tva 1

Upload: adonilson-freitas

Post on 05-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 TVA 1

    1/5

    Carbohydrate Polymers 87 (2012) 19891993

    Contents lists available at SciVerse ScienceDirect

    Carbohydrate Polymers

    journa l homepage: www.e lsev ier .com/locate /carbpol

    Biodegradable starch based nanocompositeswith low water vapor permeabilityand high storage modulus

    Luca Fam a,b,c,d, PiedadGanan Rojo e, Celina Bernalc,d, Silvia Goyanesa,b,

    a LP&MC,Dep. de Fsica, Facultad de Ciencias Exactas y Naturales, Universidad de BuenosAires, Ciudad Universitaria, 1428 Ciudad Autnomade Buenos Aires, Argentinab IFIBA (CONICET), Argentinac Grupo deMateriales Avanzados, INTECIN(UBA-CONICET), Departamento de IngenieraMecnica, Facultad de Ingeniera, Universidad de BuenosAires, Paseo Coln 850, C1063ACV,

    CiudadAutnomade BuenosAires, Argentinad Consejo Nacional de Investigaciones Cientficas y Tecnolgicas (CONICET), Argentinae Grupo de Nuevos Materiales, Facultad de Ingeniera Qumica, Escuela de Ingenieras, Universidad Pontificia Bolivariana, Circular 1, No 70-01Medelln, Colombia

    a r t i c l e i n f o

    Article history:

    Received4 August 2011

    Received in revised form

    16 September 2011

    Accepted 3 October 2011

    Available online 8 October 2011

    Keywords:

    Starch-MWCNTsnanocomposites

    Starchiodinecomplex

    Dynamicmechanicalproperties

    Water vapor permeability

    a b s t r a c t

    Nanocomposite materials based on a starchmatrix reinforced with very small amounts ofmulti-walled

    carbon nanotubes (MWCNTs) (from 0.005wt% to 0.055wt%) were developed. The materials dynamic-

    mechanical and water vapor permeability properties were investigated. An increasing trend ofstorage

    modulus(E) anda decreasing trendofwatervaporpermeability(WVP) with fillercontentwereobserved

    at room temperature.For the composite with 0.055wt%offiller,E valuewasabout 100%higherandWVP

    valuewasalmost 43%lowerthan thecorrespondingmatrixvalues.MWCNTswerewrappedin anaqueous

    solution ofa starchiodine complex before their incorporation into the matrix, obtaining exceptionally

    well-dispersed nanotubes and optimizing interfacial adhesion. This excellent filler dispersion leads to

    the development ofan important contact surface area with the matrix material, producing remarkable

    changes in the starch-rich phase glass transition temperature even in composites with very low filler

    contents. This transition is shifted towards higher temperatures with increasing content ofnanotubes.

    So at room temperature, some composites are in the rubber zone while others, in the transition zone.

    Therefore, this change in the material glass transition temperature can be taken as responsible for the

    important improvements obtained in the composites WVP and E values for carbon nanotubes content

    as low as 0.05wt%. 2011 Elsevier Ltd. All rights reserved.

    1. Introduction

    In recent years, current industries have shown an increas-

    ing interest in replacing non-degradable materials by renewable

    source-based environmental-friendly ones, without impairing

    their properties. In particular, the Biomedical Industry has beenfocused in the development ofnanocomposites with appropriate

    characteristics for their use as sensors or stimulators ofbone cells

    (Harrison & Atala, 2007; Tsai et al., 2007; Wu and Liao, 2007).

    Starch appears as an excellent alternative to synthetic materi-

    als because it is abundant, renewable, low cost and biodegradable

    (Bertuzzi, Armada, & Gottifredi, 2007; Gonera & Cornillon, 2002;

    Talja, Heln, Roos, & Jouppila, 2007). Its properties allow starch

    to behave as an excellent polymer matrix for biodegradable

    Corresponding author at: Departamento de Fsica, FCEyN, UBA,Ciudad

    Universitaria (1428), Ciudad Autnoma de Buenos Aires, Argentina.

    Tel.: +54 11 45763300x255; fax: +5411 45763357.

    E-mail address: [email protected](S. Goyanes).

    films-forming (Fam, Rojas, Goyanes, & Gerschenson, 2005; Fam,

    Flores, Gerschenson, & Goyanes, 2006; Fam et al., 2007, 2011;

    Flores, Fam, Rojas, Goyanes, & Gerschenson, 2007; Garca, Ribba,

    Dufresne, Aranguren, & Goyanes, 2009).

    On the other hand, due to the extraordinary mechanical, elec-

    trical and thermal properties of carbon nanotubes (De Azeredo,2009; Matayabas & Turner, 2000; Matayabas et al., 2000; Sung

    et al., 2005), considerable effort has been focused in their use

    as reinforcements or sensors (Harrison & Atala, 2007). The main

    advantage of nanotubes over nanoparticles is their high aspect

    ratio which allows achieving percolation with very low amounts

    offiller. This fact makes their main disadvantage: the price, not a

    drawback. From the biomedical point ofview, it has been shown

    that nanotubesembedded in a biodegradablematrix canstimulate

    bone formation (Harrison & Atala, 2007) and also have the abil-

    ity togenerate a structuralreinforcement.Besidesbiomedicine, the

    packaging industry is also a tempting industry for the use ofcom-

    positesbasedon starch andnanofillers.However, theuse ofcarbon

    nanotubes as reinforcement could serve as secondary packagingapplication, not applicable directly to food.

    0144-8617/$ seefrontmatter 2011 Elsevier Ltd. All rights reserved.

    doi:10.1016/j.carbpol.2011.10.007

  • 8/2/2019 TVA 1

    2/5

    1990 L. Fam et al. / Carbohydrate Polymers 87 (2012) 19891993

    The addition ofMWCNTs can modify the mechanical proper-

    ties ofthe composite, depending on the adhesion between fillerandmatrix (Ajayan& Zhou, 2001; Suhr, Zhang,Ajayan, & Koratkar,

    2006). Furthermore, the incorporation ofcarbon nanotubes to the

    polymermatrix alsoaffectsroughnessand consequently, themate-

    rial wear properties.

    So far, nomajor effects have achieved with the addition oflow

    contents ofcarbon nanotubes since they tend to aggregate, being

    very difficult to separate them and thus to have a highsurface area

    with very low amounts offiller.The effective utilization of composite materials strongly

    depends on the homogeneous dispersion ofthe filler throughout

    thepolymermatrixandthe adequate interfacial adhesionbetween

    phases (Zilli et al., 2007). A few years ago, Star, Steuerman, Heath,

    andStoddart (2002) showed thatan effective techniquetodispersecarbon nanotubes in an aqueous system was to wrap their sur-

    faces by an aqueous solution ofa starchiodine complex. In this

    way, their desirablepropertieswere preserved and their solubility

    was improved. This technique is ideal for introducing the filler in

    a starch-based matrix since; in addition to ensure a good disper-

    sion, it is highly possible to obtain excellent interfacial adhesion

    because the samematerial is used as the matrix and for wrapping

    the nanotubes.

    A few papers about starchcarbon nanotubes composites have

    been reported in the literature (Cao, Chen, Chang, & Huneault,

    2007; Ma, Jian, Chang,& Yu, 2008; Ma, Yu, &Wang,2008; Zhanjun,

    Lei, Minnan, & Jiugao, 2011) but there, the nanotubes were non-

    covalent functionalized. Recently, Fam et al. (2011) have shownthat the method proposed by Star et al. (2002) is very effective

    to disperse low contents offiller in the matrix, leading to simul-

    taneous improvements in tensile strength, elongationat break and

    toughness.However,to ourknowledge,therehavenotbeenalready

    reported studies about the mechanical relaxations and theperme-

    ability ofstarch based composites reinforced with small amounts

    ofcarbon nanotubes.

    The aimofthis researchwasto determinetheeffectofthe incor-

    porationofvery small fractions ofMWCNTs (

  • 8/2/2019 TVA 1

    3/5

    L. Fam et al./ CarbohydratePolymers87 (2012) 19891993 1991

    Fig. 1. Typical macroscopic imagines of the composites with 0.005wt% offiller:

    pristinenanotubes(a) andcarbonnanotubespreviouslywrappedby a starchiodinecomplex (b).

    Fig. 2. FE-SEMmicrographs ofthe cryogenic fracture surface ofthe matrix (a) and

    the nanocomposites with0.027wt%(b) and 0.055wt%(c) ofwMWCNTs (5000).

    -100 -80 -60 -40 -20 200 40 600.05

    0.10

    0.15

    0.20

    0.25

    0.30

    (e)(d)

    (c)

    (b)

    (a)

    f(wt %)

    (a) 0(b) 0.005

    (c) 0.010

    (d) 0.027

    (e) 0.055

    Tan

    Temperature (C)

    Fig. 3. Loss tangent, Tan, as a function oftemperature for the different nanocom-

    posites investigated.

    the glycerolplasticized starch: the glycerol-rich phase at around

    60 C and the starch-rich phase between 0 C and 20 C. These

    values agree well with those previously reported in the litera-

    ture (Averous & Bouquillon, 2004; Cao et al., 2007; Fam et al.,

    2005, 2006; Fam, Gerschenson, & Goyanes, 2009; Garca et al.,

    2009; Ma, Yu, et al., 2008; Teixeira et al., 2009). The lower tem-perature peak did not change with filler addition suggesting that

    carbon nanotubes did not modify the distribution ofthe glycerol

    in the matrix. Nevertheless, the width ofthis peak decreasedwith

    the incorporation ofa small amount ofwMWCNTs, indicating that

    some restriction in the number ofrelaxation mechanisms existed

    in our composites. On the other hand, the upper transition peak

    broadened and was shifted to higher temperatures (the wrapped

    fillerwouldhavebeen interactingwith thestarchbutnotwithglyc-

    erol). Besides, the peak intensity diminished with the increase in

    wMWCNTs content. The observed behavior can be attributed to

    the higher surface area promoted by the incorporation ofthe nan-otubes and the very good adhesion between the matrix and the

    wrapped filler. During the glass transition temperature, the long-range polymer chain acquires mobility and therefore dissipates a

    great amount ofenergy through viscous movement. This is shown

    by the loss tangent peak in a dynamic-mechanical test. Hence, a

    depression in loss tangent values indicates the reduction of the

    number ofmobile chainsduringthe glass transition(Rao& Pochan,

    2007). Inour case, intermolecular interactions between starch and

    wMWCNTs, reduce themolecularmobility ofthe starch in contact

    with the carbon nanotubes surface (Ma, Jian, et al., 2008; Ma, Yu,

    et al., 2008) and therefore, decreased Tan values and increased

    relaxationpeak temperature valueswere observed. It is also inter-

    esting to note, that even such a low content offiller as 0.055wt%

    ofwell-dispersed nanotubes (approximately 1m in length and

    35nm in diameter) generates a surface area ofabout 90m2/g. Theobservedchanges in therelaxationtemperaturepeakfrom0 C for

    the matrix to40 C for thecompositewith the highest nanotubes

    content had important implications in the materials behavior at

    room temperature. While at 20 C, the matrix and some compos-

    ites were in the rubbery state, other composites were around their

    glassyrubbery transition zone.

    The addition ofcarbon nanotubes also modified storage mod-

    ulus versus temperature curves (Fig. 4). As expected, at the lower

    transition range (60 C) there were no significant changes in E

    curveswith filler content, whereas the upper transition exhibited

    a shift in E curves to higher temperatures with the increase in

    carbon nanotubes content. In addition, an increment in E values

  • 8/2/2019 TVA 1

    4/5

  • 8/2/2019 TVA 1

    5/5

    L. Fam et al./ CarbohydratePolymers87 (2012) 19891993 1993

    temperature. The matrix material has it glassyrubbery transition

    around0 C (below roomtemperature) whereas the Tgofthe com-positewith0.05wt% ofMWCNTs is around 40 C.Then, at 20 C the

    matrix is in the rubber state,while the compositewith the highest

    fillercontent is in the transitionstate.Theresults ofthis study show

    that the addition ofan extremely small amount ofnanotubes can

    lead tomajor changes in the material behavior ifthe MWCNTs are

    well dispersedandthematrixmaterial has itsmainrelaxationnear

    room temperature.

    Acknowledgements

    The authors want to thank the National Research Council of

    Argentina (CONICETPIP 20102012 Project 11220090100699), the

    University of Buenos Aires (UBACYT X094 20082011, UBACYT

    20102012 Project 20020090300055, UBACYT 20112014 Project

    20020100100350), andMINCYT/COLCIENCIA (CO/08/09) forfinan-

    cial support ofthis investigation.

    References

    Ajayan, P. M. & Zhou, O. Z. (2001). Applications ofcarbon nanotubes. Carbon nan-otubes: Synthesis, structure, properties, and applications. In M. S. Dresselhaus,G. Dresselhaus, & P. Avouris (Eds.), Topics inApplied Physics. Springer Verlag.

    ASTM E96-00. (2000).Annual book ofASTM. Philadelphia,USA: AmericanSocietyforTesting andMaterials.

    Averous, F. & Bouquillon, N. (2004). Biocomposites based on plasticized starch:Thermal andmechanical behaviors.CarbohydratePolymers, 56, 111122.

    Bertuzzi, M. A., Armada, M. & Gottifredi, J. C. (2007). Water vapor permeability ofedible starch based films.Journal ofFood Engineering, 82, 1725.

    Bian, Z., He, G. & Chen, G. L. (2002). Investigation ofshear bands under compres-sive testing for Zr-base bulk metallic glasses containing nanocrystals. ScriptaMaterialia, 46, 407412.

    Cao, X.,Chen, Y.,Chang,P. R.& Huneault,M. A. (2007). Preparation andproperties ofplasticizedstarch/multiwalled carbon nanotubescomposites.Journal ofAppliedPolymerScience, 106, 14311437.

    De Azeredo,H. M. C. (2009). Nanocomposites for food packaging applications. FoodResearch International, 42, 12401253.

    De Falco, A., Marzocca, A. J., Corcuera, M. A., Ecesiza, A., Mondragon, I., Rubiolo, G.H., et al. (2009). Accelerator adsorption onto carbon nanotubes surface affectsthe vulcanization process ofstyrenebutadiene rubber composites.Journal ofApplied Polymer Science, 113, 28512857.

    Fam, L.,Flores,S., Gerschenson,L. &Goyanes,S. (2006). Physicalcharacterizationofcassavastarchbiofilmswith specialreferenceto dynamicmechanical properties

    at low temperatures.CarbohydratePolymers, 66, 815.Fam, L.,Gerschenson,L. & Goyanes,S. (2009).Starchvegetablefibrecomposites to

    protect foodproducts.CarbohydratePolymers, 75, 230235.Fam, L., Goyanes, S. & Gerschenson, L. (2007). Influence ofstorage time at room

    temperature in physicochemicalproperties oftapioca starch edible films. Car-bohydrate Polymers, 70, 265273.

    Fam, L.,Pettarin, V., Bernal, C. & Goyanes, S. (2011). Starch based nanocompositeswith improvedmechanicalproperties.CarbohydratePolymers, 83, 1226.

    Fam,L., Rojas, A.M., Goyanes,S. & Gerschenson,L. (2005).Mechanicalproperties oftapiocastarch edible films containing sorbates. Lebensmittel Wissenschaft undTechnologie,38, 631639.

    Flores, S.,Fam, L.,Rojas, A.M.,Goyanes, S. & Gerschenson, L. (2007). Physicochem-ical properties of tapiocastarch edible films. Influence ofgelatinization anddrying technique. Food Research International, 4, 257265.

    Garca, N. L., Ribba, L., Dufresne, A., Aranguren, M. & Goyanes, S. (2009). Physico-mechanical propertiesofbiodegradablestarchnanocomposites.MacromolecularMaterial Engineering,294, 169177.

    Gennadios, A., Weller, C. L. & Gooding, C. H. (1994). Measurement errors in watervapor permeabilityofhighlypermeable,hydrophilic edible.JournalofFoodEngi-neering,21, 395409.

    Gonera,A. &Cornillon,P. (2002).Gelatinizationofstarch/gum/sugarsystemsstudiedby using DSC, NMR, andCSLM. Starch/Starke, 58, 50516.

    Harrison, B. S. & Atala, A. (2007). Oxygen producingbiomaterialsfor tissue regener-ation. Biomaterials,28, 344353.

    Ma, X., Jian, R., Chang,P. R.& Yu, J. (2008). Fabrication and characterization ofcitricacid-modified starch nanoparticles/plasticized-starch composites. Biomacro-molecules, 9, 33143320.

    Ma, X., Yu, J.& Wang, N. (2008). Glycerol plasticized-starch/multiwall carbon nan-otube composites for electroactivepolymers.CompositeScience andTechnology,68, 268273.

    Matayabas,J. C.& Turner, S. R. (2000).Nanocompositetechnology for enhancing thegas barrier ofpolyethylene terephthalate.In T. J. Pinnavaia, & G.W. Beall (Eds.),Polymerclay nanocomposites (pp. 207226). England.

    (1995).Official methods ofanalysis ofAOACInternational, 950.46 (16thed.). Gaithers-burg, MD,USA:AOACInternational.

    Pinnavaia, T. & Beall, G. (2000). Polymerclay nanocomposites. England: Wiley, J. &Sons, Ltd.

    Rao,Y.Q.&Pochan,J. M.(2007).Mechanicsofpolymerclaynanocomposites.Macro-molecules, 40, 290296.

    Star, A., Steuerman, D. W., Heath, J. R. & Stoddart, J . F . (2002). Starchedcarbon nanotubes. Angewandte Chemie International Edition, 41,25082511.

    Suhr,J., Zhang,W., Ajayan, P. & Koratkar,N. (2006). Temperature activated interfa-cial friction damping in carbon nanotube polymer composites. Nano Letters, 6,219223.

    Sung,Y.T., Kum,C.K.,Lee, H.S.,Byon,N. S., Yoon, H.G.& Kim,W. N. (2005).Dynamicmechanical and morphological properties ofpolycarbonate/multi-walled car-bon nanotube composites.Polymer, 46, 56565661.

    Talja, R. A., Heln, H., Roos, Y. H. & Jouppila, K. (2007). Rheological characterisa-tion of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel.Carbohydrate Polymers, 67, 288295.

    Teixeira,E.M.,Pasquini,D., Curvelo,A.A.S., Corradini, E.,Belgacem,M. N.& Dufresne,A. (2009). Cassava bagasse cellulose nanofibrils reinforced thermoplastic cas-sava starch. CarbohydratePolymers, 78, 422431.

    Tsai, Y.-C.,Chen,S.-Y.&Liaw,H.-W. (2007).Immobilizationoflactatedehydrogenasewithinmultiwalledcarbonnanotube-chitosannanocomposite for applicationtolactate biosensors. Sensors andActuators B, 125, 474481.

    Wicks, W., Jones, F., Pappas, S. & Wicks, D. (2007). Organic coating: Science andtechnology . Hoboken,NJ: J.Wiley& Sons,Inc.

    Wu, C.-S. & Liao, H.-T. (2007). Study on the preparation and characterizationofbiodegradable polylactide/multi-walled carbon nanotubes nanocomposites.

    Polymer, 48, 44494458.Zhanjun, L., Lei, Z.,Minnan,C. &Jiugao,Y. (2011). Effect ofcarboxylatemulti-walled

    carbon nanotubes on theperformanceof thermoplasticstarchnanocomposites.Carbohydrate Polymers, 83, 447451.

    Zilli,D., Chiliotte, C.,Escobar, M.M., Bekeris, V.,Rubiolo, G.R., Cukierman, A. L., et al.(2005). Magnetic properties ofmulti-walled carbon nanotube-epoxy compos-ites. Polymer, 46, 60906095.

    Zilli, D., Goyanes, S., Escobar, M. M., Chiliotte, C., Bekeris, V., Cukierman, A. L., et al.(2007). Comparative analysis ofelectric, magnetic, and mechanical propertiesofepoxy matrix composites with different contents ofmultiplewalled carbonnanotubes.Polymer Composites,28, 612617.