tstc lectures: theoretical & computational...

44
R. Hernandez @ Georgia Tech TSTC Lectures: Theoretical & Computational Chemistry Rigoberto Hernandez May 2009, Lecture #2 Statistical Mechanics: Structure

Upload: others

Post on 17-Jun-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lectures:

Theoretical & Computational

Chemistry

Rigoberto Hernandez

May 2009, Lecture #2 Statistical Mechanics: Structure

Page 2: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

S = kB log W

•! Boltzmann's

headstone at the

Vienna

Zentralfriedhof.

•! Photo by Daderot on

www.SklogWiki.org

•! By the way, SklogWiki’s symbol, !"cs,is the short-hand used by

James Clerk Maxwell for the word

thermodynamics.

TSTC Lecture #2

July 09

Statistical Mechanics 2

Page 3: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 3

This Lecture •! Part II, continued:

–! Statistical Mechanics: Ideal

•! Cf. “Introduction to Modern Statistical Mechanics” by D. Chandler, (Oxford

University Press, USA, 1987) —The green book !

•! Cf. “Statistical Mechanics” by B. Widom

•! Cf. “Basic concepts for simple and complex liquids” by J. L. Barrat & J- P. Hansen

•! Part III:

–! Statistical Mechanics: Nonideal

•! Cf. Ibid!

•! Part IV:

–! Statistical Mechanics of Liquids

Page 4: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 4

Major Concepts, Part II — Ideal •! Thermodynamics (macroscopic theory)

–! S-conjugate variables

–! Legendre Transforms

•! Statistical Mechanics—Fundamentals

–! Ensemble

–! Ensemble Averages & Observables

–! Partition Functions

–! Ergodicity

•! Entropy and Probability

•! Ensembles

–! Extensive vs. Intensive variables

•! Harmonic Oscillator

•! Ideal Gas

Sampling by:

"!Monte Carlo

"!Molecular Dynamics

Ensembles:

"!(S,V,N) #canonical

"!(T,V,N) Canonical (or Gibbs)

"!(T,V,!) Grand-Canonical

"!(T,P,N) Isothermal-Isobaric

Page 5: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Completing the Square

TSTC Lecture #2

July 09

Statistical Mechanics 5

Page 6: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 6

Gas

Consider N particles in volume, V

!

V (! r 1,...,! r N ) = Vij

! r i "! r j( )

i< j

#

!

Q =1

2"!

#

$ %

&

' (

3N

d" r ) d" p ) e

*+H" r ," p ( )

with a generic two-body potential:

The Canonical partition function:

!

d! r = dr

1dr2...dr

N

!

T(! p 1,...,! p N ) =

! p i2

2mii

"

and kinetic energy:

Page 7: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 7

Integrating the K.E. Q in a Gas

!

Q =1

2"!

#

$ %

&

' (

3N

d" p ) e

*+pi2

2mii

N

,d" r ) e

*+V" r ( )

!

Q =1

2"!

#

$ %

&

' (

3N2mi"

)

#

$ %

&

' (

i

N

*32

d" r + e

,)V" r ( )

May generally be written as: (Warning:

this is not separability!)

!

Q =1

2"!

#

$ %

&

' (

3N

d" r ) d" p ) e

*+H" r ," p ( )

!

e"ax 2

"#

#

$ dx =%

a

With the generic solution for any system

Page 8: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 8

No Interactions!Ideal Gas Assume:

1.! Ideal Gas ! V(r)=0

2.! Only one molecule type: mi=m!

!

Q =1

2"!

#

$ %

&

' (

3N2m"

)

#

$ %

&

' (

3N2

VN

!

d! r " e

#$V! r ( )

= d! r " = V

N

!

2mi"

#

$

% &

'

( )

i

N

*32

=2m"

#

$

% &

'

( )

3N2

The ideal gas partition function:

Page 9: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 9

The Ideal Gas Law

!

Q =1

2"!

#

$ %

&

' (

3N2m"

)

#

$ %

&

' (

3N2

VN

!

P = "#A

#V

$

% &

'

( ) T ,N

!

dA = "SdT " PdV + µdN

!

A = "kBT ln Q( )

!

P = kBT" ln(Q)

"V

!

P = kBTN

VIdeal Gas Law!

Recall:

The Pressure

Page 10: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 10

Ideal Gas: Other Observables

!

E(T ,V ,N) = "# lnQ

#$

A(T ,V ,N) = "kT lnQ

S(T ,V ,N) =E " A

T Recall : A = E "TS

!

"(T ,P,N) = e#$PV

Q(T ,V ,N)dV

0

%

&G(T , p,N) = #kT ln"

S(T , p,N) = k ln" + kT' ln"

'T

(

) *

+

, - N,P

!

Q =1

2"!

#

$ %

&

' (

3N2m"

)

#

$ %

&

' (

3N2

VN

Page 11: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 11

Major Concepts, Part III •! Non-Ideal Systems

•! Ising Model •! H: Applied Field

•! J: Interaction (non-ideality)

–! Isomorphic to Lattice Gas!

–! Geometric vs. Energetic Frustration

•! Phase Transitions –! Spontaneous magnetization & Critical Temperature

–! Exact solution for J=0 (ideal)

–! Nonzero J Ising Solution in 1D (exact, transfer matrix)

–! Nonzero J Ising Solution in 2D (exact, Onsager)

•! Mean Field Theory (Approximate)

•! Monte Carlo (Numerical)

Page 12: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 12

Non-Ideal Systems

•! Ideal systems!non-interacting systems

–! i.e. ideal gas

•! Non-ideal systems!Most systems

–! Interactions between particles

–! One manifestation of particle interactions is

the possibility of phase transitions

–!E.g., Spin Ising System or Lattice Gas:

•! Interactions included only at “nearest

neighbors”

Page 13: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 13

•! Ising model is lattice of

spins.

–! Each square is large enough to hold one spin.

•! H: magnetic field

•! µ: magnetic moment

•! Si: direction of spin (±1)

•! Isomorphic to lattice

gas H

energyn interactio })({1

+!= "=

N

i

iiSHSE µ#

Ising Spin (Magnet) Model

Page 14: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 14

•! What if the interaction energy term is 0 (i.e. the system is

ideal)?

•! the partition function can then be obtained readily:

!!

= =

"

}{

1)(i

N

i

i

S

SH

eQµ#

#

•! Using the partition function many observables can be

calculated.

NNHHHee ))cosh(2()( µ!µ!µ! =+= "

!"= ±=

#=

N

i S

SH

i

ie

1 1

µ$

•! Using the partition function many observables can be calculated.

Ideal Ising Model: Q

Page 15: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 15

•! The average energy of the system is given by:

)tanh()cosh(

)sinh(

ln

µ!µµ!

µ!µ

!

HNHH

HNH

QE

"="=

#

#"=

NHQ ))cosh(2()( µ!! =

Ideal Ising Model: <E>

Page 16: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 16

Interactions in the Ising Model •! In the Ising model, only nearest neighbors

interact.

•! J is the coupling constant

•! Why not add terms with si squared or higher

power?

•! J > 0 (ferromagnet)

•! energetically favorable for spins to be aligned

•! J < 0 (antiferromagnet) H!"

ij

ji ssJ'

Page 17: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 17

•! Frustration occurs when you can’t avoid unfavorable

contacts. E.g, in a non-rectilinear Ising model:

•! The spins are located

on the vertices.

•! Frustration arises from

unfavorable contacts

or

?

•! J < 0 Antiferromagnetic

system

Frustration

Page 18: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 18

•! Through nearest neighbor interactions, spins separated by a

macroscopic distance can influence each other.

•! Long range correlations lead to long range order

•! For the spin Ising system, long range order is indicated by net

magnetization of the system even in the absence of a magnetic

field.

SNSM

i

iµµ == !

T

Tc

N#

-N#

M

Phase Transitions in Ising?

Page 19: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 19

SNSM

i

iµµ == !

T

Tc

N#

-

N#

M •! Order-disorder (phase)

transition occurs at Tc

•! Does a phase transition

exist?

•! Does a region with net

magnetization exist?

•! If H=0 when J>0 and there is

a region of net magnetization

then the system shows spontaneous magnetization.

Phase Transitions in Ising?

Page 20: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 20

PMF: F(M) •! The potential of mean force (PMF) gives rise

to a free energy in the net magnetization

•! At T>Tc

–! F(M) is a single well centered at M=0

•! At T=Tc

–! F(M) is a single well centered at M=0, but the

second derivative at 0 is 0

•! At T<Tc

–! F(M) is a double well with a saddle at M=0, and

now giving rise to TWO stable nonzero M’s.

Page 21: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 21

•! How can the critical temperature, Tc, be found?

•! Calculate the partition function for the system Q($,H)

•! If for any $ then the system exhibits spontaneous

magnetization (an order-disorder transition).

•! Peierl’s Theorem argues that there is no net magnetization

in 1D.

•!It also claims that if you have net magnetization at a given T

for nD, then you have net magnetization at that same T at all

higher dimensionality

0>M

1D Ising Model: Find Tc

!

M ="(lnQ)

"(#H )

$

% &

'

( ) H=0

* sinh(#µH ) in 1D[ ]

Page 22: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 22

!

= exp["µHSi +Si+1

2

i

# +"JSiSi+1]

{Si}

$

!!"

#$$%

&==

'''

'

() +

1,11,1

1,11,1

}{

; 1 qq

qqqq

i

ii

S i

ss

)( NqTr= NNN

+!+ "+= ###

}]}])([sinh)ln{cosh([exp{ 2/142 JeHHJN

!!µ!µ! "+++=

!

Q(",H ) = exp "µH Si

i

# +"J 'SiS j

i, j

#$

%

& & & &

'

(

) ) ) ) {Si}

# = exp "µHSi +Si+1

2

i

# +"J SiSi+1

i

#$

%

& & &

'

(

) ) )

{Si}

#

1D Ising Model: Find Q(",H)

Transfer

Matrix

Page 23: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 23

•! Exact (analytic) result obtained by Lars Onsager in

the 1940’s using a 2D transfer matrix technique,

•! Peierl’s Theorem guarantees Tc> 0 for the 3D and

higher dimensionality Ising models

Tc/(J/kB) Numerical (Exact) Onsager Net Magnetization?

1D 0 0 no

2D 2.3 2.269 yes

3D ~4 yes

4D ~8 yes

BCkJT 269.2=

CCTTTTM <!" for )( 2

1

Two Dimensions and Higher

Page 24: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics

Universe of spins

Tagged spin

Sk

H: Mean field due to the universe of spins

?

!!=

"=ji

ji

N

i

ii SSSHSE,

'

1 2

J-})({ µ#

!""=#

#

j

kj

k

SJHS

E)(µ

SJzHS

E

k

!!="

:S

2Dz =

Average spin of an

equivalent neighbor

Mean Field Theory (MFT)

24

Page 25: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics

•! Consider a single spin system: k

k

S

ESE

!

!"=

)}(cosh{2

})(exp{),1,(1

SJzH

SSJzHHQnS

k

+=

+= !±=

µ"

µ""

)tanh(

),1,(ln

0

SJz

H

HQS

H

k

!

!

=

""#

$%%&

'

(

(=

=

•! But since no spin is special

•! Obtain spontaneous magnetization at

kSS =

BB

C

k

DJ

k

JzT

2==

Mean Field Theory (MFT)

25

Page 26: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics

Variational MFT

•! How do you know to choose the

reference Hamiltonian to be that of an

ideal system with mean forces?

•! Gibbs-Bogoliubov-Feynman Inequality!

•! Note also connections to:

–!perturbation theory

–!cumulant expansions

–!Mayer cluster expansion

26

Page 27: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics

Tc/(J/kB) Numerical (Exact) Onsager MFT

1D 0 0 2

2D 2.3 2.269 4

3D ~4 6

4D ~8 8

•! MFT is not always accurate.

•!Accuracy increases with increasing dimensionality

•!Flory-Huggins Theory is a MFT for polymers!

•! Sometimes need something better…

•! RG: Renormalization Group Theory

Sping Ising Model: Summary

27

Page 28: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Monte Carlo: Naïve

TSTC Lecture #2

July 09

Statistical Mechanics 28

Page 29: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Naïve MC: Calculating !

•! Numerics of !: –! Ncirc, Nsq, 4*Ncirc/Nsq

–! 72 100 2.88 (1 digit)

–! 782 1000 3.128

–! 7910 10000 3.164 (2 digits)

–! 78520 100000 3.1408

–! 785322 1000000 3.141288 (3 digits)

–! 7854199 10000000 3.1416796

–! 78540520 100000000 3.1416208 (4 digits)

–! 785395951 1000000000 3.1415838

–! 1686652227 2147483647 3.14163459

–! …, …, 3.1415927 (8 digits)

TSTC Lecture #2

July 09

Statistical Mechanics 29

Page 30: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Monte Carlo: Metropolis •! N. Metropolis, A. Rosenbluth, M.Rosenbluth, A. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953)

TSTC Lecture #2

July 09

Statistical Mechanics 30

Page 31: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Monte Carlo: Umbrella Sampling

TSTC Lecture #2

July 09

Statistical Mechanics 31

Page 32: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Parallel Tempering & Replica Exchange

•! Problem:

–! How do you sample all of the space on a corrugated

energy landscape? (barriers greater than target T.)

•! Answer:

–! run N many replicas using MC at N different

temperatures, Ti, in parallel

–! Every so often, attempt exchanges between replicas

according to

probability = min( 1, exp([1/kTi - 1/kTj][E i - E j]))

–! Satisfies detailed balance

TSTC Lecture #2

July 09

Statistical Mechanics 32

RH Swendsen and JS Wang, “Replica Monte Carlo simulation of spin glasses,” Phys. Rev. Lett.

57, 2607-2609 (1986) "

C. J. Geyer, in Computing Science and Statistics Proceedings of the 23rd Symposium on the Interface, American Statistical Association, New York, 1991, p. 156.

Page 33: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Wang-Landau •! A Monte Carlo approach for obtaining the density of states,

"(E), directly

–! Rather than computing g(r) or other observables

–! A random walk through energy space!

•! Algorithm:

–! Initialize "(E)=1 for all E

–! Accept moves according to:

•! probability = min[ 1, "(Einitial)/"(Etrial move) ]

•! Let E’ be the energy of the state at the end of the trial

–! Update "(E’)= f"(E’) & the histogram H( Set(E’) )+=1

–! Stop once the histogram is “flat,” [error in "(E) = O{ln(f)} ]

–! Iterate, now using smaller f,

TSTC Lecture #2

July 09

Statistical Mechanics 33

F. Wang & D.P. Landau, Phys. Rev. Lett. 86, 205 (2001). [original version for spin Hamiltonian]

Page 34: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 34

Major Concepts, Part IV •! Review:

–! Fluid Structure

•! Gas, liquid, solid, …

•! Radial distribution function, g(r)

–! Potential of Mean Force

–! Classical Determination of g(r):

•! Integral Equation Theories

•! Molecular Dynamics

•! Monte Carlo

•! Scattering experiments (e.g., x-ray, or SANS)

•! Renormalization Group Theory

Page 35: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

•! The Radial distribution function, g(r)

Quantifying Structure

TSTC Lecture #2

July 09

Statistical Mechanics 35

ideal gas!

solid liquid

Page 36: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Liquid Structure, I •! Configurational distribution:

•! Specific joint probability distribution: [Particle 1 (2) at r1 (r2)]

•! Generic reduced probability distribution function: (Any particle at r1)

•! Generic n-point reduced probability distribution function (RPDF)

TSTC Lecture #2

July 09

Statistical Mechanics 36

Page 37: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

TSTC Lecture #2

July 09

Statistical Mechanics 37

Aside about

Dirac vs. Kronecker Delta’s •! Kronecker: (Discrete)

•! Dirac: (Continuous)

!

" x( ) =lim

a#0

1

2$eikx% ak

%&

+&

' dx

" x( ) =lim

a#0

1

a $e

%x2

a2

!

"ij ="i, j =1, if i = j

0, if i # j

$ % &

Page 38: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Liquid Structure, II •! The 1-point RPDF is the density in an isotropic fluid:

•! The 2-point RPDF is also simple in an ideal gas

•! Separability reduces configurational distribution and the n-point specific reduced

probability distribution:

•! Hence the 2-point RPDF is:

TSTC Lecture #2

July 09

Statistical Mechanics 38

Page 39: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

radial distribution function, g(r) •! Measure liquid structure according to how it deviates from the

isotropic ideal gas limit:

•! If the system is isotropic, then these quantities depend only on

r = |r1 – r2|, and this leads to:

•! The challenge is: How does one calculate or measure g(r)?

–! Theory (e.g., integral equations, mode coupling theory, expansions)

–! Simulations

–! Experiment [FT of g(r) is related to the structure factor S(q)]

TSTC Lecture #2

July 09

Statistical Mechanics 39

Page 40: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Potential of Mean Force •! Reversible Work Theorem:

•! Where w(r) is the Helmholtz free energy (reversible work) to move

a particle from infinity to a distance r from a chosen center

•! That is, the force on the particle in the fluid is:

•! Proof:

•! Take-Home Message: •! A structural calculation of g(r) can lead to an understanding of

forces

TSTC Lecture #2

July 09

Statistical Mechanics 40

Page 41: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Integral Equations

•! Ornstein-Zernike Equation:

–! h(r12) : total (pair) correlation function [ = g(r)-1 ]

–! c(r12) : direct correlation function

•! Closures: –! Percus-Yevick:

–! Hypernetted Chain (HNC):

–! Many others!

•! Reference Interaction Site Model (RISM) –! Anderson & Chandler, JCP 57,1918 & 1930 (1972).

•! RISM for ring polymers (PRISM) –! Schweizer & Curro, PRL 58, 246 (1987)

TSTC Lecture #2

July 09

Statistical Mechanics 41

c(r) ! g(r)" w(r)c(r) ! e!!w(r) " e!![w(r)!u(r)]

Page 42: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Computer simulations of g(r)

•! Need force field, e.g., Lennard-Jones

•! Need a SamplingTechnique:

•! Molecular Dynamics

•! Monte Carlo Sampling

TSTC Lecture #2

July 09

Statistical Mechanics 42

Page 43: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Computer simulations of g(r) –! Molecular Dynamics

•! Integration algorithm

–! Convergence w.r.t. step size

–! Convergence w.r.t. final time (ergodic?)

–! How do you assert convergence?

»! Conservation of Energy?

»! Reproducibility with time step?

»! Conservation of symplectic norm

»! Other?

•! Equilibrium & nonequilibrium averages

•! Constant T or S, P or V, µ or N Ensemble?

–! Stochastic forces?

–! Anderson barostats or Nose-Hoover thermostats

–! Langevin dissipation

TSTC Lecture #2

July 09

Statistical Mechanics 43

Page 44: TSTC Lectures: Theoretical & Computational Chemistrysimons.hec.utah.edu/TSTCsite/HernandezLectures/SM-RH2.pdf · 2009-07-25 · TSTC Lectures: Theoretical & Computational Chemistry

R. Hernandez @ Georgia Tech

Computer simulations of g(r)

–! Monte Carlo Sampling

•! No real time averages!

•! Use Metropolis Monte Carlo

•! Choosing new configurations for the Metropolis

step?

–! Pick initial arbitrary step size for particles

–! Optimize step size according to acceptance

–! Other types of moves???

–! REGARDLESS, need to ensure ergodic sampling!

•! Constant T ensembles

•! Constant µ or P ensembles?

–! “charging methods”

–! Widom insertion method

TSTC Lecture #2

July 09

Statistical Mechanics 44