tu anh n. pham, simon clare, david goulding, julia m ... · browne, jacqueline a. keane, andrew j....

25
Cell Host & Microbe, Volume 16 Supplemental Information Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization Resistance to an Opportunistic Pathogen Tu Anh N. Pham, Simon Clare, David Goulding, Julia M. Arasteh, Mark D. Stares, Hilary P. Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine Hale, Mark J. Arends, Daniel J. Gaffney, The Sanger Mouse Genetics Project, Gordon Dougan, Trevor D. Lawley

Upload: lycong

Post on 05-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Cell Host & Microbe, Volume 16

Supplemental Information

Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization Resistance to an

Opportunistic Pathogen

Tu Anh N. Pham, Simon Clare, David Goulding, Julia M. Arasteh, Mark D. Stares, Hilary P. Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine Hale, Mark J. Arends, Daniel J. Gaffney, The Sanger Mouse Genetics Project, Gordon Dougan, Trevor D. Lawley

Page 2: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

-actinP En2 SA lacZ pA pA neoR IRES

exon1 2 3 4 5 6 7

0

1

2

3

4

Tota

l cLP

cel

ls (x

106 )

A

Viability at weaning

WT

Il22ra1-/-Il22ra1+/-

0 20 40 60 80 100

MonocytesGranulocytes

CD8+ TCD4+ TT cellsB cells

WTIl22ra1-/-

% peripheral blood mononuclear cells

Bod

y w

eigh

t (g)

Age (weeks)

WT Il22ra1-/-

WT Il22ra1-/-

1

2

3

4

5

Sha

nnon

div

ersi

ty in

dex

WT Il22ra1-/-0 1000 2000 3000 4000 5000 60000

50

100

150

200

250

300

Number of sequences sampled

OTU

s

WT Il22ra1-/-

D

E

F

WT Il22ra1-/-

B

WT Il22ra1-/-0

20

40

60

80

100

Pro

potio

nal a

bund

ance

(%)

BacteroidetesFirmicutes

Actinobacteriaand Others

Proteobacteria

G

C

ns

ns

3 8 13 181015202530354045

WT femalesIl22ra1-/- femalesWT malesIl22ra1-/- males

Figure S1, related to Figure 1

Page 3: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Figure S1, related to Figure 1. Il22ra1-deficient mice show no phenotypic abnormalities or

signs of intestinal dysbiosis at baseline.

(A) Schematic diagram of the Il22ra1tm1a knockout-first allele with flanking Frt (blue) and loxP (pink

triangles) sites. En2 SA, mouse engrailed 2 splice acceptor; IRES, internal ribosomal entry site;

lacZ, β-galactosidase reporter; βactinR, β-actin gene promoter; neoR, neomycin resistance casette.

(B) LacZ staining of WT and Il22ra1-/- ceca, showing endogenous Il22ra1 expression.

(C) Viability at weaning of Il22ra1+/+, Il22ra1+/- and Il22ra1-/- mice (n=124) raised under SPF

conditions showing normal Mendelian ratio.

(D) Growth curves (top panel) and flow cytometric analysis of peripheral blood mononuclear

leukocytes (bottom panel) of WT and Il22ra1-/- mice (n=18-54/group).

(E) Representative H&E-stained cecal sections and total colonic lamina propria (cLP) leukocytes of

8-week old SPF WT and Il22ra1-/- mice (n=14). Scale bar, 100 µm.

(F) Rarefaction curves and Shannon diversity indices based on pyrosequencing of the 16S rRNA,

showing no significant difference in species diversity of the faecal microbiota between WT and

Il22ra1-/- mice (n=12; Mann-Whitney test).

(G) Microbiota structure of WT and Il22ra1-/- mice (n=6) showing proportional abundance of major

bacterial phyla.

 

Page 4: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Figure S2, related to Figure 1. Il22ra1-/- mice are susceptible to intestinal C. rodentium infection and DSS-colitis, but not to systemic Salmonella Typhimurium infection.WT and Il22ra1-/- mice (n=8) were infected intravenously with 105 CFU of Salmonella Typhimurium. Shown are (A) weight loss and (B) bacterial enumeration in the liver and spleen at day 14 and 28 p.i., and (C) serum anti-Salmonella titres at day 28 p.i.. Log-rank and Mann-Whitney test, *p<0.05, **p<0.001. Data are representative of at least two independent experiments.(D) Survival and weight loss of WT and Il22ra1-/- mice (n=8-12) after oral infection with 109 CFU of C. rodentium.

0 5 10 15 20 25 300

20

40

60

80

100

p = 0.0003

Il22ra1-/-WT

0 5 10 15-25-20-15-10-505

10 ***

0 5 10 15 20 25 30

-20

-10

0

10

20

Il22ra1-/-WT

Wei

ght l

oss

(%)

Days p.i.

Days p.i. Days p.i.

Sur

viva

l (%

)

Il22ra1-/-WT

Wei

ght l

oss

(%)

D

A B

WT Il22ra1 -/-0

2

4

6

8

10 ***

Path

olog

y sc

oreWT

*

Il22ra1-/-

log 10

S. T

yphi

mur

ium

CFU

LiverSpleen

Days p.i. Days p.i.

log 10

S. T

yphi

mur

ium

CFU

IgGIgG1

IgG2a100

101

102

103

104

WTIl22ra1-/-

C

14 280

1

2

3

4

5

6WTIl22ra1-/-

14 2801234567

WTIl22ra1-/-

Ant

i-Sal

mon

ella

seru

m ti

tre/m

l

E

0 2 4 6 8 10 12-25

-20

-15

-10

-5

WTIl22ra1-/-

* **p = 0.007

DSS

0 2 4 6 8 10 12 140

20

40

60

80

100

Il22ra1-/-WTS

urvi

val (

%)

Wei

ght l

oss

(%)

5

0

Days

F DSSG

Days

Figure S2, related to Figure 1

Page 5: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

WT Il22ra1-/-0

1

2

3

4

5

Tota

l cLP

cel

ls (x

106 )

**

0 102 103 104 105

0

102

103

104

105

0 102 103 104 105

0

102

103

104

105

CD

8

CD4

16.7±1.3

4.9±1.0

25.3±1.8

5.4±0.5

WT Il22ra1-/-

0 102 103 104 105

0

102

103

104

105

0 102 103 104 105

0

102

103

104

105

0 102 103 104 105

0

103

104

105

0 102 103 104 105

0

103

104

105

TCRβ

B220

CD

25

Foxp3

15.1±1.2

12.9±1.3

WT Il22ra1 -/-

WT Il22ra1-/-6.5

±0.54.9

±0.3

0 102 103 104 105

0

102

103

104

105

0

102

103

104

105

0

102

103

104

105

0 102 103 104 105

0

102

103

104

105

Ly6C

CD11b

Ly6G

WT Il22ra1-/-5.7±0.2

6.2±1.2

6.6±0.5

7.5±0.4

WT

Il22ra1-

/-WT

0

50

100

150

0

500

1000

1500

IFN

**

***

0

10

20

30

40

0

50

100

150

200

IL-1

***

0

20

40

60

0

2000

4000

6000

8000

10000

IL-6**

Tran

scrip

ts/1

00,0

00 G

apdh

Protein (pg/m

l)

Tran

scrip

ts/1

,000

Gap

dh

Protein (pg/m

l)WT WT Tr

ansc

ripts

/100

,000

Gap

dh

Protein (pg/m

l)

0

5

10

15

20

0

50

100

150

200

TNF

*****

Tran

scrip

ts/1

,000

Gap

dh

Protein (pg/m

l)

WT WTWT WT

0

20

40

60

80

0

500

1000

1500

2000

IL-17a

**

0

10

20

30

40

50

0

50

100

150

200

250

IL-17f

***

0

5

10

15

20

0

10

20

30

IL-21

*****

ND

Tran

scrip

ts/5

00,0

00 G

apdh

Protein (pg/m

l)

WT WT Tran

scrip

ts/5

00,0

00 G

apdh

Protein (pg/m

l)Tr

ansc

ripts

/500

,000

Gap

dh

Protein (pg/m

l)

WT WT WT WT0

50

100

150

1200

1400

1600

1800

2000

IL-22

*

*

Tran

scrip

ts/5

00,0

00 G

apdh

Protein (pg/m

l)

WT WT

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

Il22ra1-

/-

0

102

103

104

105

CD

4

IFN

WT Il22ra1-/-

IL-17A 0

102

103

104

105

5.7 ±0.7 15.2 ±0.9WT Il22ra1-/-

7.9 ±0.8 2.2 ±0.4

A

B D

E F

WT Il22ra1-/-0

200

400

600

800

1000

1200

WT Il22ra1-/-0

500

1000

1500

2000

Faec

al C

. rod

entiu

mes

pA Ig

A (ti

tre/g

)

Faec

al to

tal I

gA (n

g/g)

Gp = 0.06

p = 0.88

C

Figure S3, related to Figure 1

Page 6: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Figure S3, related to Figure 1. C. rodentium infection induces a mucosal Th1/Th17 response

in Il22ra1-/- mice. (A) Transcript levels in the cecal tissues (left y-axis) and protein levels secreted

by cLP leukocytes (right y-axis) isolated from WT and Il22ra1-/- mice at day 9 p.i. with C. rodentium,

showing Th1-associated cytokines (IFNγ, TNFα, IL-1β, IL-6) (top panels) and Th17-associated

cytokines (IL-17a, IL-17f, IL-21, IL-22) (bottom panels).

(B) Total cLP leukocytes of C. rodentium-infected WT and Il22ra1-/- mice.

Flow cytometric analysis of cLP leukocytes showing (C) CD4+ and CD8+ T cells; (D) IFNγ- and IL-

17A-expressing CD4+ T cells; (E) total T, B cells (top), and CD25+Foxp3+ regulatory T cells

(bottom panels); (F) Ly6G+CD11b+ neutrophils (top) and Ly6ChiCD11b+ monocytes (bottom

panels). Mean frequencies ± SEM of the indicated cLP populations are shown.

(G) Total (left panel) and C. rodentium-specific fecal IgA (right panel) titre of C. rodentium-infected

WT and Il22ra1-/- mice. Data are mean ± SEM from at least three independent experiments (n=3-5

each). Mann-Whitney test, p *< 0.05, **< 0.001, ***< 0.0001.

 

Page 7: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

0

300000

600000

900000

1200000

1500000

1800000

2100000

2400000

2700000agg

cylI-A-B-M-S-L-R2-R1

sprEgelE

ace

ef0093

ef2505

bsh

cob

cadccf

kpr

gls24

nanE

ef1020

2.93 MbE. faecalis

0

500

1000

1500 *

Ser

um IL

-6 (p

g/m

l)i.p

Citro

i.p m

EF 0

50

100

150

200 *

Ser

um T

NF

(pg/

ml)

i.p C

itro

i.p m

EF

E

AW

eigh

t los

s (%

)

0 2 4 6 8 10 12 14-25

-20-15

-10

-5

0

5

10

Days p.i.

+Amp

B C

WT

C. r

oden

tium

CFU

/g fe

ces

0 2 4 6 8 10 12 14 16 18 20

100

102

104

106

108

1010

Days p.i.

+Amp

WT

*

0 2 4 6 8 10 12 14 16100102

104105106107108109

Days p.i.

Ent

eroc

occu

s C

FU/g

fece

s +Amp

WT

*

D

Il22ra1-/- + PBSIl22ra1-/- + Amp

Il22ra1-/- + PBSIl22ra1-/- + Amp

Il22ra1-/- + PBSIl22ra1-/- + Amp

Figure S4, related to Figure 2

Page 8: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Figure S4, related to Figure 2. A murine Enterococcus faecalis isolate harbors multiple

virulence genes and shows pathogenic potential.

(A) Serum levels of TNFα and IL-6 of groups of WT mice (n=6-10) following intraperitoneal infection

with either C. rodentium (‘i.p Citro’) or E. faecalis (‘i.p mEF’), in two independent experiments.

(B) Weight loss; (C) fecal shedding of enterococci and of (D) C. rodentium by C. rodentium-infected

WT and Il22ra1-/- mice treated i.p. with ampicillin or PBS controls. Data are from two independent

experiments (n=4-6 each). Grey area represents limit of detection.

(E) Genomic annotation of the murine E. faecalis isolate from Il22ra1-/- mice (See also Table S3),

based on the genome of V583 (Paulsen et al., 2003) - a vancomycin-resistant sepsis strain, and the

pathogenicity island of the nosocomial MMH594 strain (Shankar et al., 2002). From outside to

inside: track 1, predicted coding sequences (CDS) on the forward strand; track 2, CDS on the

reverse strand. CDS features are coloured according to functional categories: grey, virulence genes

identified by alignment with the E. faecalis MMH594 pathogenicity island; purple, cell wall/surface

adhesion genes; yellow, IS elements; blue, antibiotic resistance genes; orange, pheromone

lipoproteins; light cyan, remaining CDS features with translated nucleotide sequence homologous

to those within the V583 genome; pink, non-homologous CDS features. Track 3, nucleotide BLAST

hits > 1,000-bp long with > 90% identity to the V583 genome, at p-value cut-off < 0.001. Track 4,

ribosomal RNAs (blue) and transfer RNAs (green). Track 5 and 6, GC content and GC skew

(GC/(G+C)), coloured green (above average) or magenta (below average). Virulence genes labeled

are (clockwise from origin): gls24, general stress protein; ef0093, ef2505, cell wall surface adhesion

proteins; nanE, N-acetylmannosamine-6-phosphate epimerase; cylI-A-B-M-S-L-R2-R1, cytolysin

operon; agg, aggregation substance; ef1020, glycosyl hydrolase; ace, E. faecalis adhesin; kpr,

ketopantoate reductase; sprE, serine protease; gelE, gelatinase/coccolysin; cob, cad, ccf, sex

pheromones; bsh, bile salt hydrolase. Multiple mobile elements flanking the cytolysin operon within

a region of low G+C content (32.2% versus 37.3% in the entire genome) are found.

 

Page 9: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Day 0

Day 9

WT2

WT1

KO2KO3KO1

WT2 WT3WT1

KO2KO3

KO1

0 2000 4000 60000

50

100

150

200

0 2000 4000 60000

100

200

300

OTU

sO

TUs

WT3

Number of sequences sampled

Number of sequences sampled

Enterob

acter

iacea

e

Erysipe

lotric

hace

ae

Lach

nosp

irace

ae

Lacto

bacill

acea

e

Rikene

llace

ae

Rumino

cocc

acea

e

Suttere

llace

ae

0

1

2

3

4***

***

*

*

*****

***

******

**

** *

***Lo

g 10 A

bund

ance

1 2 1 2 1 2 1 2 1 2 1 2 1 2Family

Faecal microbiota (day 9 p.i.)Il22ra1-/-WT

A B

0

1

2

3

Log 1

0 Abu

ndan

ce

Enterob

acter

iacea

e

Erysipe

lotric

hace

ae

Lach

nosp

irace

ae

Lacto

bacill

acea

e

Rikene

llace

ae

Rumino

cocc

acea

e

Suttere

llace

aeFamily

Il22ra1-/-WT

* nsns

ns

ns

ns

ns

Faecal microbiota (day 0 p.i.)

056789

1011

** ***

Log 1

0 C. r

oden

tium

CFU

/g

luminal luminal mucosalinfectednaive

WTIl22ra1 -/-

02345678 * **

luminal luminal mucosalinfectednaive

WTIl22ra1 -/-

Log 1

0 Ent

eroc

occu

s C

FU/g

naive infected123456789

WT

ns

***

log

(16S

rRN

A c

opie

s /g

)

10 Il22ra1 -/-

Faecal Enterobacteriaceae

naive infected

9

12345678

WT

ns

log

(16S

rRN

A c

opie

s /g

)

Il22ra1 -/-

Faecal Enterococcus spp.

***

luminal luminal mucosal

10

123456789

ns

*****

infected

log

(16S

rRN

A c

opie

s /g

)

naive

Caecal EnterobacteriaceaeWTIl22ra1 -/-

mucosal

*

luminal luminal

10

123456789

ns

***lo

g (1

6S rR

NA

cop

ies

/g)

naive infected

Caecal Enterococcus spp.WTIl22ra1 -/-

02456789

1011 * *

ns

WTIl22ra1 -/-

luminal luminal mucosalinfectednaive

Log 1

0 Ent

eroc

occu

s C

FU/g 4

78

3

63

4572

71

9

6087

17

89

Day 0 Day 7 Cecal mucosa

WT(n = 8)

Il22ra1-/-(n = 8)

C

D

E F

Figure S5, related to Figure 3

Page 10: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Figure S5, related to Figure 3. Il22ra1 deficiency leads to severe dysbiosis, loss of health-

associated bacterial groups, and expansion of E. faecalis during intestinal inflammation.

(A) Rarefaction curves of 16S rRNA gene pyrosequences from the microbiota of WT and Il22ra1-/-

mice (n = 3) before (day 0) and at the peak of C. rodentium infection (day 9 p.i.), showing loss of

diversity during infection.

(B) Fecal microbiota of Il22ra1-/- mice compared to WT equivalents at day 0 and day 9 p.i with C.

rodentium, showing consistent bloom of Enterobacteriaceae and depletion of health-associated

commensals (Lactobacillaceae, Rikenellaceae and Ruminococcaceae families). Significant

changes at the taxonomic Family level of OTUs (97% identity) were identified by 16S

pyrosequencing of samples from two independent experiments (each with 3 mice/group), denoted 1

and 2. P-values * < 0.001, ** < 0.00001, *** < 0.0000001.

(C) qPCR of Enterobacteriaceae (left panels) and Enterococcus spp. (right panels) in the fecal and

cecal microbiota of naive and infected WT and Il22ra1-/- mice.

(D) Enumeration of C. rodentium and enterococci in the cecal lumen and associated with the

mucosa of naïve and infected WT and Il22ra1-/- mice, determined by selective plating. Data in ©

and (D) are from three independent infections (n=6-12). ns, not significant; ***p < 0.0001; **p <

0.001.

(E) CFU of Enterococcus spp. as determined by selective plating, and (F) 16S rRNA sequencing

profile of enterococci in the feces and cecal mucosa of WT and Il22ra1-/- littermates treated with

DSS (n=8) in 2 independent experiments, showing preferential expansion of E. faecalis (red)

relative to other intestinal enterococci (E. gallinarum, grey) during DSS-induced colitis. Shown are

numbers of Enterococcus sequences matched to a species ID.

 

Page 11: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Il22ra1 -/-

G

WT

G

Mean normalised expression

row min row max

RegIIIγ regenerating islet-derived 3 gammaKOxC

trl

KOxIL-22

WTxC

trl

WTxIL

-22

Infla

mm

ator

y/de

fens

e re

spon

se/

resp

onse

to w

ound

ing

Gly

copr

otei

n m

etab

olic

pro

cess

Ret

inoi

c ac

idm

etab

olis

mR

espo

nse

to

oxid

ativ

e st

ress

Dru

g m

etab

olis

m/

Oxi

datio

n re

duct

ion

DN

A re

plic

atio

n/C

ell c

ycle

RegIIIβ regenerating islet-derived 3 betaChi2l4 chitinase-3 like 4Saa2 serum amyloid A2Cxcl5 chemokine (C-X-C motif) ligand 5Tmem73 transmembrane protein 173; StingEfemp2 EGF-containing fibulin-like extracellular matrix protein 2Saa1 serum amyloid A1Nos2 nitric oxide synthase 2, inducibleCxcl3 chemokine (C-X-C motif) ligand 3Chst4 carbohydrate (chondroitin 6/keratan) sulfotransferase 4 Tac1 tachykinin 1 Clec2h C-type lectin domain family 2, member h C3 complement component 3 Pros1 protein S (alpha) Cxcl1 chemokine (C-X-C motif) ligand 1Nupr1 nuclear protein 1 Bnip3 BCL2/adenovirus E1B interacting protein 3 Nfkbiz nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, zeta Sec1 secretory blood group 1 Fut2 fucosyltransferase 2 B3gnt7 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 7 B3galt5 UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 5 Unc13a unc-13 homolog A (C. elegans) St8sia5 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 5 Acan aggrecan

Rdh9 retinol dehydrogenase 9 Rdh16 retinol dehydrogenase 16Dhrs9 dehydrogenase/reductase (SDR family) member 9 Aldh1a3 aldehyde dehydrogenase family 1, subfamily A3 Lpo lactoperoxidase Duox2 dual oxidase 2Duox1 dual oxidase 1Tat tyrosine aminotransferase

Cyp2c67 cytochrome P450, family 2, subfamily c, polypeptide 67 Cyp2c69 cytochrome P450, family 2, subfamily c, polypeptide 69Cyp2c40 cytochrome P450, family 2, subfamily c, polypeptide 40Cyp2c68 cytochrome P450, family 2, subfamily c, polypeptide 68Ugt2b36 UDP glucuronosyltransferase 2 family, polypeptide B36 Ugt2b5 UDP glucuronosyltransferase 2 family, polypeptide B5Cyp2c55 cytochrome P450, family 2, subfamily c, polypeptide 55 Cyp4b1 cytochrome P450, family 4, subfamily b, polypeptide 1 Hao2 hydroxyacid oxidase 2 Nox1 NADPH oxidase 1 Cyp1a1 cytochrome P450, family 1, subfamily a, polypeptide 1 Hsd17b14 hydroxysteroid (17-beta) dehydrogenase 14 Hpgd hydroxyprostaglandin dehydrogenase 15 (NAD) Abp1 amiloride binding protein 1 (amine oxidase, copper-containing) Cyp2j9 cytochrome P450, family 2, subfamily j, polypeptide 9 Akr1c14 aldo-keto reductase family 1, member C19 Gstm3 glutathione S-transferase, mu 3 Gsta3 glutathione S-transferase, alpha 3 Gstm1 glutathione S-transferase, mu 1Cyp2d26 cytochrome P450, family 2, subfamily d, polypeptide 26 Hsd3b2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 Rec8 REC8 homolog (yeast) Myb myeloblastosis oncogene

Il22ra1 genotype x IL-22 treatmentinteraction term

-3.8 -0.6

Tmem173

Reg3g

Ifn

Oas2Ifit1 Caecam1/2

Plac8

IL-12Ly6 family

Ifng

RelJakReg3b

Zbp1

Ncoa7

Socs3

TifaItgb8

Aldh1a3

Tnfaip8Tat

Nfkbiz

Cd38

Slpi

NFkB

Dmbt1

WT WT WT WTIl22 -/- Il22 -/- Il22 -/- Il22 -/-

Ctrl+ IL-22 (50 ng/ml)

Reg3 Reg3 S100a8 S100a9

Rel

ativ

e m

RN

A le

vels

per G

apdh

0.1

1

10

100

1000

WT Il22ra1-/- WT WT WT0.1

1

10

100

1000

Reg3 Reg3 S100a8 S100a9

********* ***

Il22ra1-/- Il22ra1-/- Il22ra1-/-Rel

ativ

e m

RN

A le

vels

per G

apdh

Ctrl+ IL-22 (50 ng/ml)

C D

E

F

Reg

IIIγ

trans

crip

ts/1

0,00

0 G

apdh

naive infected

WT W

T

Il22ra

1-/-

0

250

500

750

1000 ***

A

spleen liver

0.0

0.5

1.0

1.5

2.0

Org

an w

eigh

t (g)

WT

RegIIIγ

-/-W

T

RegIIIγ

-/-

B ns

ns

Figure S6, related to Figures 4 and 5

Il22ra

1-/-

Page 12: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Figure S6, related to Figures 4 and 5. Global transcriptomics of IL-22RA1 signaling in

colonic epithelial organoids reveal antimicrobial and glycosylation processes beyond

RegIIIγ.

(A) qRT-PCR of RegIIIγ expression in the cecal tissues of naive and C. rodentium-infected WT and

Il22ra1-/- mice (n =12-16/group), ***p<0.0001.

(B) Liver and spleen weights of C. rodentium-infected WT and RegIIIγ-/- mice at day 9 p.i., showing

no significant difference. No bacterial dissemination was detected by non-selective culturing.

(C) Representative toluidine blue-stained semithin section of WT and Il22ra1-/- organoids showing

columnar enterocytes and mucus-producing goblet cells (‘G’). Scale bar, 10 µm.

(D) WT, Il22ra1-/- and Il22-/- organoids were stimulated with recombinant mouse IL-22 and levels of

RegIIIγ, RegIIIβ, S100a8, S100a9 transcripts were measured by qRT-PCR. Results from biological

and technical duplicates. Two-way ANOVA, p-value ***<0.0001.

(E) Heatmap showing relative mean expression of genes significantly induced or down-regulated by

IL-22, associated with key Gene Ontology biological processes in Figure 5.

(F) Top network with “antimicrobial function”, identified by Ingenuity Pathway analysis among genes

significantly induced by IL-22 in wildtype organoids (p < 10-12). Nodes (i.e. genes) are colored

according to their magnitude of expression changes.  

Page 13: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Table S1, related to Figure 1. Isolation and identification by 16S rRNA gene sequencing of systemic bacterial isolates in C. rodentium-infected WT and Il22ra1-/- mice.

Il22ra1-/- WT Day 5 p.i. Day 9-10 p.i. Subtotal Subtotal Taxonomy A B C D E F G H I J K (n=28) A C K (n=10)

Phylum Family Species*

Number of isolates sequenced 28 44 39 50 41 68 58 97 88 103 221 726 32 25 23 80 Proteobacteria Enterobacteriaceae Citrobacter

rodentium 17 28 20 16 14 10 27 22 31 72 163 355 20 4 3 27

Firmicutes Enterococcaceae Enterococcus faecalis 10 14 19 22 25 48 8 44 49 16 31 243 0 0 0 0

Other Firmicutes Staphylococcaceae Staphylococcus lentus 0 0 0 0 0 3 1 0 1 0 1 6 0 0 0 0

Staphylococcus napelensis 0 0 0 0 0 0 5 0 0 1 3 9 0 0 0 0

Staphylococcus epidermidis 0 0 0 0 0 0 1 1 0 0 0 2 0 0 0 0

Lactobacillaceae Lactobacillus murinus 1 2 0 4 0 5 6 6 1 4 0 26 4 8 12 24

Lactobacillus johnsonii 0 0 0 4 0 0 1 1 0 0 0 6 0 2 0 2

Lactobacillus reuteri 0 0 0 1 0 0 0 2 0 0 0 3 0 2 0 2

Lactobacillus intestinalis 0 0 0 0 0 0 1 0 0 0 1 2 0 0 0 0

Bacteroidetes Porphyromonodaceae Parabacteroides distasonis 0 0 0 0 0 2 1 1 0 3 5 13 4 0 0 4

Barnesiella intestinihominis 0 0 0 3 1 0 2 0 0 0 10 16 0 0 2 2

Bacteroidaceae Bacteroides uniformis 0 0 0 0 0 0 2 10 0 3 0 13 0 0 0 0

Bacteroides acidifaciens 0 0 0 0 1 0 3 5 0 4 5 17 4 5 0 9

Bacteroides xylanisolvens 0 0 0 0 0 0 2 3 0 0 2 7 0 4 0 4

Other Bacteria** 0 0 0 0 0 0 0 2 6 0 0 8 0 0 6 6

A-K indicate independent experiments with similar outcome performed over the course of 18 months at our animal facility. In each experiment, Il22ra1-/- animals showing significant signs of morbidity were examined for bacterial breakthrough in the livers and spleens. Isolates from non-selective culture media were profiled by 16S rRNA gene sequencing. *Species: the closest match by 16S rRNA gene sequence identity (> 97%). **Other Bacteria indicate rare bacterial isolates only detected in one experiment but not others, and include Parasutterella excrementihominis, Bifidobacterium longum, Adlercreutzia spp., Alistipes spp. and Micrococcus spp.

Page 14: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Table S2, related to Figure 1. Isolation and identification by 16S rRNA gene sequencing of systemic bacterial isolates in DSS-treated WT and Il22ra1-/- littermates.

Taxonomy WT Il22ra1-/-

Phylum Family Species*

Number of isolates sequenced 84 247 Proteobacteria Enterobacteriaceae Escherichia coli 21 56 Firmicutes Enterococcaceae Enterococcus faecalis 2 83 Enterococcus gallinarum 1 0 Other Firmicutes Staphylococcaceae Staphylococcus lentus 3 6 Staphylococcus napelensis 3 12 Staphylococcus hemolyticus 2 0 Staphylococcus epidermidis 0 2 Lactobacillaceae Lactobacillus murinus 17 48 Lactobacillus johnsonii 3 7 Lactobacillus reuteri 0 12 Lactobacillus intestinalis 1 1 Bacteroidetes Porphyromonodaceae Parabacteroides distasonis 10 7 Barnesiella intestinihomonis 1 0 Bacteroidaceae Bacteroides uniformis 10 8 Bacteroides acidifaciens 2 1 Bacteroides xylanisolvens 2 3 Actinobacteria Coriobacteriaceae Adlercreutzia equolifaciens 6 1

Shown are results from two independent experiments (n=8-10) with similar outcome. Isolates from non-selective culture media were profiled by 16S rRNA gene sequencing. *Species: the closest match by 16S rRNA gene sequence identity (> 97%).

Page 15: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Table S3, related to Figure 2. List of virulence factors identified in the genome of a pathogenic murine Enterococcus faecalis isolate. Virulence genes Cytolysin operon (cylR1-R2-L-S-M-B-A-I)

Production and activation of cytolysin capable of lysing erythrocytes, inflammatory cells and Gram-positive bacteria; contributes to virulence and mortality in murine peritonitis and endocarditis models (Chow et al., 1993; Ike et al., 1984; Jett et al., 1992).

Aggregation substance (agg) Important for adherence and invasion of enterocytes in vitro; plays a role in murine urinary tract infection and endocarditis; facilitates bacterial clumping and survival in neutrophils (Chow et al., 1993; Rakita et al., 1999).

Gelatinase/coccolysin (gelE) Zinc-dependent metalloprotease important for mortality in murine peritonitis (Engelbert et al., 2004; Singh et al., 1998).

Serine protease (sprE) Exoenzyme involved in pathogenesis in murine peritonitis and rabbit endophthalmitis models (Engelbert et al., 2004; Singh et al., 1998).

Additional factors relevant to pathogenesis Enterococcus faecalis adhesin (ace)

Microbial surface component recognising adhesive matrix molecule (MSCRAMM) involved in host cell adherence and endocarditis (Nallapareddy et al., 2000).

Cell wall surface anchor proteins (ef0093, ef2505)

Putative adherence factors that may facilitate binding to host extracellular matrix.

Bile salt hydrolase (bsh) Defense against toxicity of bile salts, increased intestinal colonisation and systemic lethality in Listeria monocytogenes infection (Dussurget et al., 2002).

Sex pheromones (cob, cad, ccf)

Chemoattractant for neutrophils and modulation of host inflammation (Sannomiya et al., 1990).

Gls24 protein (gls24) General stress response protein induced upon nutrient starvation and exposure to heavy metals and bile salts (Giard et al., 2000).

N-acetylmannosamine-6-phosphate epimerase (nanE) Glycosyl hydrolase (ef1020) Ketopantoate reductase (kpr)

Carbohydrate and coenzyme A metabolism. May contribute to survival in the nutritionally depleted environment of the gastrointestinal tract.

Supplemental Table 4, related to Figure 2. Comparative genomics of E. faecalis isolates from various nosocomial, commensal and animal origins, and isolates from different mice colonies. (separate .xls file) Supplemental Table 5, related to Figure 5. RNAseq of WT and Il22ra1-/- epithelial organoids reveals diverse antimicrobial and glycosylation genes and pathways. (separate .xls file)

Page 16: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Mice Experiments

C57BL/6N and Il22ra1-/- mice were obtained from inbred colonies from the Sanger Mouse Genetics

Project (Bradley et al., 2012; White et al., 2013). Il22-/- mice, as previously described (Kreymborg et

al., 2007), were received from Prof. Fiona Powrie (University of Oxford). Both WT and Il22ra1-/-

derived from separate colonies and littermates derived from heterozygote breeding pairs have been

used for infection and DSS experiments, with similar outcomes. Il22ra1-/- littermates were also used

for experiments involving ampicillin or 2’-fucosyllactose treatment. In experiments to profile the

enterococcal community dynamics during inflammation, mice were singly housed from Day 0 post-

infection or DSS initiation to minimize transfer of bacteria by coprophagia. Mice from the same litters

were routinely kept together prior to infection or DSS administration, and were fed a regular

autoclaved chow diet (LabDiet) ad libitum. All mice were matched for age (6-9 weeks) and gender

within each experiment and infected mice were monitored daily for weight loss.

Infection challenges were performed by oral gavage with 109 CFU of C. rodentium (KanR, NalR)

(Wiles et al., 2006) or i.v. injection of 2 x 105 CFU of Salmonella enterica serovar Typhimurium M525

TETc (Clare et al., 2003). Bacterial colonization in the liver, spleen, cecal contents and intestinal

mucosa was determined by serial dilution plating of homogenized tissues on antibiotic-

supplemented agar. Serum IL-6 and TNFα were determined with the Mouse IL-6 and TNFα Ready-

Set-Go! ELISA kits (eBioscience). To test for an attenuating effect on susceptibility to infection,

Il22ra1-/- mice were administered i.p. 0.1 mg ampicillin (Sigma) in 0.1 ml PBS at Day 5, 7 and 9 p.i.,

or oral 2 mg 2’-fucosyllactose (Carbosynth Ltd) in 0.1 ml PBS at Day 5, 6, 7 and 8 p.i. Virulence

testing of E. faecalis was conducted by administering i.p. 109 CFU of the recovered murine E.

faecalis strain, using the peritonitis model as previously described (Bourgogne et al., 2008; Singh et

al., 1998).

Histology

Page 17: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

To evaluate disease pathology, we fixed cecal segments in 4% paraformaldehyde and stained 5 µm-

thick paraffin sections in hematoxylin and eosin according to standard protocol. Scoring of intestinal

inflammation was performed in a blinded manner by a clinical pathologist as follow: Submucosal

edema: mild-1, moderate-2, severe-3; submucosal inflammation: mild-1, moderate-2, severe-3;

mucosal inflammation: mild-1, moderate-2, severe-3; crypt abscess: absent-0, present-1. For

immunofluorescence, we stained 5 µm-thick frozen sections of mouse cecal tissues with α-

Citrobacter translocated intimin receptor antibody (Tir) (1/1000), or α-Enterococcus spp. antibody

(1/200, LSBio). Sections were mounted using ProLong Gold antifade reagent (Molecular Probes)

containing 4’,6’-diamidino-2-phenylindole (DAPI) for nuclear staining. Light and fluorescence

microscopy images were taken with a Zeiss Axiovert 200M instrument using the AxioVision

software.

Quantitative Real-Time PCR

The terminal 3-mm of the ceca were excised and preserved in RNALater (QIAGEN) for subsequent

total RNA extraction. Expression of mouse genes in the cecal tissues were assessed using the

following TaqMan primers and probes. qPCR conditions were 95oC for 15 min, 40 cycles of 95oC for

15 sec and 60oC for 1 min. mRNA levels were normalized relative to Gapdh.

Gapdh Forward (F): TGTGTCCGTCGTGGATCTGA Reverse (R): CACCACCTTCTTGATGTCATCATAC Probe (Pr): TGCCGCCTGGAGAAACCTGCC

TNF-α F: CATCTTCTCAAAATTCGAGTGACAA R: CCAGCTGCTCCTCCACTTG Pr: CCTGTAGCCCACGTCGTAGCAAACCA

IFN-γ F: CAGCAACAGCAAGGCGAAA R: CTGGACCTGTGGGTTGTTGAC Pr: AGGATGCATTCATGAGTATTGCCAAGTTTGA

IL-1β F: CCAAAAGATGAAGGGCTGCTT R: TGCTGCTGCGAGATTTGAAG Pr: CAAACCTTTGACCTGGGCTGTCCTGA

IL-6 F: ACAAGTCGGAGGCTTAATTACACAT R: TTGCCATTGCACAACTCTTTTC Pr: TTCTCTGGGAAATCGTGGAAATG

IL-22 F: TCCGAGGAGTCAGTGCTAA R: AGAACGTCTTCCAGGGTGAA Pr: TGAGCACCTGCTTCATCAGGTAGCA

IL-17a F: CACCTCACACGAGGCACAAG R: GCAGCAACAGCATCAGAGACA

Page 18: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Pr: ACCCAGCACCAGCTGATCAGGACG IL-17f F: CCATTGGAGAAACCAGCATGA

R: CCCAACATCAACAGTAGCAAAGAC Pr: TGCACCCGTGAAACAGCCATGG

IL-21 F: GGACAGTGGCCCATAAATCAA R: GTTCAGGATCCAAGTCATTTTCATAG Pr: CCCCAAGGGCCAGATCGCCT

Reg3β F: ATGGCTCCTACTGCTATGCC R: GTGTCCTCCAGGCCTCTTT Pr: TGATGCAGAACTGGCCTGCCA

Reg3γ F: ATGGCTCCTATTGCTATGCC R: GATGTCCTGAGGGCCTCTT Pr: TGGCAGGCCATATCTGCATCATACC

S100a8 F: TGTCCTCAGTTTGTGCAGAATATAAA R: TCACCATCGCAAGGAACTCC Pr: CGAAAACTTGTTCAGAGAATTGGACATCAATAGTGA

S100a9 F: GGTGGAAGCACAGTTGGCA R: GTGTCCAGGTCCTCCATGATG Pr: TGAAGAAAGAGAAGAGAAATGAAGCCCTCATAAATG

Lcn2 F: GGCCAGTTCACTCTGGGAAA R: CCACTTGCACATTGTAGCTCTGT Pr: ATGCACAGGTATCCTCAGG

mCramp F: GCCGCTGATTCTTTTGACATC R: GCCAGCCGGGAAATTTTCT Pr: AACGAGCCTGGTGCACAGCCCT

Fut2 F: TGCACTGGCCAGGATGAA R: GCGCTAGAGCGTTGTGCAT Pr: TCGGCTTGCCTTCATCCCTGAATC

Flow Cytometry

To reduce non-specific Fc receptor-binding, cells were pre-incubated with anti-CD16/CD32 (1/100,

clone 2.4G2, BD Biosciences) for 15 min at 4oC. Cell viability was determined by a further 15 min

incubation in Fixable Viability Dye eFluor780 (1/1000 in PBS, eBioscience). We used a combination

of the following antibodies to label surface or intracellular antigens on cLP cells: α-CD45 (clone 30-

F11), CD3 (17A2), CD11b (M1/70), CD11c (N418), Ly6G (1A8), CD103 (M290), CD64 (X54-5/7.1),

CD115 (AFS98) (from BD Biosciences), CD4 (GK1.5), CD8a (53-6.7), CD25 (PC61.5), Foxp3 (FJK-

16S), MHC class II (M5/114.15.2) (from eBiosciences), and Ly6C (HK1.4; Biolegend). To detect

intracellular cytokines, we stimulated 5 x 105 cLP cells for 4-5 hours in RPMI containing 50 ng/ml

phorbol myristate acetate (PMA, Sigma) and 0.5 µg/ml ionomycin (Sigma) in the presence of

GolgiStop solution with Brefeldin A (1 µl/ml, BD Biosciences). Cells were then fixed and

permeabilized using the Cytofix/Cytoperm Kit (BD Biosciences), and stained for 1 hour with α-IFNγ

Page 19: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

(clone XMG1.2) and IL-17A (TC11-18H10; both from BD Biosciences). Flow cytometry data were

acquired on an LSRFortessa instrument (BD Biosciences) and analysed using FlowJo software

(TreeStar).

Genomic sequencing and comparative genomics of Enterococcus faecalis

Genomic DNA from Enterococcus faecalis isolates was prepared from 24-hour cultures using

standard phenol-chloroform extraction procedure (He et al., 2010). We created multiplexed libraries

with 150-bp paired-end reads and sequenced the genomes on a MiSeq 2000 platform (Illumina).

Contigs were assembled de novo using Velvet (Zerbino and Birney, 2008), and aligned with the

V583 E. faecalis genome (NCBI accession number NC_004668) using the MUMmer package

(nucmer programme) (Kurtz et al., 2004) implemented in ABACAS (Assefa et al., 2009). We

performed gene prediction using Prodigal (Hyatt et al., 2010), followed by annotation transfer using

data from the V583 genome and the MMH594 pathogenicity island (accession number AF454824).

Further manual annotation and sequence alignment were done using Artemis (Rutherford et al.,

2000) and ACT (Carver et al., 2005). Circular representation of the murine E. faecalis genome was

done using DNAPlotter 4.1 (Carver et al., 2009). Based on the previously published full and draft

genomes of diverse E. faecalis strains from animal and human sources (Arias et al., 2011; Brede et

al., 2011; Fritzenwanker et al., 2013; McBride et al., 2007; Ruiz-Garbajosa et al., 2006; Zischka et

al., 2012) (Table S4), we constructed maximum likelihood dendogram with Seaview (Gouy et al.,

2010), using the concatenated sequences of E. faecalis multilocus sequencing typing genes (aroD,

gdh, gki, gyd, pstS, xpt, yqil).

To profile the diversity of enterococci in the mouse microbiota, we picked at least 10 identical

colonies of enterococci grown on selective Bile-Esculin-Azide agar per sample per time point for 16S

rRNA gene sequencing. Whole-genome sequencing was performed with 30 representative

Enterococcus faecalis isolates from different mouse colonies using Illumina MiSeq, generating

approximately 50X genome coverage per isolate (Table S5). The genomes of isolates from different

Page 20: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

mouse colonies were compared to identify any genetic variations (e.g. single nucleotide

polymorphisms (SNPs) or insertions/deletions).

Microbiota Analysis

To study the temporal changes of C. rodentium infection on the microbial ecology of wild-type and

Il22ra1-/- mice, we collected faecal pellets of individual earmarked animals, naïve and infected (n =

3/group) before inoculation and again after 9 days, at which point mice were culled to obtain the

luminal contents of the caecum by manual extrusion. Faecal samples were similarly obtained from

Il22ra1-/- mice infected with C. rodentium, treated with 2’-fucosyllactose or PBS control. To extract

total DNA, we used the FastDNA Spin Kit for Soil with additional use of the FastPrep Instrument (MP

Biomedicals) to aid sample lysis. V5-V3 regions of bacterial 16S rRNA genes were PCR amplified

with the high-fidelity AccuPrime Taq Polymerase (Invitrogen) and the following primers: 338F, 5’-

CCGTCAATTCMTTTRAGT - 3’; 926R, 5’ - ACTCCTACGGGAGGCAGCAG - 3’. PCR products were

quantified with a Qubit 2.0 Fluorometer (Invitrogen) and equimolar volumes of each sample were

pyrosequenced on a 454 GS-FLX Titanium platform. Quality filtering was applied to include only

high quality (minimum average quality score of 35 in a 50-bp sliding window), non-chimeric

sequences containing the exact 4-nt tags, without homopolymer or ambiguous nucleotide. A mock

community sample consisting of genomic DNA from the following bacterial species: Parabacteroides

distasonis, Bacteroides thetaiotaomicron, Escherichia coli, Adlercreutzia equolifaciens, Clostridium

paraputrificum, Enterococcus faecalis was included to assess sequencing errors after quality filtering

(Schloss et al., 2011). Each datasets contained at least 600,000 sequences (approximately 4000

reads/sample post-quality filtering). Following alignment with the SILVA-derived reference database

(Pruesse et al., 2007) using the Mothur software package (Schloss et al., 2009), we generated

operational taxonomic units (OTUs) from unique sequences at 3% distance and assigned the

taxonomic classifications from phyla to genus level according to the Ribosomal Database Project

(Cole et al., 2009) and SILVA databases. Rarefaction analyses, calculations of alpha diversity

indices, and community clustering analyses were implemented using the Mothur software.

Page 21: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Intestinal Organoids Culture

Colonic organoids were isolated and cultured in vitro as described (Sato et al., 2011; Yui et al.,

2012). In brief, mouse colon segments were opened longitudinally, washed and incubated with

agitation in 2mM EDTA in PBS for 35 min at 4oC to dissociate the epithelial cells. Colonic crypts

were obtained by vigorous resuspension of tissue fragments with a 5-mL pipette in sedimentation

buffer (DMEM (Sigma) supplemented with 2mM L-glutamine (Invitrogen), 5% FBS (Sigma) and 2%

(w/v) D-sorbitol (Sigma)). We collected the supernatant containing crypts, and pelleted them by

centrifugation at 200-300g for 3 min. The pellet were washed five times in sedimentation buffer to

further remove non-epithelial cells, and resuspended in basal growth medium (advanced DMEM/F12

(Sigma) supplemented with 2mM L-glutamine, 5mM HEPES, 1 X N2 and B27 media supplements,

pencillin/streptomycin (all from Invitrogen), 1mM N-acetylcysteine and 5% FBS (Sigma)). About 500-

1000 crypt units were mixed with 100 µl phenol-red free Matrigel (Invitrogen) and allowed to solidify

in a 24-well plate. We then added 1ml/well of basal growth medium supplemented with 100 ng/ml

recombinant mouse Wnt-3a (Peprotech), 1 µg/ml recombinant mouse R-Spondin 1 (R&D Systems),

100 ng/ml Noggin (Peprotech) and 50 ng/ml EGF (Invitrogen) and replaced the medium every 2

days. Light microscopy was performed after 6-7 days of culture. For transmission electron

microscopy, organoids were fixed in 2.5% glutaraldehyde/2% paraformaldehyde, post-fixed with

0.1M sodium cacodylate buffer and 1% osmium tetroxide, followed by dehydration through an

ethanol series and embedding in TAAB 812 resin. We contrasted ultrathin sections with uranyl

acetate and lead nitrate, and recorded images on an FEI 120kV Spirit Biotwin microscope.

RNA Sequencing and Analysis

We performed RNA sequencing on 5-day old organoids from wild-type and Il22ra1-/- mice

(n=4/genotype) in technical duplicates. Organoids were either kept in complete growth medium or

stimulated with 50 ng/ml mouse recombinant IL-22 (Cambridge Bioscience) for 16 hours. After

adding ice-cold Cell disaggregation medium (Invitrogen) for 15 minutes to dissolve Matrigel, we

extracted total RNA using the RNeasy Micro kit (Qiagen), including a 10-minute treatment with

Page 22: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

RNAase-free DNAse I (Qiagen) to minimise contaminating genomic DNA. We generated multiplexed

cDNA libraries from high-quality RNA samples (RNA integrity number ≥ 7.0) according to the

Illumina TruSeq RNA Preparation protocol, and sequenced them on an Illumina HiSeq platform.

Each lane of Illumina sequence was assessed for quality based on GC content, average base

quality and adapter contamination. We obtained between 4.0 and 10.9 Gbp of RNA-seq data per

sample with paired-end reads 76-bp in length. RNA-seq reads were aligned to the mm10/NCBIM37

reference genome with BWA 0.6.1 (Li and Durbin, 2010). Gene expression values were computed

from the read alignments to the coding sequence to generate the number of reads mapping and

RPKM (reads per kilobase per million). We next used the whole-genome read count data to ask if

there exists an interaction between IL-22 stimulation of wild-type (WT) and Il22ra1-/- (KO) organoids,

by assuming the read count of sample i at gene j followed a negative binomial distribution:

Yij ~ NB(λijKi, θj),

with a mean parameter log(λij) = β0j + β1j(KO) + β2j(IL22) + β3j(KOxIL22),

where θj is the over-dispersion parameter and Ki is the size-factor for sample i obtained by Deseq

(Anders and Huber, 2010).

We performed a likelihood ratio test to assess the statistical significance of the KOxIL-22 interaction

term β3. Among the genes significantly up- or down-regulated by IL-22 (p-value < 10-12), we analysed

for enriched Gene Ontology terms within the category of biological processes using the Database for

Annotation, Visualisation and Integrated Discovery (DAVID) Functional Classification Tool

(http://david.abcc.ncifcrf.gov) (Huang da et al., 2009). Network analyses were subsequently

performed using GeneMania (Mostafavi et al., 2008) (integrating various interaction and network

databases including IntAct, BIND, MINT, BioGRID, REACTOME, etc…) and InnateDB (Lynn et al.,

2010).

Page 23: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

REFERENCES

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol 11, R106.

Arias, C.A., Panesso, D., McGrath, D.M., Qin, X., Mojica, M.F., Miller, C., Diaz, L., Tran, T.T., Rincon, S., Barbu, E.M., et al. (2011). Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 365, 892-900.

Assefa, S., Keane, T.M., Otto, T.D., Newbold, C., and Berriman, M. (2009). ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25, 1968-1969.

Bourgogne, A., Garsin, D.A., Qin, X., Singh, K.V., Sillanpaa, J., Yerrapragada, S., Ding, Y., Dugan-Rocha, S., Buhay, C., Shen, H., et al. (2008). Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9, R110.

Bradley, A., Anastassiadis, K., Ayadi, A., Battey, J.F., Bell, C., Birling, M.C., Bottomley, J., Brown, S.D., Burger, A., Bult, C.J., et al. (2012). The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23, 580-586.

Brede, D.A., Snipen, L.G., Ussery, D.W., Nederbragt, A.J., and Nes, I.F. (2011). Complete genome sequence of the commensal Enterococcus faecalis 62, isolated from a healthy Norwegian infant. J Bacteriol 193, 2377-2378.

Carver, T., Thomson, N., Bleasby, A., Berriman, M., and Parkhill, J. (2009). DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25, 119-120.

Carver, T.J., Rutherford, K.M., Berriman, M., Rajandream, M.A., Barrell, B.G., and Parkhill, J. (2005). ACT: the Artemis Comparison Tool. Bioinformatics 21, 3422-3423.

Chow, J.W., Thal, L.A., Perri, M.B., Vazquez, J.A., Donabedian, S.M., Clewell, D.B., and Zervos, M.J. (1993). Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37, 2474-2477.

Clare, S., Goldin, R., Hale, C., Aspinall, R., Simmons, C., Mastroeni, P., and Dougan, G. (2003). Intracellular adhesion molecule 1 plays a key role in acquired immunity to salmonellosis. Infect Immun 71, 5881-5891.

Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37, D141-145.

Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P., and Cossart, P. (2002). Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45, 1095-1106.

Engelbert, M., Mylonakis, E., Ausubel, F.M., Calderwood, S.B., and Gilmore, M.S. (2004). Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72, 3628-3633.

Fritzenwanker, M., Kuenne, C., Billion, A., Hain, T., Zimmermann, K., Goesmann, A., Chakraborty, T., and Domann, E. (2013). Complete Genome Sequence of the Probiotic Enterococcus faecalis Symbioflor 1 Clone DSM 16431. Genome Announc 1.

Page 24: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Giard, J.C., Rince, A., Capiaux, H., Auffray, Y., and Hartke, A. (2000). Inactivation of the stress- and starvation-inducible gls24 operon has a pleiotrophic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. J Bacteriol 182, 4512-4520.

Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27, 221-224.

He, M., Sebaihia, M., Lawley, T.D., Stabler, R.A., Dawson, L.F., Martin, M.J., Holt, K.E., Seth-Smith, H.M., Quail, M.A., Rance, R., et al. (2010). Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 107, 7527-7532.

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57.

Hyatt, D., Chen, G.L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119.

Ike, Y., Hashimoto, H., and Clewell, D.B. (1984). Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 45, 528-530.

Jett, B.D., Jensen, H.G., Nordquist, R.E., and Gilmore, M.S. (1992). Contribution of the pAD1-encoded cytolysin to the severity of experimental Enterococcus faecalis endophthalmitis. Infect Immun 60, 2445-2452.

Kreymborg, K., Etzensperger, R., Dumoutier, L., Haak, S., Rebollo, A., Buch, T., Heppner, F.L., Renauld, J.C., and Becher, B. (2007). IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 179, 8098-8104.

Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L. (2004). Versatile and open software for comparing large genomes. Genome Biol 5, R12.

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589-595.

Lynn, D.J., Chan, C., Naseer, M., Yau, M., Lo, R., Sribnaia, A., Ring, G., Que, J., Wee, K., Winsor, G.L., et al. (2010). Curating the innate immunity interactome. BMC Syst Biol 4, 117.

McBride, S.M., Fischetti, V.A., Leblanc, D.J., Moellering, R.C., Jr., and Gilmore, M.S. (2007). Genetic diversity among Enterococcus faecalis. PLoS One 2, e582.

Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., and Morris, Q. (2008). GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9 Suppl 1, S4.

Nallapareddy, S.R., Singh, K.V., Duh, R.W., Weinstock, G.M., and Murray, B.E. (2000). Diversity of ace, a gene encoding a microbial surface component recognizing adhesive matrix molecules, from different strains of Enterococcus faecalis and evidence for production of ace during human infections. Infect Immun 68, 5210-5217.

Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35, 7188-7196.

Page 25: Tu Anh N. Pham, Simon Clare, David Goulding, Julia M ... · Browne, Jacqueline A. Keane, Andrew J. Page, Natsuhiko Kumasaka, Leanne Kane, Lynda Mottram, Katherine Harcourt, Christine

Rakita, R.M., Vanek, N.N., Jacques-Palaz, K., Mee, M., Mariscalco, M.M., Dunny, G.M., Snuggs, M., Van Winkle, W.B., and Simon, S.I. (1999). Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation. Infect Immun 67, 6067-6075.

Ruiz-Garbajosa, P., Bonten, M.J., Robinson, D.A., Top, J., Nallapareddy, S.R., Torres, C., Coque, T.M., Canton, R., Baquero, F., Murray, B.E., et al. (2006). Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol 44, 2220-2228.

Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., and Barrell, B. (2000). Artemis: sequence visualization and annotation. Bioinformatics 16, 944-945.

Sannomiya, P., Craig, R.A., Clewell, D.B., Suzuki, A., Fujino, M., Till, G.O., and Marasco, W.A. (1990). Characterization of a class of nonformylated Enterococcus faecalis-derived neutrophil chemotactic peptides: the sex pheromones. Proc Natl Acad Sci U S A 87, 66-70.

Sato, T., Stange, D.E., Ferrante, M., Vries, R.G., Van Es, J.H., Van den Brink, S., Van Houdt, W.J., Pronk, A., Van Gorp, J., Siersema, P.D., et al. (2011). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762-1772.

Schloss, P.D., Gevers, D., and Westcott, S.L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6, e27310.

Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75, 7537-7541.

Singh, K.V., Qin, X., Weinstock, G.M., and Murray, B.E. (1998). Generation and testing of mutants of Enterococcus faecalis in a mouse peritonitis model. J Infect Dis 178, 1416-1420.

White, J.K., Gerdin, A.K., Karp, N.A., Ryder, E., Buljan, M., Bussell, J.N., Salisbury, J., Clare, S., Ingham, N.J., Podrini, C., et al. (2013). Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154, 452-464.

Wiles, S., Pickard, K.M., Peng, K., MacDonald, T.T., and Frankel, G. (2006). In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. Infect Immun 74, 5391-5396.

Yui, S., Nakamura, T., Sato, T., Nemoto, Y., Mizutani, T., Zheng, X., Ichinose, S., Nagaishi, T., Okamoto, R., Tsuchiya, K., et al. (2012). Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med 18, 618-623.

Zerbino, D.R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821-829.

Zischka, M., Kuenne, C., Blom, J., Dabrowski, P.W., Linke, B., Hain, T., Nitsche, A., Goesmann, A., Larsen, J., Jensen, L.B., et al. (2012). Complete genome sequence of the porcine isolate Enterococcus faecalis D32. J Bacteriol 194, 5490-5491.