tutorial i: mechanics of ductile crystalline solids

40
IHPC-IMS Program on Advances & Mathematical Issues in Large Scale Simulation (Dec 2002 - Mar 2003 & Oct - Nov 2003) Tutorial I: Mechanics of Ductile Crystalline Solids Alberto M. Cuitiño Mechanical and Aerospace Engineering Rutgers University Piscataway, New Jersey [email protected] Institute of High Performance Computing Institute for Mathematical Sciences, NUS

Upload: damian

Post on 09-Jan-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Tutorial I: Mechanics of Ductile Crystalline Solids. Alberto M. Cuitiño Mechanical and Aerospace Engineering Rutgers University Piscataway, New Jersey [email protected]. IHPC-IMS Program on Advances & Mathematical Issues in Large Scale Simulation - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Tutorial I: Mechanics of Ductile Crystalline Solids

IHPC-IMS Program onAdvances & Mathematical Issues

in Large Scale Simulation(Dec 2002 - Mar 2003 & Oct - Nov 2003)

Tutorial I:Mechanics of Ductile Crystalline Solids

Alberto M. CuitiñoMechanical and Aerospace Engineering

Rutgers UniversityPiscataway, New [email protected]

Institute of High Performance Computing Institute for Mathematical Sciences, NUS

Page 2: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Collaborators

• Bill Goddard • Marisol Koslowski• Michael Ortiz• Alejandro Strachan• Habin Su• Shanfu Zheng

Page 3: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Hierarchy of Scales

length

time

mmnm µm

ms

µs

ns

Phase stability, elasticityEnergy barriers, pathsPhase-boundary mobility

Microstructures

Grains

Direct FE simulationPolycrystals

Single crystals

SCS test

Force Field

Page 4: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

The Role of Dislocations

InitialELASTICITY

PLASTICITY

DislocationMotion

DislocationGeneration

area swept by dislocation

Page 5: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Anatomy of a Dislocation Loop

Animations from: http://uet.edu.pk/dmems/

b : burgers vector

Screw Segment

Edge Segment

Mixed Segment

Area swept by dislocation loop

Glide Plane

Mixed Screw

Edge

Page 6: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Dislocation Motion and Arrest

OBSTACLES

DISLOCATION FOREST

Animation from:

zig.onera.fr/DisGallery/ junction.html

Page 7: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Tracking Dislocation in ONE Plane

(Ortiz, 1999)

Page 8: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Overview

Effective Dislocation Energy • Core Energy

• Dislocation Interaction

• Irreversible Obstacle Interaction

Macroscopic Averages

Equilibrium configurations

• Closed form solution at zero temperature.

• Metropolis Monte Carlo algorithm and mean field approximation at finite temperatures.

Page 9: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Effective Energy

where with

S

ii

S

ekl

eijijkl dStdSxdcuE )(

2

1][ 3

pij

eijjiu ,

)(Sm Djip

ij Elastic interaction Core energy External field

Slip Surface

S

Displacement jump across Sm

Page 10: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Elastic interaction

j

pmnijmnkik cGu

, Displacement field:

Elastic distortion:

Elastic interaction:

Green function for an isotropic crystal:

pklj

pmnijmnlki

ekl cG

,,

kdAE p

uvp

mnmnuv3*

21

3int ˆˆˆ

2

1

ki

kiki xx

rrG

22

28

1

Page 11: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Elastic Interaction

kdkkKb

E 22

21

2

2int ˆ),(

4)2(

1][

bxxxx /),(),( 2121 with

22

21

22

22

21

21

21 1

1),(

kk

k

kk

kkkK

b

RA2

A1

21

2121

1

1

2int

10

01

8 AA

dSdSR

bE

(Hirth and Lothe,1969)

Page 12: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

External Field

Ndis

n n

n

xx

Cxs

1

)(

applied

shear stressforest dislocations

S

ext dSbsE

S

iiext dStE

with: ii bxxxx ),(),( 2121

||/),(),( 2121 bbxxtxxs ii

Page 13: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Core Energy

ZS :

0 b/2 b-b/2-b-3b/2

() jjiiijZ

bbC

2

1min)(

ijij dC

2

22

4inf)(

d

bZ

S

core dSE )(

Ortiz and Phillips, 1999

d: inter-planar distance

Page 14: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Phase-Field Energy

kdsbK

b

d

bE 2*

2222

2ˆˆˆ

4ˆˆ

22

1,

2/1

ˆ

2/1

ˆˆKdKd

s

b

d

02

*2

22

2 2/1

ˆˆˆ2/14)2(

1][ Ekd

Kd

sbkd

Kd

KbE

Minimization with respect to gives:

core regularization factor

elastic energy

Page 15: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Phase-Field Energy

d

Peierls

kd

K

sdE

d

2

2

2

20 1

ˆ

22

1

Core regularization

Elastic energy

d0

Core regularization factor 21

1)(ˆ

dd Kk

d

xbPeierls

)1(2tan

21

Page 16: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Energy minimizing phase-field

][inf

EY

0s CsG

Unconstrained minimization problem: sKb

ˆˆ2

if

with )1/(

1

2

2)(

22

21

22

212

2

xx

xx

bkd

K

e

bxG

xik

CsGPXd PX

d

Page 17: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Irreversible Process and Kinetics

xdxfEEW nnnnnn 2111 )(][][]|[

Irreversible dislocation-obstacle interaction may be built into a variational framework, we introduce the incremental work function:

incremental work dissipated at the obstacles

4

bf Primary and forest dislocations react to form a jog:

Updated phase-field follows from: ]|[inf 1

1

nn

XW

n

Short range obstacles:

N

iidi

P xxfbxf1

)()(

Page 18: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Irreversible Process and Kinetics

g g

Kuhn-Tucker optimality conditions: ii

ni

ni 1

01 i

ni fg

0i

01 i

ni fg

0i

01 ii

ni fg 01

iini fg

Equilibrium condition:

N

i

ni

n gb1

11 1

xdxgxdxf nnn

fg

nn

n

21121 )(sup)(1

Page 19: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Solution Procedure

1. Stick predictor. Set

2. Reaction projection

3. Phase-field evaluation

ni

ni 1~ and compute the reactions:

)~(~ 1

1

11

ni

N

iij

nj CGg

ini

ni fgg 11 ~~

1

1

11

nN

j

njij

ni CgG

Page 20: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Closed-form solution

Dislocation loops

1

1

11

nN

j

njij

ni CgG

)( jiij xxGG

db

Gii

1

2

122

Calculations are gridless and scale with the number

of obstacles

Page 21: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Macroscopic averages

Slip

Dislocation density

Obstacle concentration

Shear stress

01

N

iilN

b

b0

c

f

sb0 42

0 1010 cF obs

bl 310

216

0

110

1

mbl

21712 1

1010m

c

Page 22: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Forest Hardening

Obstacle distribution

BOUNDARY CONDITIONSPeriodic

OBSTACLE STRENGTH Uniform, f = 10 G b2

PEIERLS STRESS p= 0

Parameters

Page 23: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Monotonic loading

Stress-strain curve. Evolution of dislocation density with strain.

Page 24: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Dislocation Patterns

Evolution of dislocation patternas a function of slip strain

Page 25: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Interaction with Obstacles

Detail of the evolution of the dislocation patternshowing dislocations bypassing a pair of obstacles

Page 26: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Fading memory

a

c d

b

e f

Stress-strain curve.

Three dimensional view of the evolution of the phase-field, showing the the switching of the cusps.

Page 27: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Stress-strain curve.

a

Cyclic loading

b c

d e f

g h iEvolution of dislocation density with strain.

Page 28: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Irreversibility/Cyclic Loading

Page 29: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Poisson ratio effects

b

-50 0 50-1

-0.5

0

0.5

1/0

/o

= 0.0 = 0.3 = 0.5

-50 0 500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

/0

/o

= 0.0 = 0.3 = 0.5

Stress-strain curve Dislocation density vs.strain

0.0 3.0 5.0

Stress-strain curve. Evolution of dislocation density with strain.

Page 30: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Obstacle density

22 10bc

82 10bc62 10bc

42 10bc

Page 31: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Multiple Glide

Page 32: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Physics Capturing Capabilities

Ortiz,1999

The aim of this study is to develop a phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals.

This representation enables to identify individual dislocation lines and arbitrary dislocation geometries, including tracking intricate topological transitions such as loop nucleation, pinching and the formation of Orowan loops.

This theory permits the coupling between slip systems, consideration of obstacles of varying strength, anisotropy, thermal and strain rate effects.

Page 33: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Summary

1. Phase-field model.

2. Closed form solution at zero temperature.

3. Temperature effects.

4. Strain rate effects.

5. Dislocation structures in grain boundaries.

Page 34: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Another Study Case: FerroElectrics

ab initio QMEoS of various phasesTorsional barriersVibrational frequencies

Force Fields and MDElastic, dielectric constantsNucleation BarrierDomain wall and interface mobilityPhase transitionsAnisotropic Viscosity

Meso- Macro-scaleNanostructure-properties relationshipsConstitutive Laws

Direct problem

Inverse problem

Page 35: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

MesoscaleTi = 0

En = 0

u

Mechanical and Dielectric constants from atomistics G0 assumed equal to Gm

Page 36: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Evolution of Polarized Region

• Nucleate at end boundary

• Propagate along chain

• Loop movie

Evolution of interface

• Nucleate at side boundary

• Propagate along chain

Page 37: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Mesoscale Simulations: Stress

Evolution of stress

Page 38: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Polarization

Evolution of polarization

Page 39: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

/E

-0.05 0 0.05 0.1

-0.08

-0.04

0

0.04

0.08

0.12

0.16

1

1

2

2

3

3

Increasing G0

G0 - const (109 J/m3)

G

(1

09

J/m

3)

0 0.1 0.2 0.3 0.4 0.5 0.60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

2

3

Hys

tere

sis

Loop

Ene

rgy

Hysteresis Loop

Page 40: Tutorial I: Mechanics of Ductile Crystalline Solids

Singapore 2003 cuitiño@rutgers

Towards material design: sensitivity analysis and inverse problem

Sensitivity analysis: “taking derivatives across the scales”

(%)1

(%)3

(%)1

(%)2

Cl

nucl

nucl

hyst

Cl

hyst E

E

WW

Derivative of the area in the hysteresis loop (loss) with respect to percentage of CTFE

Nucleation energy

CTFE%

%6

From atomistics: Nucleation energy decreases 3% per 1 mol % CTFE

From mesoscale: Hysteresis decreases 2% per 1% reduction in nucleation energy

Multi-scale: Hysteresis decreases XX % per 1 mol % CTFE