tunable d peak in gated graphene - nano research · 1 tunable d peak in gated graphene anna ott1,...

12
Tunable D peak in gated graphene Anna Ott, Ivan A. Verzhbitskiy, Joseph Clough, Axel Eckmann, Thanasis Georgiou, and Cinzia Casiraghi ( ) Nano Res., Just Accepted Manuscript • DOI: 10.1007/s12274-013-0399-2 http://www.thenanoresearch.com on December 12, 2013 © Tsinghua University Press 2013 Just Accepted This is a “Just Accepted” manuscript, which has been examined by the peerreview process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP) provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event shall TUP be held responsible for errors or consequences arising from the use of any information contained in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI®), which is identical for all formats of publication. Nano Research DOI 10.1007/s1227401303992

Upload: others

Post on 25-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

Nano Res 

1

Tunable D peak in gated graphene Anna Ott, Ivan A. Verzhbitskiy, Joseph Clough, Axel Eckmann, Thanasis Georgiou, and Cinzia Casiraghi () Nano Res., Just Accepted Manuscript • DOI: 10.1007/s12274-013-0399-2

http://www.thenanoresearch.com on December 12, 2013

© Tsinghua University Press 2013

Just Accepted  

This  is a “Just Accepted” manuscript, which has been examined by  the peer‐review process and has been 

accepted  for  publication. A  “Just Accepted” manuscript  is  published  online  shortly  after  its  acceptance, 

which  is prior  to  technical  editing  and  formatting  and  author proofing. Tsinghua University Press  (TUP) 

provides “Just Accepted” as an optional and free service which allows authors to make their results available 

to  the  research  community  as  soon  as possible  after  acceptance. After  a manuscript has  been  technically 

edited  and  formatted,  it will  be  removed  from  the  “Just Accepted” Web  site  and published  as  an ASAP 

article.  Please  note  that  technical  editing  may  introduce  minor  changes  to  the  manuscript  text  and/or 

graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event 

shall TUP be held responsible for errors or consequences arising from the use of any information contained 

in these “Just Accepted” manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI®), 

which is identical for all formats of publication. 

 

 

 

Nano Research  DOI 10.1007/s12274‐013‐0399‐2 

Page 2: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

1

Tunable D Peak in Gated Graphene

Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel

Eckmann2, Thanasis Georgiou2, and Cinzia Casiraghi1,2,*

1 Freie Universität Berlin, Germany 2 University of Manchester, UK

1–2 The D peak intensity of defective graphene is tunable and

reversible with the gate voltage. This is attributed to chemical

functionalization of graphene, driven by the water trapped between the

substrate and graphene.

* Cinzia Casiraghi, [email protected]

Page 3: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

2

Tunable D peak in gated graphene

Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann3, Thanasis Georgiou2, and Cinzia Casiraghi1,3 () 1 Physics Department, Freie Universität Berlin, Berlin 14195, Germany 2 School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK 3 School of Chemistry, University of Manchester, Manchester M13 9PL, UK

Received: day month year / Revised: day month year / Accepted: day month year (automatically inserted by the publisher) © Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

 

ABSTRACT We  report  the gate‐modulated Raman  spectrum of defective graphene. We  show  that  the  intensity of  the D 

peak can be reversibly tuned by applying a gate voltage. This effect is attributed to chemical functionalization 

of the graphene crystal lattice, generated by an electro‐chemical reaction involving the water layer trapped at 

the interface between silicon and graphene. 

 

KEYWORDS graphene, gating, defects, doping, electro‐chemistry 

1 Introduction 

Graphene shows extraordinary properties that are expected to produce strong technological breakthroughs in 

various  fields  such  as  electronics  and  photonics,  to  name  a  few  [1,2].  Since  the  experimental  discovery  of 

graphene, Raman spectroscopy has become one of the most useful non‐destructive tools for its characterization 

[3]. This  optical  technique  is  able  to  identify  graphene  from  graphite  and  few‐layer  graphene  [4],  to probe 

doping level [5‐8], strain [9, 10], disorder [11‐15], chemical derivatives [16‐18],    the atomic arrangement at the 

edges  [19]  and  graphene  superlattices  and  hetero‐structures  [20‐22].  In  particular,  gate‐modulated  Raman 

spectroscopy  is  a powerful  tool  to  get  insights  on  the Raman  scattering process  in  graphene.  For  example, 

gating experiments have provided spectacular demonstration of the existence of a Kohn Anomaly (KA) at the 

Γ-E2g phonon  (Raman  G  band)  [5,6]  and  of  the  non‐resonant  nature  of  the  G  peak  [23‐25],  due  to  the 

suppression  of  destructive  interference  at  high  doping  levels.  Recently,  peaks  with  smaller  intensities 

associated  to  phonons with  q≠0  have  been  also  investigated  by  gate‐modulated  Raman  spectroscopy  [26], 

showing that phonon renormalization effects are different from what is observed for the zone‐center phonons, 

such as the G peak. Despite the wide use of gate‐modulated Raman spectroscopy, gating has been applied only 

to defects‐free graphene. Therefore, the D peak dependence on gating has never been investigated so far. In this 

Nano Res  DOI (automatically inserted by the publisher) Research Article 

————————————

Address correspondence to Cinzia Casiraghi, [email protected]

Page 4: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

3

work, we  analyze  the  Raman  spectrum  of  gated  defective  graphene. We will  show  that  under  particular 

conditions,  the  intensity  of  the D  peak  can  be  reversibly  tuned  by  applying  a  gate  voltage.  This  effect  is 

attributed  to  chemical  functionalization  of  the  graphene  crystal  lattice,  generated  by  an  electro‐chemical 

reaction  involving  the water  layer  trapped  at  the  interface  between  silicon  and  graphene. The  electric  field 

breaks the water molecules  into H+ or OH‐, which gets chemisorbed to graphene, depending on the  intensity 

and polarity of the applied field. Furthermore, the silicon oxide layer may acts as catalyst by further enhancing 

chemisorption. 

 

2 Results and discussion 

Figure 1(a) shows the optical picture of the graphene samples used in this study. A few bubbles and ripples are 

visible. These are typically observed on large graphene flakes when placed on a silicon substrate [27]. 

Far from the bubbles, the surface appears clean without any optically visible structural damage (inset  in Fig. 

1(b)). However, the Raman spectrum clearly shows a D peak, indicating that this is a defective area, Figure 1(b). 

I(D)/I(G)  is  in  average  0.1‐0.2,  but  can  reach  up  to  1.4  in  isolated  spots. We  selected  this  defective  area  to 

perform our gating experiments. 

The evolution of the first‐order Raman spectrum at different gate voltage is illustrated in Fig. 2(a), where the 

intensities have been normalized to the G peak. Figure 2(b) shows that I(D)/I(G) increases by a factor 5 when 

tuning the gate voltage from 0 to │20V│. A Dʹ peak can be clearly seen at relatively high voltage, Fig. 2(c). If the 

increase in I(D)/I(G) would be an intrinsic effect caused by the simple introduction of extra charge in the crystal, 

then we would  expect  to  see  a D  peak  also when  gating  a  defect‐free  pristine  graphene  at  relatively  high 

voltage, but none of the previous works reported the appearance of a D peak in the Raman spectrum. Therefore, 

this effect can be seen as characteristic of defective graphene, although it may depend on the exact nature of the 

defects in the crystal. 

We now  look at  the overall evolution of  the gate‐modulated Raman  spectra of defective graphene. Figure 3 

shows: (a) the position, (b) width and (c) intensity of the G, 2D and D peaks (top, middle and bottom panels, 

respectively).  The  G  and  2D  peaks  shows  qualitatively  the  same  behavior  observed  in  gated  defects‐free 

graphene: the G peak position increases for increasing charge concentration, due to the (non‐adiabatic) removal 

of the Kohn anomaly at Γ [5, 6], while the 2D peak position remains constant for relatively low doping [8, 28]. 

No strong variations have been observed for the G peak FWHM, indicating that the graphene flake is already 

doped. This  is  in agreement with previous  studies on  large graphene  flakes, where  strong doping has been 

observed and attributed to water trapped at the interface between graphene and the silicon substrate [10, 27]. 

The G peak FWHM decreases for increasing doping and saturates when the electron‐hole gap becomes higher 

than the phonon energy [5, 6].   

Figure  3  shows  that  the D  peak  is  also  sensitive  to  gating:  its  position  slightly  decreases  and  its  FWHM 

increases by 4 cm‐1, as observed  for non‐center phonons  [27]. However,  these are very small changes almost 

comparable with the resolution of the spectrometer. In contrast, , the D peak intensity strongly increases with 

increasing voltage, showing a very different behavior as compared to the G and 2D peaks intensities [29, 30]. 

This  shows  that  the D peak  intensity  is  responsible  for  the  increase  in  I(D)/I(G) with gating.  In order  to get 

more  insights on  the D peak  intensity  tunability with  the gate voltage, we performed cycling gating,  i.e. we 

tuned back and  forward  the gate voltage  twice. We did not use higher number of  cycles  to avoid dielectric 

breakdown and current leakage. Figure 4 shows I(D)/I(G) obtained in the two cycles. One can observe that the 

curves are reversible: both curves are almost symmetric with respect to 0V, and saturation  is reached  in both 

cases when  the voltage goes above │10V│. Some hysteresis appears  in  cycle 2,  in particular at  low voltage. 

Note that the data depicted in Fig. 2 were recorded at different positions on the flake, compared to Fig. 4. This 

Page 5: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

4

shows  that  the  initial  amount  of defects  in  the  flake  strongly  affects  the D peak  intensity  enhancement:  an 

initial  I(D)/I(G) of 0.2 gives a  factor 5  in enhancement, while an  initial  I(D)/I(G) of 0.1, gives a  factor 2  in  the 

same range of voltage, Fig. 2(b) and Fig. 4. In the second case we also observe saturation at high voltage. 

In our experiments we observed the D peak intensity to be tunable and reversible through the application of a 

gate voltage. We attribute this effect to chemisorption induced by an electrochemical reaction controlled by the 

gate‐voltage. For instance, hydrogen chemisorption is known to modify the hybridization from sp2 to sp3 [16]. 

The sp3 site breaks the translation symmetry of the crystal by activating the D peak [16]. Recent studies have 

reported  the strong  influence of disorder on chemical reactivity. Defects on  the graphene  lattice decrease  the 

chemisorption energy  in  the surrounding area and  thus become centers of chemical activity  [31]. This could 

explain why a tunable D peak is observed only in defective graphene. 

Note that the variation in the D peak intensity could be attributed to the electron‐ phonon coupling, i.e. to the 

effect of doping on  the Kohn‐anomaly  at  the K point  [8,  32]. However, when defects  are  introduced  in  the 

crystal lattice, they change the electronic structure (for example a fully hydrogenated graphene is a wide‐band 

gap  semiconductor  [16])  and  so  the  phonon  affected  by  the Kohn‐anomaly. Therefore,  it  is  questionable  to 

apply the theory developed for defect‐free gated graphene, where the Kohn‐anomaly plays an important role, 

to defected graphene. The Kohn‐anomaly is expected to depend on the amount and type of defects, not only to 

the amount of  charges. Therefore,  samples with well defined amount and  type of defects,  such as defective 

graphene produced by ion‐bombardment [11, 12], should be used to investigate the role of the electron‐phonon 

coupling on the D peak intensity.   

 

We propose  the  following chemisorption mechanism.  It  is well‐known  that a water  layer  is  trapped between 

the silicon oxide wafer and graphene, in particular for large graphene flakes [27, 33, 34]. In the presence of an electrostatic  field, H2O molecules  are  split  into H+  and OH‐  reactive  ions  that  diffuse  towards  the  carbon 

monolayer sheet, according to the applied polarity. This assumption is in agreement with the bipolar character 

of the tunable D peak, Fig. 2(b). Furthermore, the silicon dioxide may act as a catalyst for water splitting [35, 36]. 

A recent computational study shows that patterning of the graphene surface by oxygen adatoms can be simply 

modulated by  the applied gate voltage  [37]. Hydroxyl groups can attach  to graphene  in a way similar  to  the 

single‐side hydrogenation process, leading to change of hybridization. In other words, this mechanism allows 

tunable  functionalization of graphene. Note  that  a  similar  electro‐chemical  effect was observed  in  transport 

measurements of double‐gated graphene  field‐effect devices  [38]  and  in graphene‐based pH  sensors, where 

any  sign  of  pH  response  has  been  attributed  to  imperfections  in  the  graphene  crystal  [39,  40]. No  specific 

binding of ions is expected in the ideal case of a perfect graphene [39]. 

Following our argument, the gate voltage activates the D peak through formation of sp3 sites. In a recent work 

[14, 15], we have shown that in the limit of low defect concentration, Raman spectroscopy is able to probe the 

nature  of  defects  in  graphene.  In  particular,  the  intensity  ratio  between  the  D  and  Dʹ  peak,  I(D)/I(Dʹ),  is 

expected to be ~13 for sp3 sites. The Dʹ peak is less intense than the D peak, but well visible in our spectra when 

measured at  relatively high gate voltage  (e.g. Fig. 2(c)). We  found  that  I(D)/I(Dʹ) ~13 and  this  ratio does not 

change with the gate voltage. By taking long measurements, we observed that also the isolated defective region 

at 0V is characterized by similar I(D)/I(Dʹ). This shows that the initial defects in our samples are sp3 sites and 

their concentration increases with the voltage, in agreement with our model. By converting I(D)/I(G) of Fig. 2(b) 

into defects concentration [15] and by fitting the data for small gate voltage (V<<│10V│) we obtain that about 

1.4x109 defects/ cm2 are created per unit of voltage. Note however that there is a strong difference between the 

initial defects in graphene and the ones introduced by gating: the first ones cannot be removed (I(D)/I(G) never 

goes to zero), while the second type of defects is tunable and reversible with the gate voltage. 

Page 6: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

5

Furthermore one can observe  that  the data  in Fig. 4, where saturation  is  reached,  follows  relatively well  the 

Langmuir absorption isotherm given by Θ=kC/(1+kC), where Θ is the fractional coverage, k is the rate constant 

of adsorption/desorption and C is the concentration of the molecules that can be chemisorbed on the surface. 

By taking into account that C and Θ are proportional to the gate voltage and I(D)/I(G), respectively, the data in 

Fig. 4 can be well fitted with the Langmuir absorption isotherm, further confirming that the tunability of the D 

peak  is  correlated  to  chemisorption of  species on graphene. Note  that  the Langmuir absorption  isotherm  is 

based on several assumptions [41]. For example they assume the surface to be flat and no interactions between 

the particles. These hypotheses are probably a good approximation at  low coverage but  they break closer  to 

saturation and after the first cycle. 

In order to further validate our model, we performed two types of control experiments: i) gating of a partially 

hydrogenated graphene. This sample was specifically selected  to  investigate  if defective graphene containing 

sp3 sites is showing a tunable D peak. In this specific case, we could not observe any controlled change in the 

Raman  spectra  and  in  particular  of  the  D  peak  intensity  (Supporting  Information).  The  spectra  are  very 

unstable with time indicating that probably the sample is interacting with adsorbed species or mobile ions. This 

shows that a tunable D peak can be achieved only under particular conditions, probably strictly related to the 

nature of the defects and to the presence of a water layer between graphene and the substrate. ii) In the second 

control experiment we induced splitting of water by applying an electric field directly to the drop, placed on a 

defective‐graphene  in device configuration. We observed  the appearance of a D peak, confirming  that water 

splitting  generated  by  an  electric  field  (either  through  the  substrate  or  directly  to water)  can  be  used  to 

functionalize graphene (Supporting Information).   

In conclusion, we have demonstrated that the D peak can be tuned by an applied gate voltage. We have shown 

that the D peak is generated by chemical functionalization with non‐permanent defects, i.e. H+ and OH‐ ions, 

produced by splitting the water trapped between the silicon substrate and graphene. This effect allows to easily 

functionalize  graphene  and  to  use Raman  spectroscopy  as  optical  readout  in  solution  gated  and  ultra‐fast 

biosensors and chemical sensors. 

 

Methods 

Graphene  samples  of  a  few  hundreds  of  microns  in  size  were  placed  on  an  oxidized  silicon  wafer  by 

micro‐mechanical exfoliation. Typically,  this production method gives high‐quality graphene,  i.e.  I(D)/I(G)  is 

below 1% [19]. However, sometimes it  is possible to observe area with relatively  intense D peak. We selected 

this  type of defective graphene  in our  study. The partially hydrogenated graphene  sample was obtained  as 

described in Ref. 14. 

Graphene was  identified by Raman spectroscopy. We used a micro‐Raman WITec spectrometer with spectral 

resolution of 2‐3 cm‐1. This is equipped with a 532 nm (2.33 eV) laser and 100x long‐distance objective. The laser 

power was kept well below 1 mW to avoid damaging or heating the sample. The laser spot size is 300‐400 nm. 

The Raman measurements were taken just after changing the gate voltage and they were performed in air and 

at  room  temperature. A Lorentzian  shape  function was used  to  fit  the  recorded  spectra. The  intensity  is  the 

integrated area of the peak. Back gating configuration was used for all samples, where the contacts were made 

with silver paste by hand to avoid contamination during lithography. 

 

Acknowledgements 

The authors acknowledge useful discussions with R. Gorbachev, K. S. Novoselov, A. K. Geim and R. A. Dryfe. 

This work is funded by the Alexander von Humboldt Foundation in the framework of the Sofja Kovalevskaja 

Award, endowed by the Federal Ministry for Education and Research of Germany. 

Page 7: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

6

 

References [1] Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature Materials 2007, 6, 183–191.

[2] Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[3] Casiraghi, C. Raman spectroscopy of graphene. In Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications. Yarwood, J.; Douthwaite, R.; and Duckett, S., Eds; RSC Publishing: Cambridge, 2012; pp 29–56.

[4] Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401.

[5] Lazzeri, M.; Mauri, F. Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer. Phys. Rev. Lett. 2006, 97, 266407.

[6] Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials 2007, 6, 198–201.

[7] Casiraghi, C.; Pisana, S.; Novoselov, K .S.; Geim, A. K.; Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 2007, 91, 233108.

[8] Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology 2008, 3, 210–215.

[9] Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

[10] Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman Spectroscopy of Graphene and Bilayer under Biaxial Strain: Bubbles and Balloons. Nano Lett. 2012, 12, 617–621.

[11] Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.

[12] Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M. R.; Capaz, B.; Achete, C. A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.

[13] Canςado, L. G.; Jorio, A.; Martins Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C.; Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196.

[14] Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 3925–3930.

[15] Eckmann, A.; Felten, A.; Verzhbitskiy, I.; Davey, R.; Casiraghi, C. Phys. Rev. B, in press, DOI: 10.1103/PhysRevB.00.005400.

[16] Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S.; Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science 2009, 323, 610–613.

[17] Nair, R.R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S.; Katsnelson, M. I.; Cheng, H.-M.; Strupinski, W.; Bulusheva, L. G.; Okotrub, A. V.; Grigorieva, I. V.; Grigorenko, A. N.; Novoselov, K. S.; Geim, A. K. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884.

[18] Felten, A.; Flavel, B. S.; Britnell, L.; Eckmann, A.; Louette, P.; Pireaux, J.-J.; Hirtz, M.; Krupke, R.; Casiraghi, C. Single- and Double-Sided Chemical Functionalization of Bilayer Graphene. Small 2013, 9, 631–639.

[19] Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C.; Raman Spectroscopy of Graphene Edges. Nano Lett. 2009, 9, 1433–1441.

[20] Carozo V., Almeida C. M., Ferreira E. H. M., Cancado L. G., Achete C. A., Jorio A., Raman signature of graphene superlattices., Nano Letters, 11, 4527 (2011)

[21] Kim K., Coh S., Tan L. Z., Regan W., Min Yuk J., Chatterjee E., Crommie M. F., Cohen M. L., Louie S. G., Zettl A., Raman Spectroscopy Study of Rotated Double- Layer Graphene: Misorientation-Angle Dependence of Electronic Structure, Phys. Rev. Lett. 108, 246103 (2012)

[22] Eckmann, A.; Park, J., Yang H., Elias D., Mayorov A. S., Yu G., Jalil R., Novoselov K. S., Gorbachev R. V., Lazzeri M., Geim A. K., Casiraghi C., Raman Fingerprint of Aligned Graphene/h-BN Superlattice , Nano Lett., DOI: 10.1021/nl402679b

[23] Basko, D. M. Calculation of the Raman G peak intensity in monolayer graphene: role of Ward identities. New J. Phys. 2009, 11, 095011.

[24] Kalbac, M.; Reina-Cecco, A.; Farhat, H.; Kong, J.; Kavan, L.; Dresselhaus, M. S. The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene. ACS Nano 2010, 4, 6055–6063.

[25] Chen, C.; Park, C.; Boudouris, B.W.; Horng, J.; Geng, B.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G.;

Page 8: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

7

Wang, F. Controlling inelastic light scattering quantum pathways in graphene. Nature 2011, 417, 617–620.

[26] Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S. Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene. Phys. Rev. Lett. 2012, 109, 046801.

[27] Georgiou, T.; Britnell, L.; Blake, P.; Gorbachev, R.; Gholinia, A.; Geim, A. K.; Casiraghi, C.; Novoselov, K. S. Graphene bubbles with controllable curvature. Appl. Phys. Lett. 2011, 99, 093103.

[28] Casiraghi, C. Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi RRL 2009, 3, 175–177.

[29] Basko, D. M.; Piscanec, S.; Ferrari, A. C. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 2009, 80, 165413.

[30] Casiraghi, C. Doping dependence of the Raman peaks intensity of graphene close to the Dirac point. Phys. Rev. B 2009, 80, 233407.

[31] Boukhvalov, D. W.; Katsnelson, M. I. Chemical Functionalization of Graphene with Defects. Nano Lett. 2008, 8, 4373–4379.

[32] Piscanec S., Lazzeri M., Mauri F., Ferrari A. C., Robertson J, Phys. Rev. Lett., 93, 185503 (2004)

[33] Opitz, A.; Scherge, M.; Ahmed, S. I.-U.; Schaefer, J. A. A comparative investigation of thickness measurements of ultra-thin water films by scanning probe techniques. J. Appl. Phys. 2007, 101, 064310.

[34] Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007, 6, 652–655.

[35] Bakos, T.; Rashkeev, S. N.; Pantelides, S. T. H2O and O2 molecules in amorphous SiO2: Defect formation and annihilation mechanisms. Phys. Rev. B 2004, 69, 195206.

[36] Vanheusden, K.; Warren, W. L.; Devine, R. A. B.; Fleetwood, D. M.; Schwank, J. R.; Shaneyfelt, M. R.; Winokur, P. S.; Lemnios, Z. J. Non-volatile memory device based on mobile protons in SiO2 thin films. Nature 1997, 386, 587–589.

[37] Suarez, A. M.; Radovic, L. R.; Bar-Ziv, E.; Sofo, J. O. Gate-Voltage Control of Oxygen Diffusion on Graphene. Phys. Rev. Lett. 2011, 106, 146802.

[38] Echtermeyer, T. J.; Lemme, M. C.; Baus, M.; Szafranek, B. N.; Geim, A. K.; Kurz, H. Nonvolatile Switching in Graphene Field-Effect Devices. IEEE Electron Device Letters 2008, 29, 952–954.

[39] Fu, W.; Nef, C.; Knopfmacher, O.; Tarasov, A.; Weiss, M.; Calame, M.; Schönenberger, C. Graphene Transistors Are Insensitive to pH Changes in Solution. Nano Lett. 2011, 11, 3597–3600.

[40] Ang, P. K.; Chen, W.; Wee, A. T. S.; Loh, K. P. Solution-Gated Epitaxial Graphene as pH Sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393.

[41] Atkins, P. W.; de Paula, J. Atkins' Physical Chemistry; 9th edition, Oxford University Press, Oxford 2010.

Page 9: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

8

Figure 1 (color on-line) (a) Optical micrograph of the graphene sample used in this study; (b) typical Raman spectrum

taken on the area in the dotted circle in (a) (Inset: high magnification optical micrograph of this area showing no

macroscopic damage).

Page 10: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

9

Figure 2 (color on-line) (a) Evolution of the Raman spectrum measured at different gate voltage; (b) I(D)/I(G) as a

function of the gate voltage; (c) Comparison between the first order Raman spectrum measured at 0 and +20V.

Enhancement of the D peak intensity and appearance of the D' peak are visible with increasing gate voltage.

Page 11: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

10

Figure 3 (a) Position, (b) FWHM and (c) intensity of G, 2D and D peak (top, middle, bottom panel, respectively) as a

function of the gate voltage.

Page 12: Tunable D peak in gated graphene - Nano Research · 1 Tunable D Peak in Gated Graphene Anna Ott1, Ivan A. Verzhbitskiy1, Joseph Clough2, Axel Eckmann2, Thanasis Georgiou2, and Cinzia

11

Figure 4 (color on-line) I(D)/I(G) as a function of the gate voltage obtained by cycling gating (2 cycles). The D peak

intensity is tunable and reversible.