tum edm i - umass

86
Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison http://www.physics.wisc.edu/groups/particle-theory/ NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology TUM Excellence Cluster, May 2013

Upload: others

Post on 09-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TUM EDM I - UMass

Electric Dipole Moments I

M.J. Ramsey-MusolfWisconsin-Madison

http://www.physics.wisc.edu/groups/particle-theory/

NPACTheoretical Nuclear, Particle, Astrophysics & Cosmology

TUM Excellence Cluster, May 2013

Page 2: TUM EDM I - UMass

Goals

• Set framework for interpreting EDMsearches in terms of BSM CPV

• Delineate physics at multiple scales thatenters the EDM search interpretation

• Identify open problems

• Provide a few examples

• Set stage for rest of workshop

Page 3: TUM EDM I - UMass

References

• EDM review: J. Engel, M. R-M, U. van Kolck,arXiv:1303.2371 (to appear in PPNP)

• Baryogenesis review: D. Morrissey, M. R-M,arXiv:1206.2942, NJP 14 (2012) 125003

Page 4: TUM EDM I - UMass

EDMs: History

Page 5: TUM EDM I - UMass

EDMs: New CPV?• SM “background”well below newCPV expectations

• New expts: 102 to103 more sensitive

• CPV needed forBAU?3.1 x 10-29

!

! E

!

! d = d

! S

!

"EDM = #d! S $! E

h

T-odd , CP-oddby CPTtheorem

!

! E

!

! d = d

! S

!

"EDM = #d (#! S ) $! E

h

T-odd , CP-oddby CPTtheorem

!

"EDM = #d! S $! E

h

T-odd , CP-oddby CPTtheorem

!

! E

!

! d = d

! S

!

! B

10.5 x 10-28 YbF

Page 6: TUM EDM I - UMass

EDMs: New CPV?• SM “background”well below newCPV expectations

• New expts: 102 to103 more sensitive

• CPV needed forBAU?3.1 x 10-29

!

! E

!

! d = d

! S

!

"EDM = #d! S $! E

h

T-odd , CP-oddby CPTtheorem

!

! E

!

! d = d

! S

!

"EDM = #d (#! S ) $! E

h

T-odd , CP-oddby CPTtheorem

!

"EDM = #d! S $ (#

! E )

h

P-odd

!

! E

!

! d = d

! S

!

! B

x

dn: x < 0.5 mm

C-Y Liu

10.5 x 10-28 YbF

Page 7: TUM EDM I - UMass

Outline

1. EDM Interpretation: Multiple Scales

2. Exp’t vs the Standard Model

3. Effective Operators: Classification

4. Origin of Wilson Coefficients: Examples

5. Low Scale Observables

6. Running & Matching

7. Implications & Open Problems

Page 8: TUM EDM I - UMass

BSM CPVSUSY, GUTs, Extra Dim…

Expt

?

EDM Interpretation & Multiple Scales

Page 9: TUM EDM I - UMass

BSM CPVSUSY, GUTs, Extra Dim…

Expt

?

EDM Interpretation & Multiple ScalesBaryon AsymmetryEarly universe CPV

Collider SearchesParticle spectrum; alsoscalars for baryon asym

Page 10: TUM EDM I - UMass

BSM CPVSUSY, GUTs, Extra Dim…

Expt

?

EDM Interpretation & Multiple ScalesBaryon AsymmetryEarly universe CPV

Collider SearchesParticle spectrum; alsoscalars for baryon asym

EW BaryogenesisQuantum transporttheory

LHC phenomenologyB PhysicsDark Matter

Page 11: TUM EDM I - UMass

BSM CPVSUSY, GUTs, Extra Dim…

Expt

?

EDM Interpretation & Multiple ScalesBaryon AsymmetryEarly universe CPV

Collider SearchesParticle spectrum; alsoscalars for baryon asym

QCD Matrix Elements dn , gπNN , …

Nuclear & atomic MEsSchiff moment, other P- &T-odd moments, e-nucleusCPV

Page 12: TUM EDM I - UMass

Effective Operators

+…

Page 13: TUM EDM I - UMass

EDM Interpretation & Multiple Scales

BSM CPVSUSY, GUTs, Extra Dim…

EW Scale Operators

Had Scale Operators

Expt

Baryon AsymmetryEarly universe CPV

Collider SearchesParticle spectrum; alsoscalars for baryon asym

QCD Matrix Elements dn , gπNN , …

Nuclear & atomic MEsSchiff moment, other P- &T-odd moments, e-nucleusCPV

Page 14: TUM EDM I - UMass

EDM Interpretation & Multiple Scales

BSM CPVSUSY, GUTs, Extra Dim…

EW Scale Operators

Had Scale Operators

Baryon AsymmetryEarly universe CPV

Nuclear & atomic MEsSchiff moment, other P- &T-odd moments, e-nucleusCPV

Collider SearchesParticle spectrum; alsoscalars for baryon asym

QCD Matrix Elements dn , gπNN , …

Expt

Had Scale Operators

Also QCD θ term

SM particles onlyΛBSM: new physics scaleC: model-dep op coeffs

e, q, g, γ (no Higgs)

QCD evolution

Page 15: TUM EDM I - UMass

EDMs: Exp’t vs Standard Model• SM “background”well below newCPV expectations

• New expts: 102 to103 more sensitive

• CPV needed forBAU?3.1 x 10-29

10.5 x 10-28 YbF

Page 16: TUM EDM I - UMass

EDMs: Standard Model CKM

3.1 x 10-29

CKM CPV

• 1 loop vanishes( ~ Vus Vus

* )

• 2 loop shown tovanish explicitly

!

"

!

u

!

s

!

W +

!

W +

!

"

!

n

!

p

!

K +

!

K +

!

"

!

n

!

p!

K +

• Khriplovich et al;McKellar…

• Donoghue, Holstein,RM; Khriplovich et al

Penguin: ΔS = 1

10.5 x 10-28 YbF

Page 17: TUM EDM I - UMass

EDMs: Exp’t vs Standard Model• SM “background”well below newCPV expectations

• New expts: 102 to103 more sensitive

• CPV needed forBAU?3.1 x 10-29

10.5 x 10-28 YbF

or θQCD

Page 18: TUM EDM I - UMass

EDMs: Standard Model θ-term

3.1 x 10-29

!

"

!

n

!

p

!

" +

!

" +

!

"

!

n

!

p!

" +

• Crewther et al; vanKolck et al ; Herczeg

• Haxton & Henley;Engel;

L θQCD

• vanishes for anymq=0

• “bar” : absorb quarkfield redefinition

dn & dA (199Hg):

Peccei -Quinn Sym?

10.5 x 10-28 YbF

Page 19: TUM EDM I - UMass

EDMs: Peccei-Quinn & Axions I

Axion Field: GB of Spont Broken U(1)PQ

Chiral Anomaly:

!

a" a + # a

θ-term

!

" #" +afa

+$ afa

Observed θ ~ 0

Axion

Page 20: TUM EDM I - UMass

EDMs: Peccei-Quinn & Axions II

!

" #" +afa

+$ afa

Observed θ ~ 0

Axion

Dark Matter

Solar

Page 21: TUM EDM I - UMass

EDMs: New CPV?• SM “background”well below newCPV expectations

• New expts: 102 to103 more sensitive

• CPV needed forBAU?

Mass Scale Sensitivity

!

"

!

e!

"

!

"!

" sinφCP ~ 1 ! M > 5000 GeV

M < 500 GeV! sinφCP < 10-2

3.1 x 10-29

10.5 x 10-28 YbF

Page 22: TUM EDM I - UMass

EDM Probes

Page 23: TUM EDM I - UMass

EDMs: Complementary Searches

!

"

!

f!

˜ " 0

!

˜ f

!

˜ f

!

g

!

q!

˜ " 0

!

˜ q

!

˜ q

ElectronImprovementsof 102 to 103

Neutron

!

"

!

f!

˜ " 0

!

˜ f

!

˜ f

NeutralAtoms

!

g

!

q!

˜ " 0

!

˜ q

!

˜ q

Deuteron!

g

!

q!

˜ " 0

!

˜ q

!

˜ q

!

N

!

e"

QCD

QCD

QCD

Page 24: TUM EDM I - UMass

Dimension Six Operators

• What are they ?

• Where do they come from ?

• How do they appear in hadronic,nuclear, and atomic systems ?

• How well can we match them ontophysics of many-body and non-perturbative systems ?

• What are present & prospectiveexperimental constraints ?

Page 25: TUM EDM I - UMass

Dimension Six Operators: I

• What are they ?

• Where do they come from ?

• How do they appear in hadronic,nuclear, and atomic systems ?

• How well can we match them ontophysics of many-body and non-perturbative systems ?

• What are present & prospectiveexperimental constraints ?

Page 26: TUM EDM I - UMass

Operator Classification

Page 27: TUM EDM I - UMass

Operator Classification

Weinberg 3 gluon

Page 28: TUM EDM I - UMass

Operator Classification

θ-term renormalization

ϕ+ϕ ! υ 2

Page 29: TUM EDM I - UMass

Operator Classification

Quark chromo-EDM

Page 30: TUM EDM I - UMass

Operator Classification

Fermion EDM

Page 31: TUM EDM I - UMass

Operator Classification

Page 32: TUM EDM I - UMass

Operator Classification

Semileptonic: atomic &molecular EDMs

Page 33: TUM EDM I - UMass

Operator Classification

Nonleptonic: hadronicEDMs & Schiff moment

Page 34: TUM EDM I - UMass

Operator Classification

Nonleptonic: hadronicEDMs & Schiff moment

Page 35: TUM EDM I - UMass

Operator Classification

Page 36: TUM EDM I - UMass

Operator Classification

dL

uL

uR

dR

W+

ϕ

ϕ

Page 37: TUM EDM I - UMass

Operator Classification

Nonleptonic: hadronic EDMs & Schiff moment

ϕ ! υ

dL

uL

uR

dR

W+

ϕ

ϕ

Page 38: TUM EDM I - UMass

Wilson Coefficients: EDM & CEDM

Page 39: TUM EDM I - UMass

Wilson Coefficients: EDM & CEDM

Chiralityflipping

δf , δq appropriate for comparisonwith other d=6 Wilson coefficients

~

Page 40: TUM EDM I - UMass

Wilson Coefficients: Summary

δf fermion EDM (3)

δq quark CEDM (2)

CG 3 gluon (1)

Cquqd non-leptonic (2)

Clequ, ledq semi-leptonic (3)

Cϕud induced 4f (1)

~

~

12 total + θ light flavors only (e,u,d)

Page 41: TUM EDM I - UMass

Dimension Six Operators: II

• What are they ?

• Where do they come from ?

• How do they appear in hadronic,nuclear, and atomic systems ?

• How well can we match them ontophysics of many-body and non-perturbative systems ?

• What are present & prospectiveexperimental constraints ?

Page 42: TUM EDM I - UMass

BSM Origins

δf MSSM, RS, LRSM 1 & 2 loop

δq MSSM, RS, LRSM 1 & 2 loop

CG MSSM 2 loop

Cquqd (MSSM d=8)

Clequ, ledq (MSSM d=8)

Cϕud LRSM tree ( θLR )

~

~

11 total + θ light flavors only (u,d)

Page 43: TUM EDM I - UMass

BSM Origins

δf

δq

CG

Cquqd; Clequ, ledq

Cϕud

~

~Radiatively -induced θ

!

"

!

"!

"

q

MSSMRS

LRSM

dL

uL

uR

dR

W+

ϕ

ϕ

Page 44: TUM EDM I - UMass

Effective Operators & θind

12 total + θ

2

θ ! θ ind / δq , C , …~

Page 45: TUM EDM I - UMass

Dimension Six Operators: III

• What are they ?

• Where do they come from ?

• How do they appear in hadronic,nuclear, and atomic systems ?

• How well can we match them ontophysics of many-body and non-perturbative systems ?

• What are present & prospectiveexperimental constraints ?

Page 46: TUM EDM I - UMass

Low Scale Observables

Nonleptonic: hadronic EDMs, Schiff moment (atomic EDMs)

Page 47: TUM EDM I - UMass

Low Scale Observables

Nonleptonic: hadronic EDMs, Schiff moment (atomic EDMs)

Nucleon EDMs

Page 48: TUM EDM I - UMass

Low Scale Observables

Nonleptonic: hadronic EDMs, Schiff moment (atomic EDMs)

PVTV πNinteraction

!

"

I = 0, 1, 2

!

"

!

+!

!

"

!

n!

p

!

"#

!

"#

Page 49: TUM EDM I - UMass

Low Scale Observables

Nonleptonic: hadronic EDMs, Schiff moment (atomic EDMs)

PVTV 4Ninteraction

Page 50: TUM EDM I - UMass

Low Scale Observables

CJ

TMJ

TEJ

P T P T P T P T

E ✖ ✖ O

O ✖ ✖ E

✖ O E ✖

Nuclear Moments

EDM, Schiff…

MQM….

Anapole…

Page 51: TUM EDM I - UMass

Low Scale Observables

CJ

TMJ

TEJ

P T P T P T P T

E ✖ ✖ O

O ✖ ✖ E

✖ O E ✖

Nuclear Moments

NuclearEnhancementsEDM, Schiff…

MQM….

Anapole…

Page 52: TUM EDM I - UMass

Nuclear Schiff Moment I

Schiff Screening

Atomic effect fromnuclear finite size:Schiff moment

Nuclear Schiff Moment

Nuclear EDM: Screened in atoms

EDMs of diamagnetic atoms ( 199Hg )!

"

!

+!

Page 53: TUM EDM I - UMass

Nuclear Schiff Moment II

Schiff Screening

Atomic effect fromnuclear finite size:Schiff moment

EDMs of diamagnetic atoms ( 199Hg )

Screened EDM Schiff moment, MQM,…

Page 54: TUM EDM I - UMass

Nuclear Schiff Moment III

EDMs of diamagnetic atoms ( 199Hg )

Schiff moment, MQM,…

Nuclear Enhancements

Nuclear polarization:mixing of opposite paritystates by HTVPV ~ 1 / ΔE

Page 55: TUM EDM I - UMass

Nuclear Schiff Moment IV

EDMs of diamagnetic atoms ( 199Hg )

Nuclear Enhancements:Octupole Deformation

Nuclear polarization:mixing of opposite paritystates by HTVPV ~ 1 / ΔE

Opposite parity statesmixed by HTVPV

Thanks: J. Engel

Page 56: TUM EDM I - UMass

Nuclear Matrix Elements

J. Engel, U. van Kolck, MRM 1303.2371

Page 57: TUM EDM I - UMass

Semileptonic CPV

!

N

!

e"!

N

!

e"

EDMs of atoms &molecules (Tl, YbF…)

Page 58: TUM EDM I - UMass

EDMs: Complementary Searches

!

"

!

f!

˜ " 0

!

˜ f

!

˜ f

!

g

!

q!

˜ " 0

!

˜ q

!

˜ q

ElectronImprovementsof 102 to 103

Neutron

!

"

!

f!

˜ " 0

!

˜ f

!

˜ f

NeutralAtoms

!

g

!

q!

˜ " 0

!

˜ q

!

˜ q

Deuteron!

g

!

q!

˜ " 0

!

˜ q

!

˜ q

!

N

!

e"

QCD

QCD

QCD

Page 59: TUM EDM I - UMass

Dimension Six Operators: IV

• What are they ?

• Where do they come from ?

• How do they appear in hadronic,nuclear, and atomic systems ?

• How well can we match them ontophysics of many-body and non-perturbative systems ?

• What are present & prospectiveexperimental constraints ?

Page 60: TUM EDM I - UMass

Running & Matching

BSM CPVSUSY, GUTs, Extra Dim…

EW Scale Operators

Had Scale Operators

Baryon AsymmetryEarly universe CPV

Nuclear & atomic MEsSchiff moment, other P- &T-odd moments, e-nucleusCPV

Collider SearchesParticle spectrum; alsoscalars for baryon asym

QCD Matrix Elements dn , gπNN , …

Expt

Had Scale Operators

Also QCD θ term

SM particles onlyΛBSM: new physics scaleC: model-dep op coeffs

e, q, g, γ (no Higgs)

QCD evolution

Page 61: TUM EDM I - UMass

Running & Matching

Im Cj (Λχ ) = Kjk Im Ck (Λ )

3.30

Page 62: TUM EDM I - UMass

Running & Matching

How well can we compute the β, ρ, ζ, ... ?

Hadronic

Page 63: TUM EDM I - UMass

Running & Matching

Nuclear many-bodycomputations

Nuclear

Non-perturbative hadroniccomputations

Page 64: TUM EDM I - UMass

Running & Matching Atomic &Molecular

Page 65: TUM EDM I - UMass

Running & Matching Atomic &Molecular

Page 66: TUM EDM I - UMass

Running & Matching

Hadronic coefficients,including form factors gΓ

Atomic &Molecular

Page 67: TUM EDM I - UMass

Running & Matching

Atomic / molecularcoefficients

Atomic &Molecular

Page 68: TUM EDM I - UMass

Running & Matching

Atomic / molecularcoefficients

Atomic &Molecular

Paramag*: δe, Im Ceq ( ks0 )

Diamag**: S, Im Clequ ( kT )

(-)

(3)

* Tl, Cs, YbF…

** Hg, Ra, Rn…

Page 69: TUM EDM I - UMass

Matching: χ Sym & Other Methods

θ term

Page 70: TUM EDM I - UMass

Matching: χ Sym & Other Methods

CEDM

Page 71: TUM EDM I - UMass

Hadronic Matrix Elements

J. Engel, U. van Kolck, MRM 1303.2371

Page 72: TUM EDM I - UMass

Nuclear Matrix Elements

J. Engel, U. van Kolck, MRM 1303.2371

Page 73: TUM EDM I - UMass

Dimension Six Operators: V

• What are they ?

• Where do they come from ?

• How do they appear in hadronic,nuclear, and atomic systems ?

• How well can we match them ontophysics of many-body and non-perturbative systems ?

• What are present & prospectiveexperimental constraints ?

Page 74: TUM EDM I - UMass

Generic Implications

3.1 x 10-29

10.5 x 10-28 YbF

Mass Scale & φCP Sensitivity

!

"

!

e!

"

!

"!

" sinφCP ~ 1 ! M > 5000 GeV

M < 500 GeV! sinφCP < 10-2

Page 75: TUM EDM I - UMass

Analysis Strategies

• Work within a given BSM scenario:constraints on φCPV , M,…

• Model-independent analysis:constraints on Wilson coefficients

Page 76: TUM EDM I - UMass

MSSM Global Analysis

Page 77: TUM EDM I - UMass

MSSM Global Analysis

φA = arg (Af Mj )

φj = arg (µMjb*)

Li, Profumo, R-M ‘10

• Dominant operators: EDM, CEDM

• No theory error (QCD SR)

• Includes full 2-loop (Li, Profumo, R-M)

Page 78: TUM EDM I - UMass

MSSM Global Analysis

φA = arg (Af Mj )

φj = arg (µMjb*)

Correlated Constraints

Present Present: 199Hg impact

Li, Profumo, R-M ‘10

Page 79: TUM EDM I - UMass

MSSM Global Analysis

φA = arg (Af Mj )

φj = arg (µMjb*)

Correlated Constraints

Present Future dn : 100 xpresent sensitivity

Li, Profumo, R-M ‘10

Page 80: TUM EDM I - UMass

Baryogenesis Implications

MSSM: φ1 only

Cirigliano, Li, Profumo, R-M ‘10

Gaugino sources

Kocaczuk, Wainwright, Profumo,R-M ‘12

Sfermon (stop) sources

Page 81: TUM EDM I - UMass

AMO Global Analysis

Atomic / molecularcoefficients

Atomic &Molecular

Paramag*: δe, Im Ceq ( ks0 )

Diamag**: S, Im Clequ ( kT )

(-)

(3)

* Tl, Cs, YbF…

** Hg, Ra, Rn…

Page 82: TUM EDM I - UMass

AMO Global Analysis

Jung ‘13

• Dominant operators: e EDM, CS(0) ~ Im Ceq

• Includes 199Hg w/ CS(0) no Schiff moment !

• Tl & YbF only: |de| < 0.89 x 10-26 e cm

(-)

Page 83: TUM EDM I - UMass

Global Analysis: Hadronic

!

"

!

n!

p

!

"#

!

"#

Page 84: TUM EDM I - UMass

Global Analysis: Hadronic

!

"

!

n!

p

!

"#

!

"#

δq , δq , θ ,…~

δq , θ ,…~ Cϕud , δq, …

~

Need multiple hadronic systems to disentangle

Page 85: TUM EDM I - UMass

Open Problems

• How many complementary EDM searchesneeded

• What is robust theory error at hadronic, nuclear,and AMO levels ?

Page 86: TUM EDM I - UMass

Summary

• BSM CPV at d=6 provides a bridge between low-scale EDM physics (atomic, nuclear, hadronic) andhigh scale BSM physics and cosmology

• Challenging interpretation problem requiringrefinements of non-perturbative and many-bodycomputations

• Additional, complementary EDM searchesneeded to provide comprehensive probe ofpossible flavor diagonal CPV that may be living atthe multi-TeV scale