q-Q. O- X -~UJw<£ wjj) • i|IU1UJ • • LLKUJCJ • t LLI + •—.2

—» »H* -> -K- r-l or! fi—xTn: Oni (NJCNJ^ ^OO <MCM »-<O 3. 3 <N) f\| Qwt\J-1 »•

oc iu-iiHiiiH c ujwura. aa i 111++ 11 x + 1 + 1 1 1r-. + w|^r-i

UJ — 2002022: tl r-^OO-W Q_w —>-~22 • . 2-«-»"———» 2—.CO-^r-lw•-• ITl !! «-X •- •-— —-XwJ^. w)j. (NJ(\Jw^MZ Cg2 rWHwrVHn HjHv/aW r-| rHQC Qi—ICKr-lrH-J D- Q- «" «t -^ # <f—Ww< O—— —— fO^^ + W + wW rOw^wCLMD.r-1 rHw .|| || || || ». |—< vf l_) X <TOX <lOX XCOC3 CO CQ -H II < r-lO (-.<[O UCO »C0 II —

.

2+ +XlO»->ll II r-i 11 m-ih OiyOHZOIlZXXII 1133 XX Ii-i^:w3wXX i-i3<fX—.r-i

"*X—I<3 II 1 — WOOO II -XW II —.W II I)—.„ II II M I) X II < II O II II -« II + II -IZ

2 + 2 II <-»'-<t-i«-ir\|i-irO r<"n/i II -.H--.Ih-->->II—- ——»2lA—»3—>3—•— I vO—• *-.«.»-J II Z II — Hr-iw^H^HHiflUJJ-lfMZCNZONNZZiMZ (MZ II Hw)i M* wm^hm r~«r-l-HJH II HHW <IU CD UJVJJ-vQ-wQ^,«»«,w^.w^-. ^r^»,-l ^r •w . w-w. || ** w^^-_«5XH<(wM(j£I:,i: urcoaai |-,<i<«<tuou<iu <| uiucQ co 1x1 j-o<Lvfc>-3'<;o'-'C) an ojsz:w2Z2 3h-QClL.a.Qa.00a.l-O0XX3XX30000XX-^002QX + X + 020X OO.CL

r-l r-l r-< r-l r-l r-l

r-i cm m in vo

60

Page 124: Two dimensional analysis of fluid-structure interaction by
Page 125: Two dimensional analysis of fluid-structure interaction by

co .-• I»*

X •» -5w» .-< ••

•» 1—

.

r-l

ro w r-l +U1 a. •>

HH

+ t-l a.-J -». + +•* —i »-H **+

rsi *• w "3^-^ f-H CL ••

Q. + + t—

(

# I—

1

-^ ^-1

• w i-l Q.rsi a H K-

+ + •» •

-~» ~^ H-

1

•*~5 t-i W

J^i •* <X—1 •—

i

* ->^-* **0 • »-

Q. a. -r • I-«

•«• Ji- 1 CM 1

• ff wv. l-H

—

.

-* si- •ii-~ -^ —

•

r-«1 1

CM~ T-* Q.z *-» w o-~ z ^

^^ *" * .

—

£_ -i» 1—

r

-^ «v «i -^HH CM ~> CM i-*w r-C-« CM ~>i~iagi O •« O H(J •-w O *>.

r-l|— + .--1 + Z3 •-•l— + f—

4

—O — w —% 4> •> 1 «-o —• «^

V-Q -5 • 1- -IC\1—. ~» i-n -5 I-On cmo •-V,wi-«Oh •» OQI —i-vo »-H-^•(-^cx r-H ot-IQ. "*^*-* t—

<

>W«*ouMO. -w -<Xtf- i—

-

I 1 axu'r 1— XQ.K- O—<CL o«- 1 *—*"-» CLh- o a.# -J Q + Hi o—'I# •K--J Q )«• LLl-LU — ^h- »-• <. &. rO 1— uli iV-H i- O_IQ X «» _J xo-k-o_jo X • _j XLU-:-r Q —ILLI Q- 1 1- • LU-tf a cmlu a;Q • «• —o #-.,_|—Q • M- V.Q V, oii- <M l-O- •H- h-f--iLUZT ii- fM 1

—

-«• — M• 1 -J + • _J~-•Q • 1 _l-^ • -3

CM-» LU-. <M LU< +1-1 CM~~ ILMiM -» - O1 -« O-l 1 ox!•"•**

1 H o+ 1~5^ K—Z + 1

*"^ + ~•i-ICL—Z + -5— -Q.r-t #. — "3 "> ~* 2 -it r-H •> — *-? ^•i:- O•-.—1 -> . • —<cr

1•- • •»•—

1

~"}i—i •" ah o e>i—Iw •-—I —<< -Vii—<r\j 1—(—

*

»-^**—-« i-i ii _i in ^: hwZZ-Hw-2h I W + -<zzMa»i Z— UJ »• ai-»zZO. -— Q-Z •-—*^iCX— ZQ- •••—' fZ OQ ^i •cm •«

Q. II CMO- + CL—IQ-<\ 1 1 1>—1 Q_ 1 ( lMO.-~a. iH •»

| ii 1— CNJi—

1

II — 1 1 II — II II II <

—

-2. II—

II II --I II II —i II ^ _J • II-^m~^ .-^i-*— »—ii—1 --—»—!~>~1— ->—•—. LuUJ-7WZ -3-^-3 —i —-Z-t-lZ —>—>—>r-\ —) o OZ

»• *-r^ •-*» co «~a. - 1«- »-CQ •- «- +on i/) •> o II «o

—.—.lu —i aci~i -?-)>-< q: uj— X <I i-l •- »-w LU l—l

Z» « 'M^Z*W»^^«*^*^ 2TZ*—*'—'O »—< *—

*

WH WH.-WM _»^X — Or\j ^(\j~-ww« r-).-icLz:a. _i >-<

• LU II CDCO II <U<OOJ II II II Q-<H_jaiZ3'.Uodmixhssxxdmt- ii q;c^<x>_ix>hz ii ii ii ii ii ii 2 -5—0 2zu-z

•O—ho- -»i-)— ~-«.—.t-rrxirj -j q »-h >-i

•-4r-H~li-lcOi-l^-l>-"ii- mihwh.i r-t^-< f-in<r-ii/)>-ii-lr-liiliJi:vJ--Of— fM'-<'-, .'Mt-<i-ii-<i-i|— C^JfMi-i nJH- —J|— —Jh-«-«- _»o^ w »«-»^.^«^» ^.^.—.^ ujw ii ii i;^i ^*r^ ww wwww.2 •wm_j JZJZ-J-JUZ f JO^N/Cli -J_JUZO-_J II UiiZyU^>-ia.U\:OOiDC0U-5O-~iUUpO_l-<O<lO <aOcxclqcl Q.oa + a + au.ao. + aHQQ.ai:QaH-HQaijQ3:xQ3352uQQa.a-oouuoo

^-< rH i-H —

I

r~ co cr> oo o •-• (M(^ Oi-i cmi-l r-t i-H >JTO CM CM CMCO C>CJ> U>

61

Page 126: Two dimensional analysis of fluid-structure interaction by
Page 127: Two dimensional analysis of fluid-structure interaction by

H\hH^ o «-^-oinuj O- l-O—ts: r-\ hI-HO^— y~\ i—<o UJ . _JCQI— UJOO >. vO ^- Q. 43H2 II 30 • •-(_ f— ^»

+ II —^ • | Of- h-Oi^-^^—' II II II II LLK UJ^^2H~— 1—'i— >:_>i— o.ll ^^Zm-j-tx|"»>-i^;-j>-<qq:*:~-->-n_)~"--~-— tL_) <T a: H-

^

^3cj-oa:oici' <X^:iLO JSoouj

o r-<

o or-( o

<f

62

Page 128: Two dimensional analysis of fluid-structure interaction by
Page 129: Two dimensional analysis of fluid-structure interaction by

<*>uoooooouooooooouoouooo V)o —

I

o zo »--<o •-<<o s:oo •zo *^l 1

o -7

o — U-

o iiU-u Q.Ooo >-Qo CD UJo Zo Oaro uirjo t— f— o_o a cdo zooo LUZ-Jo o<xo oo C/5UJQo HZo >-H^o LUt—o <XX>UJo DOIo L^QCf—o 1/>C0

o UJZJlJJ

~o (XoOXoto a. t-LUO 00

"O LLJhhUJ

>-o OXOQ-O <I ^— i—

i

zo U_ O-o (XZo 0-.Z

ujo tO Mzo z>~<o r^Ol-O uu s:r>o CLQ<o Qlluci:oro Z3ZOCUO iXO-JO Z3mtoo <l|— O-ooooo

OOOoo8oo8oo •- #.CJ>

O - •-"XOo-» <zOO Z -co

<• QCII <laH

u_ ooo Z<X LLOa£ _JI—•• - oo *•<•» X-H o •_J |-<XUJ -oo \r-l

OLUr-l|—

U.UJ

on— •><oo—o~z -o ca roo »-r~

OX-(OZO(_> —<^ .»••»O— '50r0v0UOHfOOOom •-—» •• •»

o—'-— f— c\jtn

o<ioooooxroo •- •

o-^oxooooora •-co

oma. *u.wo>— •—»o:*:oi OXCLooomu; »oq<ti »• ••

OcD-OODU3coml >o -a'— a:<t-o—«o i «-oOO -Q-K ..

on~ »-_ii^O—O—»JJ •»

ot-moowO0»-cr) siooo< -x «-xO <I oCO _J »-h ofO3:a.roujx •»

O - -QZIo—^z •• •-»—

OOOH-.IU • 3Omrf) -o>~ UJ —

.

0«—w^ff|i-nj 2 (MOOOO -I- •- X -ft

0-<X>cQO »-_j —• *v #o •> •> •mriK -> x —o——o— uj - uj t _j -^ h-OOOW^ZI •• c\J x uj • _jc\j

Ofim*-tola-. LL —» lf\ _l Q M uMf-

o—-au - » O (~ • uj # ^h-^c-!-OCCrO QC—l_l X a1 + O -»••«• X»v^o:m— Q.zrrr-~.Qi oin_j * jm-^hnxo ».o»-« •• ^ — >s> toe —

»

<t,-ir~s'<- •!< _

)

t_)—~rO —(-. •— st >!• +\ X— -! Ns •-(O -ft- t-U

OOO^-—X—lOr-Ll • OJZ-»Z--i «— fO <IXQhOfifouozoropj _#.jc qc: >-<•-' _i i— «• ovj or. _i^ _jO^-— j:m -O0.O—• zsssih< <x }* ro— iuh-ujo<<.>-h ^-~—< o^-tuj axziii<v ox—^.a„joOiD -OO — -fNJ N-iaCuT-OX _J(—^U-— UJ>s. •

O •—»r0r<~>m Lf\«- _JUJ-ir « X-J>-< U.-ifO^—DXtMOZ—O*—— >—H—-I— O'QIJi-iU.U III •XQC.^-it _l^OOOr">t/)l— <£ < it li rC <skl. il M<Xr-la '

-,r huluho^ci-woq^QSC^ZXi- ii il wv, ii hiii ii ii uyu-'QUO^'-iij ii H'jjNhi-?.i".inOiL— ro ajO< c»: <l Qt (M II ~J_)>-hhh II UJ_J II ZOO II II II n II II Ii II II 03 II OO •—•<—

• iXulO00i^r.oujoujo ii zuj'xi-i ixz<i<f.-_iMi HrHMrqg--3;iA^r-ucr' ii u tar

- d-oo-4-UuX«13a;u.tfU.2aOQa:<ZIi-iZ<ctft.OOUO'JUlJOU UOD2SU.U. •

O —ICMCO^' •"-<

O r-l <"\J <\|r-l

O O O OOO O O OOO —i >h rsjrvj

ooooooo

— ujx< -jmz ca -»• o-tX 0i •

z CLvO*• U_i£ LU •>

UJ X-z H II

-1 << U-X* oaSO oy.i ^ i/xrZvt «:-xo UJ -

»^ •• •» t-xX -iro ujint~ <o s »M- •- ••— <3 <fO xrvj^o: •

X (XO <oor •» •*4"CLn-(« _J—

1

•- LL• o:o<m •• ••

fNj hX-— ro ^.—.1UO II

^O H(MITIH(.t-W OO -Xoog -~oo.. • OUJO CKvJCM i—1>-<

Qft •o •J-H ». M. - LU# m -OOnO ?< iXOvC——

X

U-OOV.O Jt -«— -' -

O + SHSXOJ 1-1— ».

• X «l.C\i^) • _JwUUiU< <t X

63

Page 130: Two dimensional analysis of fluid-structure interaction by
Page 131: Two dimensional analysis of fluid-structure interaction by

«n

o-U. II

-KX_lIfVLUOW mm

II *•

<><xo—0-fH«V_l -v.<XvfN** • •»

CM^-

X—< •

miurM•» •n-H

«J-« LU• II

ox-<-l_l II

U_UJ>Qk• • ->

II •(/)hXZXOUJ(Jr-IQi—» •»

OJv^OX>»»-<- NO•- «•_)

Xf<1LLO*—* *f-H •• •»

- XII o<.-4z »•

- >*»- •

xolAr^-ILm •-

—tm- II

- oii -Xzx- o

u.oX

ex.

I

.-I II

z —O^ •- "Jm »-h • «r-t ii o>-h

nx h-hhs ii i—zNO'* + + M'.n-On.

- tMZ II II II '—'-•I—Ownh n —<»-<<\j(_)?*:xiijzo:\iu—izdzciaacicuj

inr\i

64

Page 132: Two dimensional analysis of fluid-structure interaction by
Page 133: Two dimensional analysis of fluid-structure interaction by

» MlO • »-. <z » -» ~o «-z «-x» >* —V.

m-» <o ••>»»»«-»o—z •» * *>tC0r<">0 •+— • -» •

—20r0v0 lu <HJJ »•

0>-<cciOO O «0—

•

——-f— r\iir\ »• !—•••<OOOt_) —X luXsTXfOO » t-«lf> oir> •

^oi'jo ^<^> »rn«Hokq. ••o-i •• » x «-LU

rrio. »-u_^» --^ in^O

y~—<OIQ- m • re) •• •oomo: •• » •• xam •• * —»z -^zmCO—ooo HO >*0—3:cOrOX »• 2Z<— »wO••CL ^» a£ -st" •'I— • i— o*-»a i »-o •-'O 2ro ••

O »-OlI— - II UJ OUJ'V!*»•-. ^--J^ ~>-J ——1^—O-'UJ » •U- I— u_ *•

hmOQH — uj olu-O'-ro Z -)Q UJQQQ<t »-X » •• —J *—

<T£0_Ji-< —• — t-i_j U IX>samtul —*—«<h i _j— lu_j.j•- -QZ XhIH<nD<U.

iZ ZZH + I2V, 3OOd^UJ • * *-—

' • I UJrcirO kOS hhHIj^-jJI__-^ra>-i || || ii z<t <<!-<^(^>Z> •+- «-"-<»-i~-OC\I3:0ZSZJcOO •> * • »»l/)>-<rH -'Z„ is t^3 -»— -~v/)l— Ul_l(— -«

^^-Os-ai -•-i»-.'jjcc: t.<ta:

aoooiwziii—'wocai- I— luiuUjrr>rY>w(y>X5:<cOOCX> uz>ix»-<— q.uj »->-h3:3:^:— O O~-COOj -0C—*>—w^-——t-UJNh I/)

Q.3D^a-Z iL^i-iIiOI— ». o^-' *•—— —.-~-^ujt-'a:oujZ> -»f<"> «-"»C\Jr-4rO<|-La_JI— O'-'Q^

OOO—>~XOOOOO- - XorCl-cimoozooooo .---

ais,wjcfl ..r\j<\j,-\j(\ir\ix- • •• *

j— .-_rocO———• —— >-

r>z~o—w i-h-i-i~i-zOi_i0^ooi— ujujujujLij<r<<<<a:cti.in— ^)oi— i— i— f-t— z^iLsrs:^CC5.— jgu,Q»-h"—<>-H'-<>-<OC£tCiCiLlXI—

O

_)OOJ-o.oixa.ciii(XD:oc'OULiLiJz:l/)oX- Ci. X 2 Z. 'J- X.3 LLUL LL. U. LU CX UJ

oooooooooor\|c\|c\J<M<M

6 c

Page 134: Two dimensional analysis of fluid-structure interaction by
Page 135: Two dimensional analysis of fluid-structure interaction by

+ •. —. —

«

^ •«•

• »-o> + — + X-fi- ««, •-H r-l »> -* —

.

—

.

t-i fM• miu — . i . z • n z — + t-t t-i rH r-t — 1 1— <z •> ro zro »»«* ^^ •-» 1—«»—

1

+ + + + rH>-« 1—

i

O -2 -CO w *• w- 1 # Q- 1 00 -»CQ ^w t—

<

i—< •-H »—

1

—V* «^fO— «-<o + < CMO — 00 H- — 3 ZX t-HCQ w «— w *- »^H<C OwO—2 •—-3: *^, _3» -•O •X •~-R- ••# — 3 < O < O »-3 3como •f-i-i* 0--K- Z 1 <fZ <M • t-4 • Q-^ 3 3 3 3 Q.-K- -«»

X-tOZO ^ • •Jr • •ft** 1 — ->t ~-^- *• • * » # H- •R- • — •>!

•><! »• •• »-<M<f • st fra4*«i -,< •H « Q- |•4- c • • • •«t —ICO-JO^O-

1

st 1 XX -^2 _r^« -;'- *~- -i- r >*- <f vt -* * f ZUO'-imouo--' » — ^z ••* Q-(M •z 1

—1 1 t 1 1

^ - \

fn •»- •• —»• <\j —«<M »^'l.rf l-H • •K-^ <r— —«r\j ^^ --• —

*

^^ — CM fl-^»——-1— <\JU"> • •-» r-«w Q-O IN • OJ 1 ca -< r HH »—

1

•—

«

•—

•

-t 1 + —<oouu^< zo + Z3 Z>- <T3 —3 + -< •»-• —

»

-» ~^ »i 1 WWXfOO IS »_^ — r •^>t \ * -•«• > 1 >^ < O < r-lw —>•_>

»—• i-h_i——».ft m-a- i-t—

.

a. co -^ • Z • co 2 3 3 3 + < Q-O—OXOOi-t • *-- • ZI + MN •r^- h.i •>> * * •« HJ + noctro. -ro »r— o.r- •z — 1

•••** —|w w-^^ • • • • <M*«^ — 1

a-H- vO vO vO vO 0--H- fl^>* •-— i_ii<:*--K- —-H- 11) •""* woo Q.00 + CO + + + + + C0 7M1 .010.0- CO .—ICO Z2 HI O-O + —0oomcc «- + <_) ZO wft IZ + 1

— 1 -i f

QfT) ^ ^.| » 1Q. • Z-* ^~-* i-l-^

1—

1 1 1 1•»—

«

1 3m—000—1—

•

#—i-^ >-(M —

<

t-(—

•

z-> i—»^^ 1—4 -H M HH —i— twst —3cOrOX • —. w. •>"- » Q-Z) -f\l »-z •1—

1

—

«

«M W ••« r-« -w •—•*C£~-Q_>J-.-IC\J <X(M <Mft — 1

.—Iw -Hw <-<«^ < O < O 1—lw 0_C\J(M— O.-J -0-—

—

- H-! t ocr> ->< ** — aj wX) wCO 3 3 3 3 —

<

*—•»«. -f

n.t— -cl< ttO + CNJX Q-D O-D O-U «• «• •» «• an j;- •» >—

<

ro—« «-_!*:—

3

INJZ) —

+

oz — K — 1 ^ r• • • • w

1 (MC^"-*~-0—>lU -ft 1 O 1

.—I— + —

'

Jt ^.^ ft -~ Si--» <r si- sT <T •» — ^.'^'^

h-MOQi-Til-N +— z— —><1 CMtNJ CNiZ CNJt-H1 1 1 1

rvji--i + + 3C^fO "-ZOC\J —CM »•<•*« ^3; O— o>- O-" —

»

.-«» "> —

»

o~> +Q< -X - + *~ r-l^~ XX'-< .--K- + C0 + CQ + co <M <\l f\J f\J + < 1—1—

—

<fl/0_J>-i-*< ZO zz —X • -»t: — 3 -»31 1 t 1 —3 ^— r-l

3C.:OluX.-<3: -3 wwlMZM fN-ii- Z4J- -i^~ HH »^-^ M H-< -1* — , —1 +• ••—q^: •••)*• r\|-K- -JO | «— •• • — • •- §-^ w —

•

—

•

*— •- #^* • t—l^-»t-^

«^.—>2 » *-C\J • —• • Q-Z>X _!-* -<r\j HC\J ^-ICvJCvJ < O < O »-<(\JC\|w<Ow

OOOu-^iu—-c\j _I(M 5!- *-

:

za.cr> -**"*i* WM WW + 2 3 3 3 ww + _jnorq.-T) ».os:-j»- n_^- • ro--*o _»* _Hf _Ht- l-H «^ v^ ^. •«- Ott"-1'CL* 3v.^-,rt-<a# a •« (MOO • + a.o> ao> O-UN—

•

M- ie ft «• a.o>~-* ro-*OOO •»!-» 0* • 1 + 3c\J- •«-o * «-o«n CM.-! fl p-4 i-< 1:C<: .0 «

30r00 • »0 040 —»— + 1— • + • + • + 3 1-1O O roo O • + 3CM + vt

» ». »-r03rM + l + <—'Z*-»—.—» r\j-» (NJ— OJ—

+

1

J^-•

1 1 <M— + l — 1—^—o~'-U 1— «-*.—« Z »MWI 1 ^^

1-» 1 -

—

c— f* —I ——.<-.2—

.

iXOOO^Z-r-— —I—

»

«II -z ^~^^—

V

—.—

•

~~r-t !--< t—

1

Dh t— 1 —"»—* f—|r—1 »-f-H

ujroro»-oox.-i—

.

Z— xzzx— r\jr\j zz »—«-( 1 «M0 —~ 1• •-» t—It-*,+ Zw—

•—«w_"CLLU •- ..'M •-CM z

—

—Z<I —. -..— .-.— *•>-»>-! <-«OQ < OwcOcO «-o;^-i(NJ—

'

cm— —cuo— r>--,-<ca r-ICO HtO- ODQ^J- on D t-H <J -^» t—IQ.3Ji:?-az-< —O CX-ft 5d<- r\J—

3

—D — 30D O 1 -i! 1— 1 1 wX)<.— * -ft

—» «.o»-< -ex3 o.r> * • # » ro | 0.-JS- O--^- 0.-» 3 »-» —»-»fi — -» 0--ii- 30_ • •

<~—m --I* *- * -K- •CM • 'OX-* ro -)} ro it" CO **& ^-*"*• *~i *~* *"*Z —*»—

«

»—

1

ii-ro-H- vr fMvO300—I »ro • co C\J + <f(M + Z • <_> •O •—1 tO «Xi—1*-^»-*s.rfW !—<•»» N-rf e(_> f «+ +COfOOOZCNJO MO u— |

^-«^CNJ + f\l + zr\i + <t2i<z<.^<^tx: << O CM+ vT(M——

>

UJwwSn —.+ — + #lH«-.* r\j<—.

—

~»—

»

»-~*--»| Z3a?o. Z3—3— —— 1

— —I—

1

Z<<—• —Si- ~» ft — i-z XN- •S'K- CM #2-. ro-il- >-t~ro •«• +* + •» -*••« — -ii-tM—KZ |

t->3"D «-OOI~--i\J I*-Z •:2ox + r~ - r— ^-~ 11 r- »->-i 1 1 uu •-» «-^r-IUJ »C\J «(NJ^(^- »J-H • f*. »-K-* 1

1— ,..^.rOr<"iLJ .. O 11 X— 11 Z—•O'M--Orvjrsj •"-"O'M^-t-i^rMcMtMrMi-IOrM + >A) + r-tO»-<-—-o»-**^*152—.O—— 11 rsj— 11 i\j^-zu">wm 11 —.-» 11 w ( ll~iO • II + II + • II — II — II —<•< H —-OZOOO :O^0l ———— ~X-r- 3XO-X— CL <]-'-• Q-ZO— O. -sw-H— t-i—hQh-.--.wO—0-3—•0-3'—'Or SriOwooC'CMQ-Ntf^JQ- vT20- ft Z-JJ ZZC-J* — Zii- — --tt-t* Sr HwHwH^(--'M<"Or-H.J tf- -< •«• -i; I—COS--«muJQ~»-i5- ^-— -;f —«-» -« »^- »w~- .cO—« «a) >— • • «-•<—

O

^3~-3 — • •"-" • «ZJOD-iao< »<.u «oo •r~<rxi< arir\i jicor\i3o or\jvOouL< 30^ou.<i *• o •• o<rc\j<;osr <rowux.-iaj:xiMix'>isx-f-x+sx++x++ox++OMX + x; + OHX x ox>+xi k o

•"-KMrOvf t-i«—1 r-icM r-if\j ogr-j r-1 cm csiro r-KM fi ^1 ^1 ,_i ,-i<m >Mr\i

O M fO ft

66

Page 136: Two dimensional analysis of fluid-structure interaction by
Page 137: Two dimensional analysis of fluid-structure interaction by

Z)l-Q

(XOJ

67

Page 138: Two dimensional analysis of fluid-structure interaction by
Page 139: Two dimensional analysis of fluid-structure interaction by

<\J zo — + •l +•» «-o> -8- -3 «-« M —

»

•» «-tiO —

•

•» l-t *-^ -5

~ 4Z • -» eg •• CL •»

O *-Z »-oocMrH M >—

«

* r-l

m-- »<OOZ (X «^ • 1—o—z -» •* •a- Ql >* r—

4

cnmo •r—^ t * 1«—

x>*mzo«- cm • •-> Q.-< •- fc . r-|CL + *$• —* +—30r0-0 * —

.

J_r-l —

O'-'rOCJ'O'-l • ~3 »* -Jrc| .-«» «. *.w4- •• *^ o IN

«—-—»— cNjina. ir-4 r-H r. r—

1

<oo<_>o*--^ W w I—

'

XrOQ •> • «t-« Q. < *-. CL»*»^ 1 N !—>J*Z •» 3 r—

1

*•

—<->XOO |• —

>

•1

•«r* *m •

ODtCL «-CT|— CM \— >T o (- •*mo. u.winjw _j

J^r-H X _l 1

«^ *—*t_l>i »-Ul.—»LU —

%

^ *-* r-»OJ -^

h->OIQ-H«(-0 r-4 l- < •tf- HO r-l l-oomoc »*— ._)«• + _j X m -J* + _Jorn »• • q-cmjj • -J uu -^ o LU • "J LUm-OQQ* +o<m •» O # 1 OCM »• OSCOroX .- «-»-«- w r-t M- CO <m. * w- r—

4

»~a:-»a:<i-cMZ »^ «—

.

t o 2 •>v •—

•

•

—.CL_» -0+ »-CM--» Q. !M 1^ CM— Q. CM

O «-Q-l— —.-i,^—

.

+ w r—

1

*^ ^^ + >-'

(1— •._l^i^-l'W ,S>-^ — v. CNJ —

»

"»»-" — ^«—O— LU •- Q.—

2

r-l *»ft a Q. —Z r-4 -*^ a.1—tflOQwN*-. •-

1—

»

r-l •{!• —^ •»^ o

O"— ro «-Z«- • r-lr-4 -3 -} «^ t r-l r-l -3 -3 XQ< «-X «-CLCM •»— •» r. a CM •--^ •* •» CC<QLO_Jt-iif—'^l_l —4 r-l * r*^ 1-4 _l »-H r—

I

^2Q-moiI t + wQ_ -— — • + — a. w -^ —

»

•• •—QZN->-_l I a. _l CM ^» -J 1 Cu -J ~3

—~.^ •• >—-<Q.-« w o_ »m* r-l CL— •^ CL «««

OOa-»aj + z | -h + 1 + z 1 -1 + 1 ^iCL

»-*-—»•— fC^r—«r-4r—If—| •» —> "3 r-l r-ll_)"—1 »• -3 ~3 K-ooo •*— •—» *<- •> • •k — » "! •• •» h-23P.O r-i_l^-iw i-(C\Jr-l t—i -J'— t-t— •—

i

r—

1

_J«»•.« •.rr>3:—«Q.—^ —O*"" —'(NJO---^-Z V-* «->* LUc——-o»— iu_j

|?a —l-K Z _JO 1 nza -J Z auioomwzc^a- CL—»CL a-#'-ZOL- CL CL #

t^roro—ni | —I—* 1-»—

1--—

1

•—'* 1w •

-v-dUJ —ZX-LL. —»—»# —.—>Z—!» U_ -fc * CMOCOCO o'—ir-l »-a.o -3-5LL r—1—4 •- 1 u_o ~3 LL 1

—»-<^r3— a..-^ -r-iox »>Na-rj *> ( Mr-IQI •• O ->-33 o>-« »r-<~-.ia: r-4 X r-Hr—|— •-Xa: r—

1

X -S"-*_j—~ro •— i—'6-q:

i—cone — 1 ao-ct: t •**• Q. ^L-oo—<ia* i ii o-r> I <ao- »-»* +• 1 » Q-CM 1 -ImO.

mmooz# • ii —.^r-K- t II z# -* •-x II — Z-tt- O II Z— II

LU—— 2(fl .- .CM— -4 •. •*»-^ •- •Q.(\|r-I— rH *4r"* _l-»

Z<I<r-i •—»cm ii r-urrgc\|-)-><Mr\i 4 • II ZHZMN-~-3 r-4CL~3H zso »-oo II —• *•1ii n -• •

1II II-.—» •<»•*! 1 II -- •. II II -

t— «.— C.")C<1 •—Ir-lrH"->— aJr—41-H—»»-(,—(|—|>_<1-H-")-•-3 >-4 -3— r-4

JZ-O—Wr-I^^—. OX- -^ •>Z+«—— ~3 >— r-^ ~3—^OCOrOi/)(- •• »</>i/>0 •-«^iy)0 »--^ wi/k/iq ••r-nto + r-n r-ooilfCCS fO -^ */lO '-l—* <S> l/) r-lrH ^ l/jCMr-H + <—

'—

' CO 00 CM '—' + LO <J CM r-4 CO 3

COS.—':DUJO——» LULU — fl",UJ —"—•—'CLLUliJ — I—.LUZ —' lj_f»—QJuusauz^ai/.o^uaui:-'^ * <XiX.lj^~ <x iiozcxujzLOCJXr-iQ.3:CLCLCLCLQQ. | CL OCL CL CL— CL CLQ CL Q.CL r-iQCL CL CC LU

•-ICMrOvJ- rH r-| r-| r-4

O O r-l

rH CM CM

68

Page 140: Two dimensional analysis of fluid-structure interaction by
Page 141: Two dimensional analysis of fluid-structure interaction by

I

•• hIO +— <2 »• r-l

O «-Z -CO Xro— -<o ZwO—Z «-coroo w*- oX-*m2:o 3:

»<20(<1>0 *OTOOO «"»

(T) r.^* •• *. f—

I

—'— I— (NJIA 2<OOUO •X(f)D • *. rH

• X+ z• *—

»

o I/)

Oi 00rHQ. LU•K-CL cc—

-s: a.D-LU i—

i

mo-(~ —

»

—oxoor^Q. -ll^»

V—>OXQ-Ooroa: »•

OCO * »tO«OGQZScOr^X •Kjr-Kvf o m—CL_J »-0 CMo -af-

—>0- LU • t—i-(<ioqh oo~-rn ..^ r\j h in oQ<I »-X »• -HO<o:o_i.-h a oTfQ-rnujX h- h- o —• t-^os — — mmmm~+Z - - O O —

•

• • •£ •ooo.~iii o o o ~> ++ +ujs:mm ox o » -or- cr> • • •(—

s

w^-_r<>-4 «• «-• i-i c\ic\i c\i oo ovaOOO »-|— «•«- — -» OO O— 2!

"SDrtO • — «* — 00 OO O *Hi-t r-l-jUJcd » - «-m:2 -» kh -• — oo— t-(— H >!»•« •+-LU—— O^-UJ —.WW m-3 LU". —— O— •-< •wOOfinz —i < o —i— a- -j oo O 2-S m3—»lu

"tn^l-Wl •• 3: 2 DO Q. •> OO O O.Q. a-coz:ci-^^-cllu •• i-i w —» os «>~i zs osroonXCOCO ..aT-H- -. CO—00— J—^—00— —— — LULU f-LU'-UI— 30-30— fi-2— OO CO— CD—. O0— CDoO • • • t— I— h-CH i-<—<t • »Oi-< ••rHOO <>i<i-" OCO-j<-LOO OO o w ovx— <xry;——-r<"l •—H%^UJ •— •—

•

0<w tiu • • • -H——< —— r<1 —(-->?'"->OOO^—X<KXuj<LUO —< • COlUa' r-h- Q- 3 3|- Q. X (IIwmh OIIOTH|mifl'fioozscLZ'Jioj; 2:—Lursoo- (.200. a. 0.00. o_ azw^z^w~o?oio

LU—— 3:r0 .-w— •— •— ^Ow »w • •£ £ £ -X ST 5! ••<0 -r-4CD-)r-l OZOZ<<»-i •—» oo'yir-<3-y)sw -h • •ooa.oo 3:0.1x1 lu lucxlu lu ujhsjSiH »S •• »hh «-h»-iSO «-ooa3oa 11 Q.COO-CULU 11 lu;-;cO(Xcqujd.q.i— •(— »cr>i— a.t— «CT>i~ •(- 11 ~— >— 11 iu~— ^-iso M ••'-u •>

h- —«r<irn<<'--'5:<r5:<o~5iro-<:'s:< o:-;s 11 r-i n 1-hcnj 11 5: 11 r-)(\i 11 rH 11 -. 11 11 —)S_ 11 -ww^z^D2r>o— >-» 11 11 lu 11 lu 11 ^ tj; n lu 11 ^lulus: 11 ^ n sclus: 11 s: 11 z. —— •— 00 ~— •*»«

ooonoi- ^aoi- 3:1— s>-'0'-<uj j£i~D.r-<i— i— a.Q. .aioisi-aaos^.i.O'H^O'-'-j^iiJOujwiLiCtC5!(r|^»(/7i_ )O^Q.(NJ»^a.«-L^^ro~'KCL-^Q.h-^'~^C^a.CLQ.^CL^-Q.Q.f--O.Q. (XrO— ^.(r|«^>^LUI— sj-|- ~^h-cos-wcLiLuor^i; 5: 2:2: ^5; s.^: >.2i>; 2: 2:2; z.x;."i- <;o ontxt-. v-< >-<

^OO^LtOXIUJLJLLLUJ.LULjOLI.U.JJLLLULJLL.li.LULULUUJOLUU.mUJLJLULUUJL~j;S^OL^i/)OX>na"ihl-Qi-<l->-il-oOwM|-.MH < > i—<—

11—

I— I— HLVI-i-i|-h-L5l-l-l-Q ,-"-|Q |-i |-'i-iSO;<»^'S

•HiMrn -rc\j O m \0 r— coa-v O

rH .-t (M c\j cm cnjcm ro

1

H<t+-HOXI-z0<o

69

Page 142: Two dimensional analysis of fluid-structure interaction by
Page 143: Two dimensional analysis of fluid-structure interaction by

cr

h-"vOLU-J-

J •

LLOvlLUi-tOLU

Q._l»-l

_J •<I-2 II

XO<t>-s:=5- _i•.u.

-» X^ om•« Hi

-t •H-•^M <f-

-I •• •2z- t\|i-i

—

»

m .-I —

«

V. Ha UJLIJ^Bk II »^C •-

—

*

->•* - =>~m »»—1"— II O0-r -^O^ I/)

m ->rd UJLLI»-^ »*- •»•t^rac*—O CD- '—<i—(Q_0CM 3:

—

Oh- <mt-t »—< w (ro« uo^-i»• «^ m •- »-<t •»

X ..-.-txxsxin v£(\J»-llnm- m• oo» . m X-+ rH^ i-IO

y-z f-H-h- «H-Z<t>-«iuuj<<:<f\i<ia'sii-H-i-sisa:—i;cr>ccz.*-<*->cC£Cvi-oja.\~Qu_o_»3:u.u,u.'-iu.q:lu

mo .-ir\lr<i >j-

o^j- ooo oO OOO O

70

Page 144: Two dimensional analysis of fluid-structure interaction by
Page 145: Two dimensional analysis of fluid-structure interaction by

BIBLIOGRAPHY

1. The Boeing Company, Technical Proposal D-162-10294-1,Hydraulic Ram , 18 September 1970.

2. Rogers, G.L., Dynamics of Framed Structures , Wiley,1950.

3. Crandall, S.H., Engineering Analysis , McGraw-Hill,1956.

4. Ames, W.F., Numerical Methods for Partial DifferentialEquations , Barnes and Noble, 1969.

5. Air Force Flight Dynamics Laboratory Technical Report71-79, A Large Deflection Transient Analysis of ArbitraryShells Using Finite Differences , by Kreig, R.D., andMonteith, H.C., One of several reports in a volumetitled Computer Oriented Analysis of Shell Structures ,

June 1971.

71

Page 146: Two dimensional analysis of fluid-structure interaction by
Page 147: Two dimensional analysis of fluid-structure interaction by

INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Documentation Center 2

Cameron StationAlexandria, Virginia 2231^

2. Library, Code 0212 2

Naval Postgraduate SchoolMonterey California 939^0

3. Chairman, Code 57 2

Department of AeronauticsNaval Postgraduate SchoolMonterey California 939^0

H. Asst. Professor R. Ball, Code 57 Ba 1Department of AeronauticsNaval Postgraduate School'..Monterey California 939^0

5. LT. John Charles Bitzberger, USN 1

26 Catspaw CapeCoronado, California 92118

72

Page 148: Two dimensional analysis of fluid-structure interaction by
Page 149: Two dimensional analysis of fluid-structure interaction by

Thesis 1532ESB5U537 Bitzberger

Two dimensional analy-sis of fluid-structureinteraction by method offinite differences - hy-draulic ram, the fueltank problem.

1 J O L b

BitzbergerTwo dimensional analy-

sis of fluid-structureinteraction by method offinite differences - hy-draulic ram, the fueltank problem.

Page 150: Two dimensional analysis of fluid-structure interaction by

thesB54537

Two dimensional analysis of fluid-struct

3 2768 002 13500 6DUDLEY KNOX LIBRARY